Loading [Contrib]/a11y/accessibility-menu.js

A short proof of the logarithmic Bramson correction in Fisher-KPP equations

  • Received: 01 May 2012 Revised: 01 November 2012
  • Primary: 35K57, 35C07; Secondary: 35B40.

  • In this paper, we explain in simple PDE terms a famous result of Bramson about the logarithmic delay of the position of the solutions $u(t,x)$ of Fisher-KPP reaction-diffusion equations in $\mathbb{R}$, with respect to the position of the travelling front with minimal speed. Our proof is based on the comparison of $u$ to the solutions of linearized equations with Dirichlet boundary conditions at the position of the minimal front, with and without the logarithmic delay. Our analysis also yields the large-time convergence of the solutions $u$ along their level sets to the profile of the minimal travelling front.

    Citation: François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik. A short proof of the logarithmic Bramson correction in Fisher-KPP equations[J]. Networks and Heterogeneous Media, 2013, 8(1): 275-289. doi: 10.3934/nhm.2013.8.275

    Related Papers:

    [1] François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik . A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Networks and Heterogeneous Media, 2013, 8(1): 275-289. doi: 10.3934/nhm.2013.8.275
    [2] John R. King . Wavespeed selection in the heterogeneous Fisher equation: Slowly varying inhomogeneity. Networks and Heterogeneous Media, 2013, 8(1): 343-378. doi: 10.3934/nhm.2013.8.343
    [3] Benjamin Contri . Fisher-KPP equations and applications to a model in medical sciences. Networks and Heterogeneous Media, 2018, 13(1): 119-153. doi: 10.3934/nhm.2018006
    [4] Henri Berestycki, Guillemette Chapuisat . Traveling fronts guided by the environment for reaction-diffusion equations. Networks and Heterogeneous Media, 2013, 8(1): 79-114. doi: 10.3934/nhm.2013.8.79
    [5] James Nolen . A central limit theorem for pulled fronts in a random medium. Networks and Heterogeneous Media, 2011, 6(2): 167-194. doi: 10.3934/nhm.2011.6.167
    [6] Maria Colombo, Gianluca Crippa, Stefano Spirito . Logarithmic estimates for continuity equations. Networks and Heterogeneous Media, 2016, 11(2): 301-311. doi: 10.3934/nhm.2016.11.301
    [7] Tong Li . Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8(3): 773-781. doi: 10.3934/nhm.2013.8.773
    [8] Andrea Corli, Lorenzo di Ruvo, Luisa Malaguti, Massimiliano D. Rosini . Traveling waves for degenerate diffusive equations on networks. Networks and Heterogeneous Media, 2017, 12(3): 339-370. doi: 10.3934/nhm.2017015
    [9] Hantaek Bae . On the local and global existence of the Hall equations with fractional Laplacian and related equations. Networks and Heterogeneous Media, 2022, 17(4): 645-663. doi: 10.3934/nhm.2022021
    [10] Gary Bunting, Yihong Du, Krzysztof Krakowski . Spreading speed revisited: Analysis of a free boundary model. Networks and Heterogeneous Media, 2012, 7(4): 583-603. doi: 10.3934/nhm.2012.7.583
  • In this paper, we explain in simple PDE terms a famous result of Bramson about the logarithmic delay of the position of the solutions $u(t,x)$ of Fisher-KPP reaction-diffusion equations in $\mathbb{R}$, with respect to the position of the travelling front with minimal speed. Our proof is based on the comparison of $u$ to the solutions of linearized equations with Dirichlet boundary conditions at the position of the minimal front, with and without the logarithmic delay. Our analysis also yields the large-time convergence of the solutions $u$ along their level sets to the profile of the minimal travelling front.


    [1] D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5
    [2] H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations, in "Perspectives in Nonlinear Partial Differential Equations, in Honor of H. Brezis", Amer. Math. Soc., Contemp. Math., (2007), 101-123. doi: 10.1090/conm/446/08627
    [3] M. D. Bramson, Maximal displacement of branching Brownian motion, Comm. Pure Appl. Math., 31 (1978), 531-581. doi: 10.1002/cpa.3160310502
    [4] M. D. Bramson, "Convergence of Solutions of the Kolmogorov Equation to Travelling Waves," Mem. Amer. Math. Soc., 1983.
