Citation: Timotheos Paraskevopoulos, Peter N Posch. A hybrid forecasting algorithm based on SVR and wavelet decomposition[J]. Quantitative Finance and Economics, 2018, 2(3): 525-553. doi: 10.3934/QFE.2018.3.525
[1] | Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif . On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185 |
[2] | Bo Wang, Rekha Srivastava, Jin-Lin Liu . Certain properties of multivalent analytic functions defined by q-difference operator involving the Janowski function. AIMS Mathematics, 2021, 6(8): 8497-8508. doi: 10.3934/math.2021493 |
[3] | Ekram E. Ali, Rabha M. El-Ashwah, R. Sidaoui . Application of subordination and superordination for multivalent analytic functions associated with differintegral operator. AIMS Mathematics, 2023, 8(5): 11440-11459. doi: 10.3934/math.2023579 |
[4] | Sarem H. Hadi, Maslina Darus, Choonkil Park, Jung Rye Lee . Some geometric properties of multivalent functions associated with a new generalized q-Mittag-Leffler function. AIMS Mathematics, 2022, 7(7): 11772-11783. doi: 10.3934/math.2022656 |
[5] | Ying Yang, Jin-Lin Liu . Some geometric properties of certain meromorphically multivalent functions associated with the first-order differential subordination. AIMS Mathematics, 2021, 6(4): 4197-4210. doi: 10.3934/math.2021248 |
[6] | Cai-Mei Yan, Jin-Lin Liu . On second-order differential subordination for certain meromorphically multivalent functions. AIMS Mathematics, 2020, 5(5): 4995-5003. doi: 10.3934/math.2020320 |
[7] | Huo Tang, Shahid Khan, Saqib Hussain, Nasir Khan . Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α. AIMS Mathematics, 2021, 6(6): 5421-5439. doi: 10.3934/math.2021320 |
[8] | Nazar Khan, Bilal Khan, Qazi Zahoor Ahmad, Sarfraz Ahmad . Some Convolution Properties of Multivalent Analytic Functions. AIMS Mathematics, 2017, 2(2): 260-268. doi: 10.3934/Math.2017.2.260 |
[9] | Yu-Qin Tao, Yi-Hui Xu, Rekha Srivastava, Jin-Lin Liu . Geometric properties of a certain class of multivalent analytic functions associated with the second-order differential subordination. AIMS Mathematics, 2021, 6(1): 390-403. doi: 10.3934/math.2021024 |
[10] | Wei-Mao Qian, Miao-Kun Wang . Sharp bounds for Gauss Lemniscate functions and Lemniscatic means. AIMS Mathematics, 2021, 6(7): 7479-7493. doi: 10.3934/math.2021437 |
To understand in a clear way the notions used in our main results, we need to add here some basic literature of Geometric function theory. For this we start first with the notation A which denotes the class of holomorphic or analytic functions in the region D={z∈C:|z|<1} and if a function g∈A, then the relations g(0)=g′(0)−1=0 must hold. Also, all univalent functions will be in a subfamily S of A. Next we consider to define the idea of subordinations between analytic functions g1 and g2, indicated by g1(z)≺g2(z), as; the functions g1,g2∈A are connected by the relation of subordination, if there exists an analytic function w with the restrictions w(0)=0 and |w(z)|<1 such that g1(z)=g2(w(z)). Moreover, if the function g2∈S in D, then we obtain:
g1(z)≺g2(z)⇔[g1(0)=g2(0) & g1(D)⊂g1(D)]. |
In 1992, Ma and Minda [16] considered a holomorphic function φ normalized by the conditions φ(0)=1 and φ′(0)>0 with Reφ>0 in D. The function φ maps the disc D onto region which is star-shaped about 1 and symmetric along the real axis. In particular, the function φ(z)=(1+Az)/(1+Bz), (−1≤B<A≤1) maps D onto the disc on the right-half plane with centre on the real axis and diameter end points 1−A1−B and 1+A1+B. This interesting familiar function is named as Janowski function [10]. The image of the function φ(z)=√1+z shows that the image domain is bounded by the right-half of the Bernoulli lemniscate given by |w2−1|<1, [25]. The function φ(z)=1+43z+23z2 maps D into the image set bounded by the cardioid given by (9x2+9y2−18x+5)2−16(9x2+9y2−6x+1)=0, [21] and further studied in [23]. The function φ(z)=1+sinz was examined by Cho and his coauthors in [3] while φ(z)=ez is recently studied in [17] and [24]. Further, by choosing particular φ, several subclasses of starlike functions have been studied. See the details in [2,4,5,11,12,14,19].
