
Citation: Diego Ardila, Dorsa Sanadgol, Didier Sornette. Out-of-sample forecasting of housing bubble tipping points[J]. Quantitative Finance and Economics, 2018, 2(4): 904-930. doi: 10.3934/QFE.2018.4.904
[1] | Syeda Nadiah Fatima Nahri, Shengzhi Du, Barend J. van Wyk, Oluwaseun Kayode Ajayi . A comparative study on time-delay estimation for time-delay nonlinear system control. AIMS Electronics and Electrical Engineering, 2025, 9(3): 314-338. doi: 10.3934/electreng.2025015 |
[2] | José M. Campos-Salazar, Pablo Lecaros, Rodrigo Sandoval-García . Dynamic analysis and comparison of the performance of linear and nonlinear controllers applied to a nonlinear non-interactive and interactive process. AIMS Electronics and Electrical Engineering, 2024, 8(4): 441-465. doi: 10.3934/electreng.2024021 |
[3] | José M. Campos-Salazar, Roya Rafiezadeh, Felipe Santander, Juan L. Aguayo-Lazcano, Nicolás Kunakov . Comprehensive GSSA and D-Q frame dynamic modeling of dual-active-bridge DC-DC converters. AIMS Electronics and Electrical Engineering, 2025, 9(3): 288-313. doi: 10.3934/electreng.2025014 |
[4] | Jun Yoneyama . H∞ disturbance attenuation of nonlinear networked control systems via Takagi-Sugeno fuzzy model. AIMS Electronics and Electrical Engineering, 2019, 3(3): 257-273. doi: 10.3934/ElectrEng.2019.3.257 |
[5] | Thanh Tung Pham, Chi-Ngon Nguyen . Adaptive PID sliding mode control based on new Quasi-sliding mode and radial basis function neural network for Omni-directional mobile robot. AIMS Electronics and Electrical Engineering, 2023, 7(2): 121-134. doi: 10.3934/electreng.2023007 |
[6] | José M. Campos-Salazar, Juan L. Aguayo-Lazcano, Roya Rafiezadeh . Non-ideal two-level battery charger—modeling and simulation. AIMS Electronics and Electrical Engineering, 2025, 9(1): 60-80. doi: 10.3934/electreng.2025004 |
[7] | Qichun Zhang, Xuewu Dai . Special Issue "Uncertainties in large-scale networked control systems". AIMS Electronics and Electrical Engineering, 2020, 4(4): 345-346. doi: 10.3934/ElectrEng.2020.4.345 |
[8] | Yanming Wu, Zelun Wang, Guanglei Meng, Jinguo Liu . Neural networks-based event-triggered consensus control for nonlinear multiagent systems with communication link faults and DoS attacks. AIMS Electronics and Electrical Engineering, 2024, 8(3): 332-349. doi: 10.3934/electreng.2024015 |
[9] | Rasool M. Imran, Kadhim Hamzah Chalok, Siraj A. M. Nasrallah . Innovative two-stage thermal control of DC-DC converter for hybrid PV-battery system. AIMS Electronics and Electrical Engineering, 2025, 9(1): 26-45. doi: 10.3934/electreng.2025002 |
[10] | Qichun Zhang . Performance enhanced Kalman filter design for non-Gaussian stochastic systems with data-based minimum entropy optimisation. AIMS Electronics and Electrical Engineering, 2019, 3(4): 382-396. doi: 10.3934/ElectrEng.2019.4.382 |
This work is motivated by the networked control system (NCS) or remote control system where the media that connects the controller and actuator causes random packet delays or dropouts. This type of control systems are anticipated to have vast applications. The readers are referred to the review paper [1]. The common features of NCS are random packet delays or dropouts, competition of multiple nodes in the network, data quantization, etc., and this makes the modeling and stability analysis very challenging. Markovian type regime switching models have been proved to be very successful in modeling NCS [2,3]. However, the stability of such systems still remains a challenge. Most stability criteria are given as complicated LMI conditions [4,5] via Lyapunov function approach, or dwell time [6], or delay Riccati equations [7]. A stability condition using hybrid system analysis is found in [8], which is again a sufficient condition and is not easy to verify. A neat sufficient and necessary condition is in great need.