    [5] E. Brunet and B. Derrida, Shift in the velocity of a front due to a cutoff, Phys. Rev. E, 56 (1997), 2597-2604. doi: 10.1103/PhysRevE.56.2597
    [6] C. Cuesta and J. King, Front propagation in a heterogeneous Fisher equation: The homogeneous case is non-generic, Quart. J. Mech. Appl. Math., 63 (2010), 521-571. doi: 10.1093/qjmam/hbq017
    [7] J.-P. Eckmann and T. Gallay, Front solutions for the Ginzburg-Landau equation, Comm. Math. Phys., 152 (1993), 221-248. doi: 10.1007/BF02098298
    [8] U. Ebert and W. van Saarloos, Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts, Phys. D, 146 (2000), 1-99. doi: 10.1016/S0167-2789(00)00068-3
    [9] U. Ebert, W. van Saarloos and B. Peletier, Universal algebraic convergence in time of pulled fronts: The common mechanism for difference-differential and partial differential equations, European J. Appl. Math., 13 (2002), 53-66. doi: 10.1017/S0956792501004673
    [10] P. C. Fife, "Mathematical Aspects of Reacting and Diffusing Systems," Lecture Notes in Biomathematics, Springer Verlag, 1979.
    [11] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 353-369. doi: 10.1111/j.1469-1809.1937.tb02153.x
    [12] preprint.
    [13] K.-S. Lau, On the nonlinear diffusion equation of Kolmogorov, Petrovskii and Piskunov, J. Diff. Eqs., 59 (1985), 44-70. doi: 10.1016/0022-0396(85)90137-8
    [14] A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. État Moscou, Sér. Inter. A, 1 (1937), 1-26.
    [15] J. D. Murray, "Mathematical Biology," Springer-Verlag, 2003. doi: 10.1007/b98869
    [16] F. Rothe, Convergence to travelling fronts in semilinear parabolic equations, Proc. Royal Soc. Edinburgh A, 80 (1978), 213-234. doi: 10.1017/S0308210500010258
    [17] D. H. Sattinger, Weighted norms for the stability of traveling waves, J. Diff. Eqs., 25 (1977), 130-144. doi: 10.1016/0022-0396(77)90185-1
    [18] K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. Kyoto Univ., 18 (1978), 453-508.
    [19] J. Xin, "An Introduction to Fronts in Random Media," Surveys and Tutorials in the Applied Mathematical Sciences, Springer, New York, 2009. doi: 10.1007/978-0-387-87683-2
  • This article has been cited by:

    1. Thomas Giletti, François Hamel, Sharp thresholds between finite spread and uniform convergence for a reaction–diffusion equation with oscillating initial data, 2017, 262, 00220396, 1461, 10.1016/j.jde.2016.10.014
    2. O. Bonnefon, J. Garnier, F. Hamel, L. Roques, Elaine Crooks, Fordyce Davidson, Bogdan Kazmierczak, Gregoire Nadin, Je-Chiang Tsai, Inside Dynamics of Delayed Traveling Waves, 2013, 8, 0973-5348, 42, 10.1051/mmnp/20138305
    3. Arnaud Ducrot, On the large time behaviour of the multi-dimensional Fisher–KPP equation with compactly supported initial data, 2015, 28, 0951-7715, 1043, 10.1088/0951-7715/28/4/1043
    4. Grégory Faye, Matt Holzer, Arnd Scheel, Linear spreading speeds from nonlinear resonant interaction, 2017, 30, 0951-7715, 2403, 10.1088/1361-6544/aa6c74
    5. Julien Berestycki, Éric Brunet, Simon C. Harris, Piotr Miłoś, Branching Brownian motion with absorption and the all-time minimum of branching Brownian motion with drift, 2017, 273, 00221236, 2107, 10.1016/j.jfa.2017.06.006
    6. Julien Berestycki, Éric Brunet, Cole Graham, Leonid Mytnik, Jean-Michel Roquejoffre, Lenya Ryzhik, The distance between the two BBM leaders, 2022, 35, 0951-7715, 1558, 10.1088/1361-6544/ac4a8e
    7. Rafael D Benguria, Abraham Solar, An estimation of level sets for non local KPP equations with delay, 2019, 32, 0951-7715, 777, 10.1088/1361-6544/aaedd7