Recently, Ali et al. [1] have obtained sufficient conditions on α such that
1+zg′(z)/gn(z)≺√1+z⇒g(z)≺√1+z,for n=0,1,2. |
Similar implications have been studied by various authors, for example see the works of Halim and Omar [6], Haq et al [7], Kumar et al [13,15], Paprocki and Sokól [18], Raza et al [20] and Sharma et al [22].
In 1994, Hayman [8] studied multivalent (p-valent) functions which is a generalization of univalent functions and is defined as: an analytic function g in an arbitrary domain D⊂C is said to be p-valent, if for every complex number ω, the equation g(z)=ω has maximum p roots in D and for a complex number ω0 the equation g(z)=ω0 has exactly p roots in D. Let Ap (p∈N={1,2,…}) denote the class of functions, say g∈Ap, that are multivalent holomorphic in the unit disc D and which have the following series expansion:
g(z)=zp+∞∑k=p+1akzk, (z∈D). | (1.1) |
Using the idea of multivalent functions, we now introduce the class SL∗p of multivalent starlike functions associated with lemniscate of Bernoulli and as given below:
SL∗p={g(z)∈Ap:zg′(z)pg(z)≺√1+z, (z∈D)}. |
In this article, we determine conditions on α such that for each
1+αz2+p(j−1)g′(z)pgj(z), for each j=0,1,2,3, |
are subordinated to Janowski functions implies g(z)zp≺√1+z, (z∈D). These results are then utilized to show that g are in the class SL∗p.
Let w be analytic non-constant function in D with w(0)=0. If
|w(z0)|=max{|w(z)|, |z|≤|z0|}, z∈D, |
then there exists a real number m (m≥1) such that z0w′(z0)=mw(z0).
This Lemma is known as Jack's Lemma and it has been proved in [9].
Let g∈Ap and satisfying
1+αz1−pg′(z)p≺1+Az1+Bz, |
with the restriction on α is
|α|≥232p(A−B)1−|B|−4p(1+|B|). | (2.1) |
Then
g(z)zp≺√1+z. |
Proof
Let us define a function
p(z)=1+αz1−pg′(z)p, | (2.2) |
where the function p is analytic in D with p(0)=1. Also consider
g(z)zp=√1+w(z). | (2.3) |
Now to prove our result we will only require to prove that |w(z)|<1. Logarithmically differentiating (2.3) and then using (2.2), we get
p(z)=1+αzw′(z)2p√1+w(z)+α√1+w(z), |
and so
|p(z)−1A−Bp(z)|=|αzw′(z)2p√1+w(z)+α√1+w(z)A−B(1+αzw′(z)2p√1+w(z)+α√1+w(z))|=|αzw′(z)+2pα(1+w(z))2p(A−B)√1+w(z)−B(αzw′(z)+2pα(1+w(z)))|. |
Now, we suppose that a point z0∈D occurs such that
max|z|≤|z0||w(z)|=|w(z0)|=1. |
Also by Lemma 1.1, a number m≥1 exists with z0w′(z0)=mw(z0). In addition, we also suppose that w(z0)=eiθ for θ∈[−π,π]. Then we have
|p(z0)−1A−Bp(z0)|=|αmw(z0)−2pα(1+w(z0))2p(A−B)√1+w(z0)−B(αmw(z0)+2pα(1+w(z0)))|,≥|α|m−2p|α|(|1+eiθ|)2p(A−B)√|1+eiθ|+|B|(|α|m+2pα|1+eiθ|),≥|α|m−4p|α|232p(A−B)+|B||α|(m+4p). |
Now if
ϕ(m)=|α|(m−4p)232p(A−B)+|B||α|(m+4p), |
then
ϕ′(m)=232p(A−B)|α|+8|α|2p|B|(232p(A−B)+|B||α|(m+4p))2>0, |
which illustrates that the function ϕ(m) is increasing and hence ϕ(m)≥ϕ(1) for m≥1, so
|p(z0)−1A−Bp(z0)|≥|α|(1−4p)232p(A−B)+|B||α|(1+4p). |
Now, by using (2.1), we have
|p(z0)−1A−Bp(z0)|≥1 |
which contradicts the fact that p(z)≺1+Az1+Bz. Thus |w(z)|<1 and so we get the desired result.