In order to overcome the constraints of NCS, such as random packet delays or dropouts, it is a natural idea to estimate system state and compensate for packet disorders [9]. One believes that in this way better system performance and better system stability can be achieved. Predictive control has been effectively applied to NCS [10,11,12,13]. This control method generates a sequence of future control variables, which can be used to compensate for packet disorder or dropouts [14], and to estimate unknown system state as well [15,16]. However, as mentioned earlier, the stability conditions are usually hard to verify. To analyze the stability issue, one must have a thorough understanding of the dynamics of NCS with random time delays and state estimate.
In this paper we propose a predictive control method of NCS with random packet delays and state estimate/compensation, and clearly show the structure of this system. This control method has much less computational burden compared to classical predictive control method. Then the system is modeled as a regime switching system, and an upper bound on the number of regimes is provided. By the word ``scale'' we mean the number of distinct regimes (denoted by
Throughout this paper we use
Unlike most NCSs where the objective systems on the actuator side are time invariant, here we assume that the objective system is a regime switching system with Markovian jumps, and we call it a Markov Jump System (MJS). The application of switching systems in engineering can be found, for example, in [17,18,19]. We let
We begin with simple and practically reasonable assumptions on this system.
● The actuator receives signals with random delays.
The actuator receives control signals from the controller and performs the required actions. Due to the random packet delays, the actuator might receive no signal, or receive a packet that is randomly delayed, or receive multiple packets. If more than one packet arrive at the same time, the actuator executes the most recent one.
● Obsolete signals are discarded.
If, at a certain time instant, a control variable has been applied, then any control signal older than it but arrives at later times will be discarded. For example, if
● The delay times are bounded.
The backward time delay
● The controller sends out signals at every discrete instant.
The controller receives state feedback from the actuator via randomly delayed packets, and the controller estimates the future system state and sends out a new control signal. If no state feedback is received at a certain time instant, the controller simply sends a zero control signal.
● Past control signals are recorded.
The controller keeps a record of past control signals that have been sent. This information is used to calculate a new control signal whenever a feedback packet arrives.
● Packet size is limited.
The network bandwidth is very limited so that each time the controller and actuator just send out one small packet to the other party. That means, sending out a large packet containing a long sequence of controls or system states is not applicable. (Otherwise this system reduces to classical control system without time delay.)
The controlled system on the actuator side becomes
xk+1=a(ik)xk+b(j)(ik)uk−τ2, | (1.1) |
where
The NCS is a special dynamical system that might be easy to describe in words, but is hard to understand because its dynamics looks chaotic. One must get down to the bottom and have a careful dissemination to obtain a clear understanding. In what follows we shall do this work.
We use the triplet
If no control signal arrives at time
The expression
We use a similar mechanism to represent the situation at the controller side. The pair
Notice that the received information depends on the sequence of the past states
Proposition 2.1. An upper bound on the number of different regimes of this problem (denoted by
m2+T1⋅(1+T2)2+T1⋅(2+T2)/2⋅(1+T1)⋅(2+T1)/2 | (2.1) |
Proof. On the controller side we consider the pair
Similarly, on the actuator side, any pair
Due to the feedback delay, a sequence with length
The controller then calculates and sends out a new control variable
However, recall that not all the transitions
m⋅(1+T2)⋅(2+T2)/2⋅[m⋅(1+T2)]1+T1=m2+T1⋅(1+T2)2+T1⋅(2+T2)/2. |
Now the proof is complete.