    8. Jane Allwright, Exact solutions and critical behaviour for a linear growth-diffusion equation on a time-dependent domain, 2022, 65, 0013-0915, 53, 10.1017/S0013091521000754
    9. Julien Berestycki, Éric Brunet, Bernard Derrida, Exact solution and precise asymptotics of a Fisher–KPP type front, 2018, 51, 1751-8113, 035204, 10.1088/1751-8121/aa899f
    10. James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik, Refined long-time asymptotics for Fisher–KPP fronts, 2019, 21, 0219-1997, 1850072, 10.1142/S0219199718500724
    11. Julien Berestycki, Nathanaël Berestycki, Jason Schweinsberg, Critical branching Brownian motion with absorption: Particle configurations, 2015, 51, 0246-0203, 10.1214/14-AIHP613
    12. Bernard Derrida, Cross-Overs of Bramson’s Shift at the Transition Between Pulled and Pushed Fronts, 2023, 190, 0022-4715, 10.1007/s10955-023-03077-8
    13. Emeric Bouin, Christopher Henderson, Lenya Ryzhik, The Bramson delay in the non-local Fisher-KPP equation, 2020, 37, 0294-1449, 51, 10.1016/j.anihpc.2019.07.001
    14. Leonid Mytnik, Jean-Michel Roquejoffre, Lenya Ryzhik, Fisher-KPP equation with small data and the extremal process of branching Brownian motion, 2022, 396, 00018708, 108106, 10.1016/j.aim.2021.108106
    15. Thomas Giletti, Monostable pulled fronts and logarithmic drifts, 2022, 29, 1021-9722, 10.1007/s00030-022-00766-3
    16. Julien Berestycki, Nathanaël Berestycki, Jason Schweinsberg, Critical branching Brownian motion with absorption: survival probability, 2014, 160, 0178-8051, 489, 10.1007/s00440-013-0533-9
    17. Hong Gu, Fisher-KPP equation with advection on the half-line, 2016, 39, 01704214, 344, 10.1002/mma.3485
    18. Junfeng He, Yanxia Wu, Yaping Wu, Large time behavior of solutions for degenerate p-degree Fisher equation with algebraic decaying initial data, 2017, 448, 0022247X, 1, 10.1016/j.jmaa.2016.10.037
    19. Montie Avery, Arnd Scheel, Asymptotic Stability of Critical Pulled Fronts via Resolvent Expansions Near the Essential Spectrum, 2021, 53, 0036-1410, 2206, 10.1137/20M1343476
    20. Rui Peng, Chang-Hong Wu, Maolin Zhou, Sharp estimates for the spreading speeds of the Lotka-Volterra diffusion system with strong competition, 2021, 38, 0294-1449, 507, 10.1016/j.anihpc.2020.07.006
    21. Emeric Bouin, Christopher Henderson, Lenya Ryzhik, The Bramson logarithmic delay in the cane toads equations, 2017, 75, 0033-569X, 599, 10.1090/qam/1470
    22. Zhiguo Wang, Qian Qin, Jianhua Wu, Spreading Speed and Profile for the Lotka–Volterra Competition Model with Two Free Boundaries, 2022, 1040-7294, 10.1007/s10884-022-10222-6
    23. Yihong Du, Bendong Lou, Rui Peng, Maolin Zhou, The Fisher-KPP equation over simple graphs: varied persistence states in river networks, 2020, 80, 0303-6812, 1559, 10.1007/s00285-020-01474-1
    24. Montie Avery, Arnd Scheel, Universal selection of pulled fronts, 2022, 2, 2692-3688, 172, 10.1090/cams/8
    25. H. Matano, P. Poláčik, Dynamics of nonnegative solutions of one-dimensional reaction-diffusion equations with localized initial data. Part II: Generic nonlinearities, 2020, 45, 0360-5302, 483, 10.1080/03605302.2019.1700273
    26. Weiwei Ding, Hiroshi Matano, Dynamics of Time-Periodic Reaction-Diffusion Equations with Front-Like Initial Data on $\mathbb{R}$, 2020, 52, 0036-1410, 2411, 10.1137/19M1268987
    27. Henri Berestycki, Grégoire Nadin, Asymptotic Spreading for General Heterogeneous Fisher-KPP Type Equations, 2022, 280, 0065-9266, 10.1090/memo/1381