Taking g(z)=zp+1f′(z)pf(z) in the last result, we obtain the following Corollary:
Let f∈Ap and satisfying
1+αzf′(z)p2f(z)(p+1+zf′′(z)f′(z)−zf′(z)f(z))≺1+Az1+Bz, | (2.4) |
with the condition on α is
|α|≥232p(A−B)1−|B|−4p(1+|B|). |
Then f∈SL∗p.
If g∈Ap such that
1+αpzg′(z)g(z)≺1+Az1+Bz, | (2.5) |
with
|α|≥8p(A−B)1−|B|−4p(1+|B|), | (2.6) |
then
g(z)zp≺√1+z. |
Proof
Let us choose a function p by
p(z)=1+αzg′(z)pg(z), |
in such a way that p is analytic in D with p(0)=1. Also consider
g(z)zp=√1+w(z). |
Using some simple calculations, we obtain
p(z)=1+αzw′(z)2p(1+w(z))+α, |
and so
|p(z)−1A−Bp(z)|=|αzw′(z)2p(1+w(z))+αA−B(1+αzw′(z)2p(1+w(z))+α)|=|αzw′(z)+2pα(1+w(z))2p(A−B)(1+w(z))−B(αzw′(z)+2pα(1+w(z)))|. |
Let a point z0∈D exists in such a way
max|z|≤|z0||w(z)|=|w(z0)|=1. |
Then, by virtue of Lemma 1.1, a number m≥1 occurs such that z0w′(z0)=mw(z0). In addition, we set w(z0)=eiθ, so we have
|p(z0)−1A−Bp(z0)|=|αmw(z0)+2pα(1+w(z0))2p(A−B)(1+w(z0))−B(αmw(z0)+2pα(1+w(z0)))|,≥|α|m−2p|α||1+eiθ|2(A−B)|1+eiθ|+|B||α|m+2p|B||α||1+eiθ|,=|α|m−2p|α|√2+2cosθ2(2(A−B)+|B||α|)p√2+2cosθ+|B||α|m,≥|α|(m−4p)4p(2(A−B)+|B||α|)+|B||α|m. |
Now let
ϕ(m)=|α|(m−4p)4p(2(A−B)+|B||α|)+|B||α|m, |
it implies
ϕ′(m)=|α|8p((A−B)+|α||B|)(4p(2(A−B)+|B||α|)+|B||α|m)2>0, |
which illustrates that the function ϕ(m) is increasing and so ϕ(m)≥ϕ(1) for m≥1, hence
|p(z0)−1A−Bp(z0)|≥|α|(1−4p)4p(2(A−B)+|B||α|)+|B||α|. |
Now, by using (2.6), we have
|p(z0)−1A−Bp(z0)|≥1, |
which contradicts (2.5). Thus |w(z)|<1 and so the desired proof is completed.
Putting g(z)=zp+1f′(z)pf(z) in last Theorem, we get the following Corollary:
If f∈Ap and satisfying
1+αp(p+1+zf′′(z)f′(z)−zf′(z)f(z))≺1+Az1+Bz, |
with
|α|≥8p(A−B)1−|B|−4p(1+|B|), |
then f∈SL∗p.