It is clear that to represent the complete system scenario, we need
In each scenario in
zk=[xk(ik),xk−1(ik−1),...,xk−T1(ik−T1),uk−1,uk−2,...,uk−T1−T2]T, | (3.1) |
where the superscript
zk+1=A(C(k)2,τ(k)2,ik)zk+B(C(k)2,τ(k)2,ik)uk, | (3.2) |
which is an extension of (1.1). Since each entry in (3.1) is necessary to describe the system dynamics in a certain regime, we are clear that
If
A(C(k)2,τ(k)2,ik)=(a(ik) 0 0 0 0⋯1 0 0 0 0⋯0 1 0 0 0⋯⋯⋯⋯⋯⋯⋯0(∗)⋯ 0 0 0⋯0⋯ 0 1 0⋯⋯⋯⋯⋯⋯⋯),B(C(k)2,τ(k)2,ik)=[0 0 0⋯ 1(∗) 0 0⋯]T, |
where
If
If
A(0,τ(k)2,ik)=(a(ik) 0⋯b(ik) 0 0⋯1 0 0 0 0 0⋯0 1 0 0 0 0⋯⋯⋯⋯⋯⋯⋯⋯0(∗)⋯ 0 0 0 0⋯0⋯ 0 1 0 0⋯⋯⋯⋯⋯⋯⋯⋯),B(0,τ(k)2,ik)=[0 0 0⋯ 1(∗) 0 0⋯]T, |
where the position of
On the controller side we have
uk=−F(C(k)1,τ(k)1,C(k−τ(k)1−1)2,τ(k−τ(k)1−1)2,ik−τ(k)1−1)zk. | (3.3) |
If
uk−τ(k)1−τ(k−τ(k)1−1)2,uk−τ(k)1−τ(k−τ(k)1−1)2+1,...,uk−1, | (3.4) |
the controller is able to estimate the system state
Recall that if the controller does not receive any feedback packet at present time
We need to point out that there is much flexibility in calculating the new control variable, which might be the most resourceful research in NCS. In this paper we present our control method as follows. Firstly, based on the most recent information
ˆxk−τ(k)1+1=a(ˆik−τ(k)1)xk−τ(k)1+b(ˆik−τ(k)1)uk−τ(k)1−τ(k−τ(k)1−1)2, | (3.5) |
and
ˆxk−τ(k)1+2=a(ˆik−τ(k)1+1)ˆxk−τ(k)1+1+b(ˆik−τ(k)1+1)uk−τ(k)1−τ(k−τ(k)1−1)2+1, | (3.6) |
and so forth until
One may notice that the system mode information
Based on the probability transition matrix
To calculate a new control
ˆik−τ(k)1,ˆik−τ(k)1+1,⋯,ˆik+τ(k−τ(k)1−1)2−1,ˆik+τ(k−τ(k)1−1)2,..,ˆik−τ(k)1+L−1, | (3.7) |
where
J(ˆxk+τ2,ˆik+τ(k−τ(k)1−1)2−1,τ(k)1,τ(k−τ(k)1−1)2)=L−τ(k)1∑j=τ(k−τ(k)1−1)2+1ˆxTk+jQ(k+j)ˆxk+j+L−τ(k)1−τ(k−τ(k)1−1)2−1∑j=0ˆuTk+jR(k+j)ˆuk+j, | (3.8) |
where
Unlike the usual cost function which is the expected value along all possible future paths, this cost function (3.8) is calculated along the deterministic path (3.7), and because the optimization is performed on one path, a huge amount of calculation is saved. To see this in more details, let us consider a control method which chooses future controls
J(ˆxk+τ2,ˆik+τ(k−τ(k)1−1)2−1,τ(k)1,τ(k−τ(k)1−1)2)=L−τ(k)1∑j=τ(k−τ(k)1−1)2+1E[ˆxTk+jQ(k+j)ˆxk+j|xk−τ(k)1]+L−τ(k)1−τ(k−τ(k)1−1)2−1∑j=0ˆuTk+jR(k+j)ˆuk+j, | (3.9) |
where
But for our proposed simplified predictive control method, a natural question remains: what if the path we predicted does not actually occur? Remember that so far we have not used rolling optimization which is the true power of RHC. The calculation of future control sequences is repeated at each sample instant, and if a prediction error occurs, it will be corrected by re-planning at the next sample instant.