    28. Vincent Calvez, Christopher Henderson, Sepideh Mirrahimi, Olga Turanova, Thierry Dumont, Non-local competition slows down front acceleration during dispersal evolution, 2022, 5, 2644-9463, 1, 10.5802/ahl.117
    29. Yihong Du, Fernando Quirós, Maolin Zhou, Logarithmic corrections in Fisher–KPP type porous medium equations, 2020, 136, 00217824, 415, 10.1016/j.matpur.2019.12.008
    30. Henri Berestycki, Anne-Charline Coulon, Jean-Michel Roquejoffre, Luca Rossi, Speed-up of reaction-diffusion fronts by a line of fast diffusion, 2014, 2266-0607, 1, 10.5802/slsedp.62
    31. Chang-Hong Wu, Dongyuan Xiao, Maolin Zhou, Sharp estimates for the spreading speeds of the Lotka-Volterra competition-diffusion system: The strong-weak type with pushed front, 2023, 172, 00217824, 236, 10.1016/j.matpur.2023.02.004
    32. Dongyuan Xiao, Ryunosuke Mori, Spreading properties of a three-component reaction-diffusion model for the population of farmers and hunter-gatherers, 2021, 38, 0294-1449, 911, 10.1016/j.anihpc.2020.09.007
    33. Arnaud Ducrot, Spreading speed for a KPP type reaction-diffusion system with heat losses and fast decaying initial data, 2021, 270, 00220396, 217, 10.1016/j.jde.2020.07.044
    34. Montie Avery, Louis Garénaux, Spectral stability of the critical front in the extended Fisher-KPP equation, 2023, 74, 0044-2275, 10.1007/s00033-023-01960-8
    35. Éric Brunet, Bernard Derrida, An Exactly Solvable Travelling Wave Equation in the Fisher–KPP Class, 2015, 161, 0022-4715, 801, 10.1007/s10955-015-1350-6
    36. Ningkui Sun, Bendong Lou, Maolin Zhou, Fisher–KPP equation with free boundaries and time-periodic advections, 2017, 56, 0944-2669, 10.1007/s00526-017-1165-1
    37. Cole Graham, Precise asymptotics for Fisher–KPP fronts, 2019, 32, 0951-7715, 1967, 10.1088/1361-6544/aaffe8
    38. Montie Avery, Cedric Dedina, Aislinn Smith, Arnd Scheel, Instability in large bounded domains—branched versus unbranched resonances, 2021, 34, 0951-7715, 7916, 10.1088/1361-6544/ac2a15
    39. François Hamel, Luca Rossi, Spreading sets and one-dimensional symmetry for reaction-diffusion equations, 2022, 2266-0607, 1, 10.5802/slsedp.150
    40. Matthieu Alfaro, Dongyuan Xiao, Lotka–Volterra competition-diffusion system: the critical competition case, 2023, 0360-5302, 1, 10.1080/03605302.2023.2169936
    41. Matt Holzer, A proof of anomalous invasion speeds in a system of coupled Fisher-KPP equations, 2015, 36, 1078-0947, 2069, 10.3934/dcds.2016.36.2069
    42. François Hamel, Frithjof Lutscher, Mingmin Zhang, Propagation and blocking in a two-patch reaction-diffusion model, 2022, 168, 00217824, 213, 10.1016/j.matpur.2022.11.006
    43. Ningkui Sun, A time-periodic reaction–diffusion–advection equation with a free boundary and sign-changing coefficients, 2020, 51, 14681218, 102952, 10.1016/j.nonrwa.2019.06.002
    44. Alex D. O. Tisbury, David J. Needham, Alexandra Tzella, The evolution of traveling waves in a KPP reaction–diffusion model with cut‐off reaction rate. II. Evolution of traveling waves, 2021, 146, 0022-2526, 330, 10.1111/sapm.12352
    45. Yonggang Zhao, Mingxin Wang, A Reaction–Diffusion–Advection Equation with Mixed and Free Boundary Conditions, 2018, 30, 1040-7294, 743, 10.1007/s10884-017-9571-9
    46. James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik, Power-Like Delay in Time Inhomogeneous Fisher-KPP Equations, 2015, 40, 0360-5302, 475, 10.1080/03605302.2014.972744