If g∈Ap and satisfy the subordination relation
1+αz1−pg′(z)p(g(z))2≺1+Az1+Bz, | (2.7) |
with the condition on α
|α|≥252p(A−B)1−|B|−4p(1+|B|) | (2.8) |
is true, then
g(z)zp≺√1+z. |
Proof
Let us define a function
p(z)=1+αz1−pg′(z)p(g(z))2. |
Then p is analytic in D with p(0)=1. Also let us consider
g(z)zp=√1+w(z). |
Using some simplification, we obtain
p(z)=1+αzw′(z)2p(1+w(z))32+α√1+w(z), |
and so
|p(z)−1A−Bp(z)|=|αzw′(z)2p(1+w(z))32+α√1+w(z)A−B(1+αzw′(z)2p(1+w(z))32+α√1+w(z))|=|αzw′(z)+2pα(1+w(z))2p(A−B)(1+w(z))32−Bαzw′(z)−2pαB(1+w(z))|. |
Let us choose a point z0∈D such a way that
max|z|≤|z0||w(z)|=|w(z0)|=1. |
Then, by the consequences of Lemma 1.1, a number m≥1 occurs such that z0w′(z0)=mw(z0) and also put w(z0)=eiθ,for θ∈[−π,π], we have
|p(z0)−1A−Bp(z0)|=|αmw(z0)+2pα(1+w(z0))2p(A−B)(1+w(z0))32−Bαmw(z0)−2pαB(1+w(z0))|,≥|α|m−2p|α||1+eiθ|2p(A−B)|1+eiθ|32+|B||α|m+2p|α||B||1+eiθ|,=|α|m−4p|α|252p(A−B)+|B||α|m+4p|α||B|,≥|α|(m−4p)252p(A−B)+|B||α|m+4p|α||B|=ϕ(m) (say). |
Then
ϕ′(m)=252p(A−B)+8|α|2|B|p(252p(A−B)+B|α|m+4p|α|B)2>0, |
which demonstrates that the function ϕ(m) is increasing and thus ϕ(m)≥ϕ(1) for m≥1, hence
|p(z0)−1A−Bp(z0)|≥|α|(1−4p)252p(A−B)+|B||α|+4p|α||B|. |
Now, using (2.8), we have
|p(z0)−1A−Bp(z0)|≥1, |
which contradicts (2.7). Thus |w(z)|<1 and so we get the required proof.
If we set g(z)=zp+1f′(z)pf(z) in last theorem, we easily have the following Corollary:
Assume that
|α|≥252p(A−B)1−|B|−4p(1+|B|), |
and if f∈Ap satisfy
1+αf(z)z2p+1f′(z)(p+1+zf′′(z)f′(z)−zf′(z)f(z))≺1+Az1+Bz, |
then f∈SL∗p.
If g∈Ap satisfy the subordination
1+αz1−2pg′(z)p(g(z))3≺1+Az1+Bz, |
with restriction on α is
|α|≥8p(A−B)1−|B|−4p(1+|B|). | (2.9) |
then
g(z)zp≺√1+z. |
Proof. Let us define a function
p(z)=1+αz1−2pg′(z)p(g(z))3, |
where p is analytic in D with p(0)−1=0. Also let
g(z)zp=√1+w(z). |
Using some simple calculations, we obtain
p(z)=1+αzw′(z)2p(1+w(z))2+α1+w(z), |
and so
|p(z)−1A−Bp(z)|=|αzw′(z)2p(1+w(z))2+α1+w(z)A−B(1+αzw′(z)2p(1+w(z))2+α1+w(z))|=|αzw′(z)+2pα(1+w(z))2p(A−B)(1+w(z))2−Bαzw′(z)−2pαB(1+w(z))|. |
Let us pick a point z0∈D in such a way that
max|z|≤|z0||w(z)|=|w(z0)|=1. |
Then, by using Lemma 1.1, a number m≥1 exists such that z0w′(z0)=mw(z0) and put w(z0)=eiθ, for θ∈[−π,π], we have
|p(z0)−1A−Bp(z0)|=|αmw(z0)+2pα(1+w(z0))2p(A−B)(1+w(z0))2−Bαmw(z0)−2pαB(1+w(z0))|≥|α|m−2p|α||1+eiθ|2p(A−B)|1+eiθ|2+|B||α|m+2p|α||B||1+eiθ|=|α|m−2p|α|√2+2cosθ2p(A−B)(√2+2cosθ)2+|B||α|m+2p|α||B|√2+2cosθ≥|α|(m−4p)8p(A−B)+|B||α|m+4p|α||B|, |
Now let
ϕ(m)=|α|(m−4p)8p(A−B)+|B||α|m+4p|α||B|, |
then
ϕ′(m)=8p|α|(A−B)+8|α|2|B|p(8p(A−B)+|B||α|m+4p|α||B|)2>0 |
which shows that ϕ(m) is an increasing function and hence it will have its minimum value at m=1, so
|p(z0)−1A−Bp(z0)|≥|α|(1−4p)8p(A−B)+|B||α|+4p|α||B|. |
Using (2.9), we easily obtain
|p(z0)−1A−Bp(z0)|≥1, |
which is a contradiction to the fact that p(z)≺1+Az1+Bz, and so |w(z)|<1. Hence we get the desired result.
If we put g(z)=zp+1f′(z)pf(z) in last Theorem, we achieve the following result:
If f∈Ap and satisfy the condition
|α|≥8p(A−B)1−|B|−4p(1+|B|), |
and
1+αp(f(z))2z3p+2(f′(z))2(p+1+zf′′(z)f′(z)−zf′(z)f(z))≺1+Az1+Bz, |
then f∈SL∗p.
All authors declare no conflict of interest in this paper.
[1] |
Ambroise C, McLachlan GJ (2002) Selection bias in gene extraction on the basis of microarray geneexpression data. Proceedings of the National Academy of Sciences of the United States of America 99: 6562–6566. doi: 10.1073/pnas.102102699
![]() |
[2] |
Atsalakis GS, Valavanis KP (2009) Surveying stock market forecasting techniques - part 2: Soft computing methods. Expert Syst Appl 36: 5932–5941. doi: 10.1016/j.eswa.2008.07.006
![]() |
[3] | Chang PC, Fan CY (2008) A hybrid system integrating a wavelet and tsk fuzzy rules for stock price forecasting. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 38: 802–815. |
[4] |
Chang SI, Yadama S (2010) Statistical process control for monitoring non-linear profiles using wavelet filtering and b-spline approximation. Int J Prod Res 48: 1049–1068. doi: 10.1080/00207540802454799
![]() |
[5] |
Cherkassky V, Ma Y (2004) Practical selection of svm parameters and noise estimation for svm regression. Neural networks 17: 113–126. doi: 10.1016/S0893-6080(03)00169-2
![]() |
[6] | Daubechies I (1992) Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics. |
[7] | DeLurgio S (1998) Forecasting principles and applications, Boston: Irwin/McGraw-Hill. |
[8] |
Doroslovacki M (1998) On the least asymmetric wavelets. IEEE T Signal Proces 46: 1125–1130. doi: 10.1109/78.668562
![]() |
[9] | Genc¸ay R, Selc¸uk F, Whitcher BJ (2001) An introduction to wavelets and other filtering methods in finance and economics. Academic press. |
[10] |
Huang SC, Wu TK (2008) Combining wavelet-based feature extractions with relevance vector machines for stock index forecasting. Expert Syst 25: 133–149. doi: 10.1111/j.1468-0394.2008.00443.x
![]() |
[11] |
Ince H, Trafalis TB (2008) Short term forecasting with support vector machines and application to stock price prediction. Int J Gen Syst 37: 677–687. doi: 10.1080/03081070601068595
![]() |
[12] | John GH, Kohavi R, Pfleger K, et al. (1994) Irrelevant features and the subset selection problem. In Machine Learning: Proceedings of the Eleventh International Conference, 121–129. |
[13] |
Kao LJ, Chiu CC, Lu CJ, et al. (2013) A hybrid approach by integrating wavelet-based feature extraction with MARS and SVR for stock index forecasting. Decis Support Syst 54: 1228–1244. doi: 10.1016/j.dss.2012.11.012
![]() |
[14] |
Kim KJ, Han I (2000) Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index. Expert syst Appl 19: 125–132. doi: 10.1016/S0957-4174(00)00027-0
![]() |
[15] |
Li T, Li Q, Zhu S, et al. (2002) A survey on wavelet applications in data mining. ACM SIGKDD Explorations Newsletter 4: 49–68. doi: 10.1145/772862.772870
![]() |
[16] |
Lu CJ, Lee TS, Chiu CC (2009) Financial time series forecasting using independent component analysis and support vector regression. Decis Support Syst 47: 115–125. doi: 10.1016/j.dss.2009.02.001
![]() |
[17] | Mattera D, Haykin S (1999) Support vector machines for dynamic reconstruction of a chaotic system. In Advances in kernel methods, MIT Press, 211–241. |
[18] | Percival DB, Walden AT (2006) In Wavelet methods for time series analysis, Cambridge University Press. |
[19] | Ramsey JB (2002) Wavelets in economics and finance: past and future. Stud Nonlinear Dyn E 6: 1090. |
[20] | Ramsey JB, Lampart C (1998) The decomposition of economic relationships by time scale using wavelets: expenditure and income. Stud Nonlinear Dyn E 3: 49–71. |
[21] |
Saeys Y, Inza I, Larra˜naga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23: 2507–2517. doi: 10.1093/bioinformatics/btm344
![]() |
[22] | Sch¨olkopf B, Smola A (2005) Support vector machines and kernel algorithms. In Encyclopedia of Biostatistics 2. ed., 5328–5335. |
[23] |
Seo Y, Kim S, Kisi O, et al. (2015) Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. J Hydrol 520: 224–243. doi: 10.1016/j.jhydrol.2014.11.050
![]() |
[24] | Svetnik V, Liaw A, Tong C, et al. (2004) Application of breimans random forest to modeling structureactivity relationships of pharmaceutical molecules. In Multiple Classifier Systems, 334–343. |
[25] |
Vapnik V (1999) An overview of statistical learning theory. IEEE T Neural Network 10: 988–999. doi: 10.1109/72.788640
![]() |
[26] | Vapnik V, Golowich SE, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing, In M. Mozer and M. Jordan and T. Petsche, Advances in Neural Information Processing Systems, MIT Press, 281–287. |
[27] |
Wang GJ, Xie C, Chen S (2017) Multiscale correlation networks analysis of the us stock market: a wavelet analysis. J Econ Interact Coordination 12: 561–594. doi: 10.1007/s11403-016-0176-x
![]() |
[28] |
Zhang BL, Coggins R, Jabri MA, et al. (2001) Multiresolution forecasting for futures trading using wavelet decompositions. IEEE T Neural Network 12: 765–775. doi: 10.1109/72.935090
![]() |
[29] | Zheng G, Starck J, Campbell J, et al. (1999) Multiscale transforms for filtering financial data streams. J Comput Intell Financ 7: 18–35. |
1. | Huseyin IRMAK, A variety of multivalently analytic functions with complex coefficients and some argument properties of their applications, 2021, 1016-2526, 367, 10.52280/pujm.2021.530601 | |
2. | Lei Shi, Muhammad Arif, Syed Zakar Hussain Bukhari, Malik Ali Raza, Some New Sufficient Conditions on p-Valency for Certain Analytic Functions, 2023, 12, 2075-1680, 295, 10.3390/axioms12030295 | |
3. | Khalil Ullah, Jihad Younis, Khurshid Ahmad, A Manickam, Bilal Khan, Mirajul Haq, Upper Bound of the Third Hankel Determinant for a Subclass of Multivalent Functions Associated with the Bernoulli Lemniscate, 2021, 9, 2309-0022, 37, 10.21015/vtm.v9i1.1022 |