Citation: Yusuke Yasuda, Hayato Iwasaki, Kentaro Yasui, Ayako Tanaka, Hiroyuki Kinoshita. Development of walkway blocks with high water permeability using waste glass fiber-reinforced plastic[J]. AIMS Energy, 2018, 6(6): 1032-1049. doi: 10.3934/energy.2018.6.1032
[1] | Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409 |
[2] | Yanxia Dang, Zhipeng Qiu, Xuezhi Li . Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences and Engineering, 2017, 14(4): 901-931. doi: 10.3934/mbe.2017048 |
[3] | Zhiping Liu, Zhen Jin, Junyuan Yang, Juan Zhang . The backward bifurcation of an age-structured cholera transmission model with saturation incidence. Mathematical Biosciences and Engineering, 2022, 19(12): 12427-12447. doi: 10.3934/mbe.2022580 |
[4] | Toshikazu Kuniya, Hisashi Inaba . Hopf bifurcation in a chronological age-structured SIR epidemic model with age-dependent infectivity. Mathematical Biosciences and Engineering, 2023, 20(7): 13036-13060. doi: 10.3934/mbe.2023581 |
[5] | Azmy S. Ackleh, Keng Deng, Yixiang Wu . Competitive exclusion and coexistence in a two-strain pathogen model with diffusion. Mathematical Biosciences and Engineering, 2016, 13(1): 1-18. doi: 10.3934/mbe.2016.13.1 |
[6] | Churni Gupta, Necibe Tuncer, Maia Martcheva . A network immuno-epidemiological model of HIV and opioid epidemics. Mathematical Biosciences and Engineering, 2023, 20(2): 4040-4068. doi: 10.3934/mbe.2023189 |
[7] | Tsuyoshi Kajiwara, Toru Sasaki, Yoji Otani . Global stability of an age-structured infection model in vivo with two compartments and two routes. Mathematical Biosciences and Engineering, 2022, 19(11): 11047-11070. doi: 10.3934/mbe.2022515 |
[8] | Xiaodan Sun, Yanni Xiao, Zhihang Peng . Modelling HIV superinfection among men who have sex with men. Mathematical Biosciences and Engineering, 2016, 13(1): 171-191. doi: 10.3934/mbe.2016.13.171 |
[9] | Abba B. Gumel, Baojun Song . Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis. Mathematical Biosciences and Engineering, 2008, 5(3): 437-455. doi: 10.3934/mbe.2008.5.437 |
[10] | Azizeh Jabbari, Carlos Castillo-Chavez, Fereshteh Nazari, Baojun Song, Hossein Kheiri . A two-strain TB model with multiplelatent stages. Mathematical Biosciences and Engineering, 2016, 13(4): 741-785. doi: 10.3934/mbe.2016017 |
[1] | Ministry of the Environment Government of Japan ed. (2010) Annual Report on the Environment, the Sound Material-Cycle Society and the Biodiversity in Japan, Our Responsibility and Commitment to Preserve the Earth, Challenge 25: 1–169. |
[2] | Plastic waste management institute ed. (2016) An Introduction to Plastic Recycling, 1–33. |
[3] | Nagaoka T (2008) Value-Added Recycling of Disposal Plastics. J JSTP 49: 175–179. |
[4] |
Yang Y, Boom R, Irion B, et al. (2012) Recycling of Composite Materials. Chem Eng Process 51: 53–68. doi: 10.1016/j.cep.2011.09.007
![]() |
[5] | Materials science society of Japan ed. (1999) Global environment and materials. Shokabo Co., Ltd., Tokyo, 61–74 (in Japanese). |
[6] |
WON JP, Jang CI, Lee SJ, et al. (2010) Long term performance of recycled PET fiber-reinforced cement composites. Constr Build Mater 24: 660–665. doi: 10.1016/j.conbuildmat.2009.11.003
![]() |
[7] |
Foti D, Paparella F (2014) Impact behavior of structural elements in concrete reinforced with PET fibers. Mech Res Commun 57: 57–66. doi: 10.1016/j.mechrescom.2014.02.007
![]() |
[8] |
Akçaözoğlua S, Atişb CD, Akçaözoğluc K (2010) An investigation on the use of shredded waste PET bottle as aggregate in lightweight concrete. Waste Manage 30: 285–290. doi: 10.1016/j.wasman.2009.09.033
![]() |
[9] |
Foti D (2013) Use of recycled waste pet bottles fibers for the reinforcement of concrete. Compos Structu 96: 396–404. doi: 10.1016/j.compstruct.2012.09.019
![]() |
[10] |
Mohammadi Y, Singh Sp, Kaushik SK (2008) Properties of steel fibrous concrete containing mixed fibres in fresh and hardened state. Constr Build Mater 22: 956–965. doi: 10.1016/j.conbuildmat.2006.12.004
![]() |
[11] |
Khaloo A, Raisi EM, Hosseini P, et al. (2014) Mechanical performance of self-compacting concrete reinforced with steel fibers. Constr Build Mater 51: 179–186. doi: 10.1016/j.conbuildmat.2013.10.054
![]() |
[12] |
Mazaheripour H, Ghanbarpour S, Mirmoradi SH, et al. (2011) The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete. Constr Build Mater 25: 351–358. doi: 10.1016/j.conbuildmat.2010.06.018
![]() |
[13] |
Yesilata B, Isiker Y, Turgut P (2009) Thermal insulation enhancement in concretes by adding waste PET and rubber pieces. Constr Build Mater 23: 1878–1882. doi: 10.1016/j.conbuildmat.2008.09.014
![]() |
[14] |
Kinoshita H, Kaizu K, Takeda T, et al. (2010) Development of high strength porous specimen by Recycling of Waste Glass Fiber Reinforced Plastics. T Jpn Soc Mech Eng 76: 1507–1513. doi: 10.1299/kikaia.76.1507
![]() |
[15] | Kinoshita H, Nakazono T, Oyamada M, Yet al. (2011) Development of high-strength porous tiles produced by recycling glass fibers in waste GFRP: Influence of particle size of GFRP on properties of tiles. T Jpn Soc Mech Eng 11: 241–248. |
[16] |
Kinoshita H, Kaizu K, Hasegawa S, et al. (2013) Production and Material Properties of Ceramic From Waste Glass Fiber Reinforced Plastic. J Environ Eng 8: 27–40. doi: 10.1299/jee.8.27
![]() |
[17] |
Yasui K, Goto S, Kinoshita H, et al. (2016) Ceramic waste glass fiber-reinforced plastic-containing filtering materials for turbid water treatment. Environ Earth Sci 75: 1135. doi: 10.1007/s12665-016-5933-6
![]() |
[18] | Beeldens A, Herrier C (2007) Water-pervious pavement blocks environmentally compatible and cost-efficient water treatment at large road and parking areas. Betonwerk Fertigteil-Technik 73: 12–24. |
[19] | Sriravindrarajah R, Mohammad KJ, Singh A (2013) Permeability and drying of pervious concrete pavers, 7th International Structural Engineering and Construction Conference: New Developments in Structural Engineering and Construction, 1703–1707. |
[20] |
Drake JAP, Bradford A, Marsalek J (2013) Review of environmental performance of permeable pavement systems. Water Qual Res J Can 48: 203–222. doi: 10.2166/wqrjc.2013.055
![]() |
[21] | Tanaka M (1980) Clay hand book. Gihoudou Shuppan Co. Ltd. Tokyo, 408–445 (in Japanese). |
[22] | Yasuda Y, Kinoshita H, Yasui K, et al. (2016) Ceramics utilizing glass fiber-reinforced plastic as civil engineering materials to counteract the heat island phenomenon. Mech Eng J 3: 16-00078. |
[23] | Architectural Institute of Japan ed. (2009) Japanese Architectural Standard Specification JASS 7 Masonry Work. MARUZEN-YUSHODO Co., Ltd., Tokyo, 329–343. |
[24] | Sakka S (1985) Dictionary of glass. Asakura Publishing Co., Ltd., Tokyo, 28 (in Japanese). |
[25] | Central Glass Co. Ltd. home page, General characteristics of long glass fiber. Available from: http://www.centralfiberglass.com/jp/glass_fiber/outline/index.html. |
[26] | Yamada M (1992) High Strength Phenolic Molding Compounds. J Thermosetting Plast 13: 44–58. |
1. | E. Numfor, S. Bhattacharya, S. Lenhart, M. Martcheva, S. Anita, N. Hritonenko, G. Marinoschi, A. Swierniak, Optimal Control in Coupled Within-host and Between-host Models, 2014, 9, 0973-5348, 171, 10.1051/mmnp/20149411 | |
2. | Lin Zhao, Zhi-Cheng Wang, Shigui Ruan, Traveling wave solutions in a two-group epidemic model with latent period, 2017, 30, 0951-7715, 1287, 10.1088/1361-6544/aa59ae | |
3. | Rony Izhar, Jarkko Routtu, Frida Ben-Ami, Host age modulates within-host parasite competition, 2015, 11, 1744-9561, 20150131, 10.1098/rsbl.2015.0131 | |
4. | Tufail Malik, Abba Gumel, Elamin H. Elbasha, Qualitative analysis of an age- and sex-structured vaccination model for human papillomavirus, 2013, 18, 1553-524X, 2151, 10.3934/dcdsb.2013.18.2151 | |
5. | Robert Rowthorn, Selma Walther, The optimal treatment of an infectious disease with two strains, 2017, 74, 0303-6812, 1753, 10.1007/s00285-016-1074-5 | |
6. | Jemal Mohammed-Awel, Eric Numfor, Ruijun Zhao, Suzanne Lenhart, A new mathematical model studying imperfect vaccination: Optimal control analysis, 2021, 500, 0022247X, 125132, 10.1016/j.jmaa.2021.125132 | |
7. | Mohammad A. Safi, Abba B. Gumel, Elamin H. Elbasha, Qualitative analysis of an age-structured SEIR epidemic model with treatment, 2013, 219, 00963003, 10627, 10.1016/j.amc.2013.03.126 | |
8. | S.M. Garba, M.A. Safi, A.B. Gumel, Cross-immunity-induced backward bifurcation for a model of transmission dynamics of two strains of influenza, 2013, 14, 14681218, 1384, 10.1016/j.nonrwa.2012.10.003 | |
9. | Toshikazu Kuniya, Jinliang Wang, Hisashi Inaba, A multi-group SIR epidemic model with age structure, 2016, 21, 1531-3492, 3515, 10.3934/dcdsb.2016109 | |
10. | Roberto Cavoretto, Simona Collino, Bianca Giardino, Ezio Venturino, A two-strain ecoepidemic competition model, 2015, 8, 1874-1738, 37, 10.1007/s12080-014-0232-x | |
11. | Eminugroho Ratna Sari, Fajar Adi-Kusumo, Lina Aryati, Mathematical analysis of a SIPC age-structured model of cervical cancer, 2022, 19, 1551-0018, 6013, 10.3934/mbe.2022281 | |
12. | Chin-Lung Li, Chang-Yuan Cheng, Chun-Hsien Li, Global dynamics of two-strain epidemic model with single-strain vaccination in complex networks, 2023, 69, 14681218, 103738, 10.1016/j.nonrwa.2022.103738 | |
13. | S.Y. Tchoumi, H. Rwezaura, J.M. Tchuenche, Dynamic of a two-strain COVID-19 model with vaccination, 2022, 39, 22113797, 105777, 10.1016/j.rinp.2022.105777 | |
14. | Ting Cui, Peijiang Liu, Fractional transmission analysis of two strains of influenza dynamics, 2022, 40, 22113797, 105843, 10.1016/j.rinp.2022.105843 | |
15. | Shasha Gao, Mingwang Shen, Xueying Wang, Jin Wang, Maia Martcheva, Libin Rong, A multi-strain model with asymptomatic transmission: Application to COVID-19 in the US, 2023, 565, 00225193, 111468, 10.1016/j.jtbi.2023.111468 | |
16. | Md. Mamun-Ur-Rashid Khan, Md. Rajib Arefin, Jun Tanimoto, Time delay of the appearance of a new strain can affect vaccination behavior and disease dynamics: An evolutionary explanation, 2023, 24680427, 10.1016/j.idm.2023.06.001 | |
17. | Yucui Wu, Zhipeng Zhang, Limei Song, Chengyi Xia, Global stability analysis of two strains epidemic model with imperfect vaccination and immunity waning in a complex network, 2024, 179, 09600779, 114414, 10.1016/j.chaos.2023.114414 | |
18. | 彦锦 吉, Studies with Vaccination and Asymptomatic Transmission Models, 2024, 14, 2160-7583, 424, 10.12677/pm.2024.145197 | |
19. | Mohammadi Begum Jeelani, Rahim Ud Din, Ghaliah Alhamzi, Manel Hleili, Hussam Alrabaiah, Deterministic and Stochastic Nonlinear Model for Transmission Dynamics of COVID-19 with Vaccinations Following Bayesian-Type Procedure, 2024, 12, 2227-7390, 1662, 10.3390/math12111662 | |
20. | Taqi A.M. Shatnawi, Stephane Y. Tchoumi, Herieth Rwezaura, Khalid Dib, Jean M. Tchuenche, Mo’tassem Al-arydah, A two-strain COVID-19 co-infection model with strain 1 vaccination, 2024, 26668181, 100945, 10.1016/j.padiff.2024.100945 | |
21. | Riya Das, Dhiraj Kumar Das, T K Kar, Analysis of a chronological age-structured epidemic model with a pair of optimal treatment controls, 2024, 99, 0031-8949, 125240, 10.1088/1402-4896/ad8e0b | |
22. | Xi-Chao Duan, Chenyu Zhu, Xue-Zhi Li, Eric Numfor, Maia Martcheva, Dynamics and optimal control of an SIVR immuno-epidemiological model with standard incidence, 2025, 0022247X, 129449, 10.1016/j.jmaa.2025.129449 |