    47. François Hamel, Luca Rossi, Admissible speeds of transition fronts for nonautonomous monostable equations, 2015, 47, 0036-1410, 3342, 10.1137/140995519
    48. James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik, Convergence to a single wave in the Fisher-KPP equation, 2017, 38, 0252-9599, 629, 10.1007/s11401-017-1087-4
    49. Hong Gu, Bendong Lou, Spreading in advective environment modeled by a reaction diffusion equation with free boundaries, 2016, 260, 00220396, 3991, 10.1016/j.jde.2015.11.002
    50. François Hamel, Luca Rossi, Transition fronts for the Fisher-KPP equation, 2016, 368, 0002-9947, 8675, 10.1090/tran/6609
    51. Christopher Henderson, Propagation of solutions to the Fisher-KPP equation with slowly decaying initial data, 2016, 29, 0951-7715, 3215, 10.1088/0951-7715/29/11/3215
    52. Yihong Du, Lei Wei, Ling Zhou, Spreading in a Shifting Environment Modeled by the Diffusive Logistic Equation with a Free Boundary, 2018, 30, 1040-7294, 1389, 10.1007/s10884-017-9614-2
    53. Julien Berestycki, Éric Brunet, Simon C. Harris, Matt Roberts, Vanishing Corrections for the Position in a Linear Model of FKPP Fronts, 2017, 349, 0010-3616, 857, 10.1007/s00220-016-2790-9
    54. Jens D. M. Rademacher, Lars Siemer, Domain Wall Motion in Axially Symmetric Spintronic Nanowires, 2021, 20, 1536-0040, 2204, 10.1137/20M1382696
    55. Anton Bovier, Lisa Hartung, Branching Brownian Motion with Self-Repulsion, 2023, 24, 1424-0637, 931, 10.1007/s00023-022-01223-8
    56. Emeric Bouin, Christopher Henderson, Lenya Ryzhik, Super-linear spreading in local and non-local cane toads equations, 2017, 108, 00217824, 724, 10.1016/j.matpur.2017.05.015
    57. Montie Avery, Arnd Scheel, Sharp Decay Rates for Localized Perturbations to the Critical Front in the Ginzburg–Landau Equation, 2021, 1040-7294, 10.1007/s10884-021-10093-3
    58. Yihong Du, Hiroshi Matsuzawa, Maolin Zhou, Sharp Estimate of the Spreading Speed Determined by Nonlinear Free Boundary Problems, 2014, 46, 0036-1410, 375, 10.1137/130908063
    59. Pasha Tkachov, On stability of traveling wave solutions for integro-differential equations related to branching Markov processes, 2020, 26, 1350-7265, 10.3150/19-BEJ1159
    60. Jean-Michel Roquejoffre, Violaine Roussier-Michon, Nontrivial dynamics beyond the logarithmic shift in two-dimensional Fisher-KPP equations, 2018, 31, 0951-7715, 3284, 10.1088/1361-6544/aaba3b
    61. Emeric Bouin, Christopher Henderson, The Bramson delay in a Fisher–KPP equation with log-singular nonlinearity, 2021, 213, 0362546X, 112508, 10.1016/j.na.2021.112508
    62. Hong Gu, Bendong Lou, Maolin Zhou, Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, 2015, 269, 00221236, 1714, 10.1016/j.jfa.2015.07.002
    63. François Hamel, Frithjof Lutscher, Mingmin Zhang, Propagation Phenomena in Periodic Patchy Landscapes with Interface Conditions, 2022, 1040-7294, 10.1007/s10884-022-10134-5
    64. Xinfu Chen, Je-Chiang Tsai, Yaping Wu, Longtime Behavior of Solutions of a SIS Epidemiological Model, 2017, 49, 0036-1410, 3925, 10.1137/16M1108741
    65. Julien Berestycki, Éric Brunet, Sarah Penington, Global existence for a free boundary problem of Fisher–KPP type, 2019, 32, 0951-7715, 3912, 10.1088/1361-6544/ab25af
    66. Xinfu Chen, Junfeng He, Xuefeng Wang, Asymptotic Propagation Speeds of the Fisher-KPP Equation with an Effective Boundary Condition on a Road, 2023, 247, 0003-9527, 10.1007/s00205-023-01858-9