Actually we can make this calculation faster by noticing that the control format in RHC with quadratic criterion function (3.8) is given by linear feedback form, see, e.g., [20]. We borrow the iterative algorithm in [20] for the calculation of state feedback control in time varying case, then we obtain
uk=−F(ˆik+τ(k−τ(k)1−1)2−1,τ(k)1,τ(k−τ(k)1−1)2)ˆxk+τ(k−τ(k)1−1)2. | (3.10) |
Recall that
Dk−τ(k)1+1=(0 ⋯0 a(ˆik−τ(k)1) 0 ⋯0 b(ˆik−τ(k)1)⋯0 ⋯⋯ ⋯ ⋯ 0 1 0⋯0 ⋯⋯ ⋯⋯ 1 0 0⋯⋯⋯⋯ ⋯⋯⋯⋯ ⋯⋯), |
where
Dk−τ(k)1+1zk=(ˆxk−τ(k)1+1 uk−τ(k)1−τ(k−τ(k)1−1)2+1⋯⋯uk−1)T |
by (3.5).
Now we define
Dk−τ(k)1+2=(a(ˆik−τ(k)1+1) b(ˆik−τ(k)1+1)0 0⋯0 01 0⋯0 00 1⋯⋯ ⋯⋯ ⋯⋯), |
and get
Dk−τ(k)1+2Dk−τ(k)1+1zk=(ˆxk−τ(k)1+2 uk−τ(k)1−τ(k−τ(k)1−1)2+2 ⋯uk−1)T |
by (3.6). Continue this process until we reach
Dk+τ(k−τ(k)1−1)2⋯Dk−τ(k)1+1zk=ˆxk+τ(k−τ(k)1−1)2. | (3.11) |
Substituting (3.11) in (3.10) yields
uk=−F(ˆik+τ(k−τ(k)1−1)2−1,τ(k)1,τ(k−τ(k)1−1)2)⋅Dk+τ(k−τ(k)1−1)2⋯Dk−τ(k)1+1zk. |
Since
F(C(k)1,τ(k)1,C(k−τ(k)1−1)2,τ(k−τ(k)1−1)2,ik−τ(k)1−1)=F(ˆik+τ(k−τ(k)1−1)2−1,τ(k)1,τ(k−τ(k)1−1)2)⋅Dk+τ(k−τ(k)1−1)2⋯Dk−τ(k)1+1. | (3.12) |
In the next section we shall investigate the stability of this control algorithm.
Putting (3.3) in (3.2) yields
zk+1=A(C(k)2,τ(k)2,ik)zk−B(C(k)2,τ(k)2,ik)⋅F(C(k)1,τ(k)1,C(k−τ(k)1−1)2,τ(k−τ(k)1−1)2,ik−τ(k)1−1)zk. | (4.1) |
Denote
H=H(C(k)2,τ(k)2,ik,C(k)1,τ(k)1,C(k−τ(k)1−1)2,τ(k−τ(k)1−1)2,ik−τ(k)1−1)=A(C(k)2,τ(k)2,ik)−B(C(k)2,τ(k)2,ik)⋅F(C(k)1,τ(k)1,C(k−τ(k)1−1)2,τ(k−τ(k)1−1)2,ik−τ(k)1−1), |
then we obtain the following dynamics
zk+1=H⋅zk, | (4.2) |
where
The usual stability criteria on MJSs are mean convergence (MC) and mean square convergence (MSC). We say that a system is uniformly MC if
F=diag(H)⋅(P′⊗Id),A=diag(H⊗H)⋅(P′⊗Id2), | (4.3) |
where
Theorem 4.1. The MJS (4.1) is uniformly MC if and only if
Proof. The proof can be found in [22]. Here we just point out that the matrices
In the numerical example we shall test both stabilities.
Remark 4.1. We are able to provide this sufficient and necessary condition on stability, and this is largely due to the fact that the structure of this NCS has been clearly revealed.
For the complete representation
(C(k)2,τ(k)2,ik,C(k)1,τ(k)1)→(C(k+1)2,τ(k+1)2,ik+1,C(k+1)1,τ(k+1)1). | (5.1) |
As we mentioned earlier, the regimes do not have full reachability, but the transition (5.1) can be decomposed into three parts that are treated independently. The first part
We consider an example where the objective system, which is a MJS, has two modes (
[x(1)k+1x(2)k+1]=[1.20.2 10 ][x(1)kx(2)k]+[0.05 0.1]uk−τ2, |
and
[x(1)k+1x(2)k+1]=[0.70.2 10 ][x(1)kx(2)k]+[0.10.3]uk−τ2, |
respectively. This system is controlled by a controller through a network with random time delays. It is assumed that
The matrix
Pm=(0.8 0.20.2 0.8). |
To construct
(0,0)(0,1) (0,2)(1,0) (1,1)(2,0)(0,0) 0.70 00.3 00 (0,1) 0.40.4 00 0.20 (0,2) 0.50.2 0.30 00 (1,0) 0.30.4 00 00.3 (1,1) 0.50.2 0.30 00 (2,0) 0.40.2 0.40 00 | (6.1) |
Now that
P1=(0.6 0 0.40.5 0.5 00.7 0.3 0). |
By the derivation in this paper, we need to keep
(0,0)→(0,0)→(0,0)(0,0)→(0,0)→(1,0)(0,0)→(1,0)→(0,0)(0,0)→(1,0)→(0,1)(0,0)→(1,0)→(2,0)⋯⋯⋯, |
and the total number of all possible 3-pair paths is 45. The estimate from (2.1) on this part is given by
The vector
Without any control we have
We choose the prediction horizon
The MJS stability certainly depends on the transition probabilities among the regimes. For instance, if we use
Pm=(0.85 0.150.25 0.75),P1=(0.7 0 0.30.6 0.4 00.8 0.2 0), |
and
P2=(0.8 0 0 0.2 0 00.5 0.3 0 00.2 00.6 0.3 0.1 00 00.4 0.30 00 0.30.5 0.20.3 00 00.7 0.20.1 00 0), |
then again, without control we have
Then we apply the proposed predictive control method and have
To overcome the constraints of NCS such as random packet delays/disorders, it is a natural idea to estimate the system states and send out a control signal that compensates the time delay, hence the expectation of a better control performance. In this paper we modeled the NCS as a regime switching system and proposed a simplified predictive control method. The regime estimate (2.1), which is one of the main contributions of this paper, illustrates that this seemingly small system actually has a very large scale. The structure of this system has been clearly revealed, and a concise sufficient and necessary condition on stability is obtained. Numerical examples clearly show the features of this dynamical system.
This work is supported by Barrios Technology Faculty Fellowship from University of Houston - Clear Lake, 2017-2018.
The author declares no conflict of interest in this paper.
[1] | Antipa P, Lecat R (2010) The Housing Bubble and Financial Factors: Insights from a Structural Model of the French and Spanish Residential Markets. Housing Markets in Europe. Springer, Berlin, Heidelberg 161–186. |
[2] |
Anundsen AK (2015) Econometric regime shifts and the us subprime bubble. J Appl Econ 30: 145–169. doi: 10.1002/jae.2367
![]() |
[3] | Anundsen AK, Jansen ES (2011) Self-reinforcing effects between housing prices and credit. J Hous Econ 22: 192–212. |
[4] |
Ayuso J, Restoy F (2006) House prices and rents: An equilibrium asset pricing approach. J Empir Financ 13: 371–388. doi: 10.1016/j.jempfin.2005.10.004
![]() |
[5] | Barsky RB (2009) The japanese bubble: A 'heterogeneous' approach. NBER Working Paper No. 15052. |
[6] |
Berry M, Dalton T (2004) Housing prices and policy dilemmas: a peculiarly australian problem? Urban Policy Res 22: 69–91. doi: 10.1080/0811114042000185509
![]() |
[7] |
Black A, Fraser P, Hoesli M (2006) House prices, fundamentals and bubbles. J Bus Finan Account 33: 1535–1555. doi: 10.1111/j.1468-5957.2006.00638.x
![]() |
[8] | Blanchard OJ, Watson MW (1982) Bubbles, rational expectations and financial markets. NBER Working Paper No. 945. |
[9] | Bourassa SC, Hoesli M, Oikarinen E (2016) Measuring house price bubbles. Real Estate Econ 1–30. |
[10] | Brunnermeier MK, Oehmke M (2012) Bubbles, financial crises, and systemic risk. Handbook of The Econ of Financ 2: 1221–1288. |
[11] | Busetti F, Taylor A (2004) Tests of stationarity against a change in persistence. J of Econ 1: 33–66. |
[12] | Cameron G, Muellbauer J, Murphy A (2006) Was there a British house price bubble? evidence from a regional panel. CEPR Discussion Paper No. 5619. |
[13] |
Campbell JY, Shiller RJ (1988) The dividend-price ratio and expectations of future dividends and discount factors. Rev Financ Stud 1: 195–228. doi: 10.1093/rfs/1.3.195
![]() |
[14] | Case KE, Shiller RJ (2003) Is there a bubble in the housing market? Brook Pap Econ Act 299–342. |
[15] |
Christensen I, Li F (2014) Predicting financial stress events: A signal extraction approach. J Financ Stab 14: 54–65. doi: 10.1016/j.jfs.2014.08.005
![]() |
[16] |
Connor G, Flavin T, O'Kelly B (2012) The us and irish credit crises: Their distinctive differences and common features. J Int Money Finan 31: 60–79. doi: 10.1016/j.jimonfin.2011.11.005
![]() |
[17] |
Claussen CA (2013) Are swedish houses overpriced? Int J Hous Mark Analysis 6: 180–196. doi: 10.1108/IJHMA-12-2011-0056
![]() |
[18] | Dam NA, Hvolbøl TS, Pedersen EH, et al. (2011) Developments in the market for owner-occupied housing in recent years–can house prices be explained. Danmarks Nationalbank, Monetary Rev, 1st Quarter 1–82. |
[19] | Das S, Gupta R, Kanda R (2011) International articles: Bubbles in south african house prices and their impact on consumption. J of Real Estate Literature 19: 69–91. |
[20] |
Davidson R, MacKinnon JG (1981) Several tests for model specification in the presence of alternative hypotheses. Econ 49: 781–793. doi: 10.2307/1911522
![]() |
[21] | Drehmann M, Borio CE, Tsatsaronis K (2012) Characterising the financial cycle: don't lose sight of the medium term! BIS Working Papers No 380. |
[22] |
Drehmann M, Juselius M (2014) Evaluating early warning indicators of banking crises: Satisfying policy requirements. Int J Forecast 30: 759–780. doi: 10.1016/j.ijforecast.2013.10.002
![]() |
[23] | Edison HJ (2003) Do indicators of financial crises work? An evaluation of an early warning system. Int J of Financ & Econ 8: 11–53. |
[24] |
Feigenbaum JA, Freund P (1996) Discrete scale invariance in stock markets before crashes. Int J of Modern Physics B 10: 3737–3745. doi: 10.1142/S021797929600204X
![]() |
[25] |
Filimonov V, Sornette D (2013) A stable and robust calibration scheme of the log-periodic power law model. Physica A 392: 3698–3707. doi: 10.1016/j.physa.2013.04.012
![]() |
[26] | Flood RP, Hodrick RJ (1990) On testing for speculative bubbles. J Econ Perspect 4: 85–101. |
[27] | Francke M, Vujic S, Vos GA (2009) Evaluation of house price models using an ecm approach: the case of the netherlands. OFRC Working Paper No. 2009–05. |
[28] | Gençay R, Gradojevic N (2010) Crash of 87 was it expected?: Aggregate market fears and long-range dependence. J Empir Financ 17: 270–282. |
[29] | Giglio S, Maggiori M, Stroebel J (2014) No-bubble condition: Model-free tests in housing markets. NBER Working Paper No. w20154. |
[30] |
Gisler M, Sornette D (2009) Exuberant innovations: the Apollo program. Society 46: 55–68. doi: 10.1007/s12115-008-9163-8
![]() |
[31] | Gisler M, Sornette D (2010) Bubbles everywhere in human affairs. Swiss Financ Institute Res Paper 137–153 |
[32] |
Gisler M, Sornette D, Woodard R (2011) Innovation as a social bubble: The example of the human genome project. Res Policy 40: 1412–1425. doi: 10.1016/j.respol.2011.05.019
![]() |
[33] | Gjerstad SD, Smith VL (2014) Rethinking housing bubbles: The role of household and bank balance sheets in modeling economic cycles.Cambridge: Cambridge University Press. |
[34] | Glindro ET, Subhanij T, Szeto J et al. (2011) Determinants of house prices in nine asia-pacific economies. J Cent Bank 7: 163–204. |
[35] | Homm U, Breitung J (2012) Testing for speculative bubbles in stock markets: a comparison of alternative methods. J of Financ Econ 10: 198–231. |
[36] |
Hort K (1998) The determinants of urban house price fluctuations in sweden 1968–1994. J of housing Econ 7: 93–120. doi: 10.1006/jhec.1998.0225
![]() |
[37] |
Hott C (2012) The influence of herding behaviour on house prices. J of European Real Estate Res 5: 177–198. doi: 10.1108/17539261211282046
![]() |
[38] |
Hott C, Monnin P (2008) Fundamental real estate prices: an empirical estimation with international data. J Real Estate Financ Econ 36: 427–450. doi: 10.1007/s11146-007-9097-8
![]() |
[39] |
Hüsler A, Sornette D, Hommes CH (2013) Super-exponential bubbles in lab experiments: evidence for anchoring over-optimistic expectations on price. J Econ Behav Organ 92: 304–316. doi: 10.1016/j.jebo.2013.06.005
![]() |
[40] | Jacobsen DH, Naug BE (2005) What drives house prices? Norges Bank. Econ Bulletin 76: 29–41 |
[41] | Johansen A, Ledoit O, Sornette D (2000) Crashes as critical points. Int J of Theoretical and Applied Financ 3: 219–255. |
[42] | Johansen A, Sornette D (1999) Predicting financial crashes using discrete scale invariance. J Risk 1: 5–32. |
[43] | Jordà Ò, Schularick M, Taylor AM (2015) Leveraged bubbles. J Monetary Econ 76: S1–S20. |
[44] |
Kim BH, Min HG (2011) Household lending, interest rates and housing price bubbles in Korea: Regime switching model and kalman filter approach. Economic Modelling 28: 1415–1423. doi: 10.1016/j.econmod.2011.02.001
![]() |
[45] | Kim JY (2000) Detection of change in persistence of a linear time series. J of Econ 95: 97–116. |
[46] |
Kittler J, Hatef M, Duin RP et al. (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20: 226–239. doi: 10.1109/34.667881
![]() |
[47] | Laeven L, Valencia F (2008) Systemic banking crises: a new database. IMF Working Paper No. 08/224. |
[48] |
Leiss M, Nax HH, Sornette D (2015) Super-exponential growth expectations and the global financial crisis. J Econ Dyn Control 55: 1–13. doi: 10.1016/j.jedc.2015.03.005
![]() |
[49] |
Lin L, Sornette D (2013) Diagnostics of rational expectation financial bubbles with stochastic mean-reverting termination times. Eur J Financ 19: 344–365. doi: 10.1080/1351847X.2011.607004
![]() |
[50] | Lux T, Sornette D (2002) On rational bubbles and fat tails, Journal of Money, Credit and Banking, Ohio State University Press, 589–610. |
[51] | Mack A, Martínez-García E (2011) A cross-country quarterly database of real house prices: a methodological note. Globalization and Monetary Policy Institute Working Paper NO.99 |
[52] | Mason SJ, Graham N (2002) Areas beneath the relative operating characteristics (roc) and relative operating levels (rol) curves: Statistical significance and interpretation. Q J R Meteorol Soc 128: 2145–2166. |
[53] | Mikhed V, Zemčík P (2009) Do house prices reflect fundamentals? aggregate and panel data evidence. J Hous Econ 18: 140–149. |
[54] | Misina M, Tkacz G (2009) Credit, asset prices, and financial stress. Int J Cent Bank 5: 95–122. |
[55] |
Muellbauer J, Murphy A (1997) Booms and busts in the UK housing market. The Econ J 107: 1701–1727. doi: 10.1111/j.1468-0297.1997.tb00076.x
![]() |
[56] |
Narayan PK, Sharma SS, Phan DHB (2016) Asset price bubbles and economic welfare. Int Rev Financ Anal 44: 139–148. doi: 10.1016/j.irfa.2016.01.011
![]() |
[57] |
Neal L, García-Iglesias MC (2013) The economy of spain in the euro-zone before and after the crisis of 2008. The Quarterly Rev of Econ and Financ 53: 336–344. doi: 10.1016/j.qref.2013.01.002
![]() |
[58] | Nobili A, Zollino F (2012) A structural model for the housing and credit markets in italy. Bank of Italy Temi di Discussione Working Paper No. 887. |
[59] |
Palan S (2013) A review of bubbles and crashes in experimental asset markets. J Econ Surv 27: 570–588. doi: 10.1111/joes.12023
![]() |
[60] | Pavlidis E, Yusupova A, Paya I, et al. (2013) Episodes of exuberance in housing markets: in search of the smoking gun. J Real Estate Financ Econ 53: 1–31. |
[61] |
Phillips PC, Wu Y, Yu J (2011) Explosive behavior in the 1990s nasdaq: When did exuberance escalate asset values? Int Econ Rev 52: 201–226. doi: 10.1111/j.1468-2354.2010.00625.x
![]() |
[62] |
Phillips PC, Yu J (2011) Dating the timeline of financial bubbles during the subprime crisis. Quant Econ 2: 455–491. doi: 10.3982/QE82
![]() |
[63] |
Sarn L, Taylor MP (2003) An empirical investigation of asset price bubbles in latin American emerging financial markets. Applied Financ Econ 13: 635–643. doi: 10.1080/09603100210124597
![]() |
[64] | Scatigna M, Szemere R (2015) Bis collection and publication of residential property prices. Irving Fisher Committee Bulletin 39: 1–8. |
[65] | Schatz M, Sornette D (2018) Inefficient bubbles and efficient drawdowns in financial markets. Swiss Finance Institute Research Paper No. 18-49. |
[66] |
Scheinkman J, Xiong W (2004) Heterogeneous beliefs, speculation and trading in financial markets, In: Carmona R.A., Çinlar E., Ekeland I., Jouini E., Scheinkman J.A., Touzi N., Author, In Paris-Princeton Lectures on Mathematical Finance 2003, Springer, Berlin, Heidelberg, 1847: 217–250. doi: 10.1007/978-3-540-44468-8_3
![]() |
[67] |
Schularick M, Taylor AM (2012) Credit booms gone bust: Monetary policy, leverage cycles, and financial crises, 1870–2008. Am Econ Rev 102: 1029–1061. doi: 10.1257/aer.102.2.1029
![]() |
[68] | Shi S (2017) Speculative bubbles or market fundamentals? an investigation of us regional housing markets. Econ Model 66: 101–111. |
[69] | Sørensen PB (2013) The swedish housing market: Trends and risks. Finanspolitiska rdet, 1–77. |
[70] |
Sornette D (2002) "Slimming" of power law tails by increasing market returns. Physica A 309: 403–418. doi: 10.1016/S0378-4371(02)00614-3
![]() |
[71] |
SornetteD, Johansen A, Bouchaud JP (1996) Stock market crashes, precursors and replicas. J Phys I Franc 6: 167–175. doi: 10.1051/jp1:1996135
![]() |
[72] | Stevenson S (2008) Modeling housing market fundamentals: Empirical evidence of extreme market conditions. Real Estate Econ 36: 1–29. |
[73] | Timmermann A (2006) Forecast combinations, Handbook of economic forecasting, Elsevier, 135–196. |
[74] | Valencia F, Laeven L (2012) Systemic banking crises database: An update. IMF Working Paper No. 12/163. |
[75] |
Walks A (2014) Canada's housing bubble story: Mortgage securitization, the state, and the global financial crisis. Int J Urban Reg Res 38: 256–284. doi: 10.1111/j.1468-2427.2012.01184.x
![]() |