    67. Yuan He, Guo Lin, Shuo Zhang, Spreading speeds in an asymptotic autonomous system with application to an epidemic model, 2024, 47, 0170-4214, 9621, 10.1002/mma.10086
    68. Montie Avery, Front Selection in Reaction–Diffusion Systems via Diffusive Normal Forms, 2024, 248, 0003-9527, 10.1007/s00205-024-01961-5
    69. Jing An, Christopher Henderson, Lenya Ryzhik, Quantitative Steepness, Semi-FKPP Reactions, and Pushmi-Pullyu Fronts, 2023, 247, 0003-9527, 10.1007/s00205-023-01924-2
    70. Éric Brunet, Ahead of the Fisher–KPP front, 2023, 36, 0951-7715, 5541, 10.1088/1361-6544/acf268
    71. Christophe Besse, Grégory Faye, Jean-Michel Roquejoffre, Mingmin Zhang, The logarithmic Bramson correction for Fisher-KPP equations on the lattice ℤ, 2023, 0002-9947, 10.1090/tran/9007
    72. Montie Avery, Matt Holzer, Arnd Scheel, Pushed-to-Pulled Front Transitions: Continuation, Speed Scalings, and Hidden Monotonicty, 2023, 33, 0938-8974, 10.1007/s00332-023-09957-3
    73. François Hamel, Mingmin Zhang, KPP transition fronts in a one-dimensional two-patch habitat, 2024, 1477-8599, 10.1093/imammb/dqae011
    74. Jingjing Li, Ningkui Sun, Dynamical behavior of solutions of a reaction–diffusion model in river network, 2024, 75, 14681218, 103989, 10.1016/j.nonrwa.2023.103989
    75. Ningkui Sun, , Dynamical behavior of solutions of a reaction–diffusion–advection model with a free boundary, 2024, 75, 0044-2275, 10.1007/s00033-023-02183-7
    76. Abraham Solar, Stability of Solutions to Functional KPP-Fisher Equations, 2023, 1040-7294, 10.1007/s10884-023-10297-9
    77. Yihong Du, Wenjie Ni, The high dimensional Fisher-KPP nonlocal diffusion equation with free boundary and radial symmetry, part 2: Sharp estimates, 2024, 287, 00221236, 110649, 10.1016/j.jfa.2024.110649
    78. Xueqi Fan, Ningkui Sun, Di Zhang, Propagation dynamics of a free boundary problem in advective environments, 2024, 153, 08939659, 109082, 10.1016/j.aml.2024.109082
    79. Jing An, Christopher Henderson, Lenya Ryzhik, Voting models and semilinear parabolic equations, 2023, 36, 0951-7715, 6104, 10.1088/1361-6544/ad001c
    80. Ge Tian, Guo‐Bao Zhang, Propagation dynamics of a discrete diffusive equation with non‐local delay, 2023, 46, 0170-4214, 14072, 10.1002/mma.9305
    81. Qing Li, Xinfu Chen, King-Yeung Lam, Yaping Wu, Propagation phenomena for a nonlocal reaction-diffusion model with bounded phenotypic traits, 2024, 411, 00220396, 794, 10.1016/j.jde.2024.08.032
    82. Thomas Giletti, Propagating fronts and terraces in multistable reaction-diffusion equations, 2024, 2118-9366, 1, 10.5802/jedp.677
    83. Nathanaël Boutillon, Large deviations and the emergence of a logarithmic delay in a nonlocal linearised Fisher–KPP equation, 2024, 240, 0362546X, 113465, 10.1016/j.na.2023.113465
    84. Jean-Michel Roquejoffre, 2024, Chapter 5, 978-3-031-77771-4, 123, 10.1007/978-3-031-77772-1_5
    85. Jean-Michel Roquejoffre, 2024, Chapter 4, 978-3-031-77771-4, 87, 10.1007/978-3-031-77772-1_4
    86. Léo Girardin, Persistence, Extinction, and Spreading Properties of Noncooperative Fisher–KPP Systems in Space-Time Periodic Media, 2025, 57, 0036-1410, 233, 10.1137/23M1576086
    87. Jingjing Cai, Shizhao Ma, Dongyuan Xiao, Lotka-Volterra competition system with critical competition case in high-dimensional space, 2025, 0, 1531-3492, 0, 10.3934/dcdsb.2025031
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5270) PDF downloads(164) Cited by(87)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog