Epidemic threshold conditions for seasonally forced SEIR models

  • Received: 01 January 2005 Accepted: 29 June 2018 Published: 01 November 2005
  • MSC : 92D30.

  • In this paper we derive threshold conditions for eradication of diseases that can be described by seasonally forced susceptible-exposed-infectious-recovered (SEIR) models or their variants. For autonomous models, the basic reproduction number R0<1 is usually both necessary and sufficient for the extinction of diseases. For seasonally forced models, R0 is a function of time t. We find that for models without recruitment of susceptible individuals (via births or loss of immunity), maxtR0(t)<1 is required to prevent outbreaks no matter when and how the disease is introduced. For models with recruitment, if the latent period can be neglected, the disease goes extinct if and only if the basic reproduction number ˉR of the time-average systems (the autonomous systems obtained by replacing the time-varying parameters with their long-term time averages) is less than 1. Otherwise, ˉR<1 is sufficient but not necessary for extinction. Thus, reducing ˉR of the average system to less than 1 is sufficient to prevent or curtail the spread of an endemic disease.

    Citation: Junling Ma, Zhien Ma. Epidemic threshold conditions for seasonally forced SEIR models[J]. Mathematical Biosciences and Engineering, 2006, 3(1): 161-172. doi: 10.3934/mbe.2006.3.161

    Related Papers:

    [1] Yilei Tang, Dongmei Xiao, Weinian Zhang, Di Zhu . Dynamics of epidemic models with asymptomatic infection and seasonal succession. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1407-1424. doi: 10.3934/mbe.2017073
    [2] Ayako Suzuki, Hiroshi Nishiura . Seasonal transmission dynamics of varicella in Japan: The role of temperature and school holidays. Mathematical Biosciences and Engineering, 2023, 20(2): 4069-4081. doi: 10.3934/mbe.2023190
    [3] Kazunori Sato . Basic reproduction number of SEIRS model on regular lattice. Mathematical Biosciences and Engineering, 2019, 16(6): 6708-6727. doi: 10.3934/mbe.2019335
    [4] Zhenguo Bai . Threshold dynamics of a periodic SIR model with delay in an infected compartment. Mathematical Biosciences and Engineering, 2015, 12(3): 555-564. doi: 10.3934/mbe.2015.12.555
    [5] Steady Mushayabasa, Drew Posny, Jin Wang . Modeling the intrinsic dynamics of foot-and-mouth disease. Mathematical Biosciences and Engineering, 2016, 13(2): 425-442. doi: 10.3934/mbe.2015010
    [6] Abdelheq Mezouaghi, Salih Djillali, Anwar Zeb, Kottakkaran Sooppy Nisar . Global proprieties of a delayed epidemic model with partial susceptible protection. Mathematical Biosciences and Engineering, 2022, 19(1): 209-224. doi: 10.3934/mbe.2022011
    [7] John E. Franke, Abdul-Aziz Yakubu . Periodically forced discrete-time SIS epidemic model with disease induced mortality. Mathematical Biosciences and Engineering, 2011, 8(2): 385-408. doi: 10.3934/mbe.2011.8.385
    [8] Islam A. Moneim, David Greenhalgh . Use Of A Periodic Vaccination Strategy To Control The Spread Of Epidemics With Seasonally Varying Contact Rate. Mathematical Biosciences and Engineering, 2005, 2(3): 591-611. doi: 10.3934/mbe.2005.2.591
    [9] Hai-Feng Huo, Qian Yang, Hong Xiang . Dynamics of an edge-based SEIR model for sexually transmitted diseases. Mathematical Biosciences and Engineering, 2020, 17(1): 669-699. doi: 10.3934/mbe.2020035
    [10] Xinli Hu . Threshold dynamics for a Tuberculosis model with seasonality. Mathematical Biosciences and Engineering, 2012, 9(1): 111-122. doi: 10.3934/mbe.2012.9.111
  • In this paper we derive threshold conditions for eradication of diseases that can be described by seasonally forced susceptible-exposed-infectious-recovered (SEIR) models or their variants. For autonomous models, the basic reproduction number R0<1 is usually both necessary and sufficient for the extinction of diseases. For seasonally forced models, R0 is a function of time t. We find that for models without recruitment of susceptible individuals (via births or loss of immunity), maxtR0(t)<1 is required to prevent outbreaks no matter when and how the disease is introduced. For models with recruitment, if the latent period can be neglected, the disease goes extinct if and only if the basic reproduction number ˉR of the time-average systems (the autonomous systems obtained by replacing the time-varying parameters with their long-term time averages) is less than 1. Otherwise, ˉR<1 is sufficient but not necessary for extinction. Thus, reducing ˉR of the average system to less than 1 is sufficient to prevent or curtail the spread of an endemic disease.


  • This article has been cited by:

    1. Wendi Wang, Xiao-Qiang Zhao, Threshold Dynamics for Compartmental Epidemic Models in Periodic Environments, 2008, 20, 1040-7294, 699, 10.1007/s10884-008-9111-8
    2. Yuguo Lin, Daqing Jiang, Taihui Liu, Nontrivial periodic solution of a stochastic epidemic model with seasonal variation, 2015, 45, 08939659, 103, 10.1016/j.aml.2015.01.021
    3. Yongli Cai, Xixi Wang, Weiming Wang, Min Zhao, Stochastic Dynamics of an SIRS Epidemic Model with Ratio-Dependent Incidence Rate, 2013, 2013, 1085-3375, 1, 10.1155/2013/172631
    4. Yongli Cai, Weiming Wang, Dynamics of a parasite-host epidemiological model in spatial heterogeneous environment, 2015, 20, 1531-3492, 989, 10.3934/dcdsb.2015.20.989
    5. Nicolas Bacaër, Rachid Ouifki, Growth rate and basic reproduction number for population models with a simple periodic factor, 2007, 210, 00255564, 647, 10.1016/j.mbs.2007.07.005
    6. Xiuxiang Liu, Xiao-Qiang Zhao, A Periodic Epidemic Model with Age Structure in a Patchy Environment, 2011, 71, 0036-1399, 1896, 10.1137/100813610
    7. M. Marvá, R. Bravo de la Parra, J.-C. Poggiale, Approximate aggregation of a two time scales periodic multi-strain SIS epidemic model: A patchy environment with fast migrations, 2012, 10, 1476945X, 34, 10.1016/j.ecocom.2011.09.002
    8. Jean M. Tchuenche, Alexander Nwagwo, Richard Levins, Global behaviour of an SIR epidemic model with time delay, 2007, 30, 01704214, 733, 10.1002/mma.810
    9. Hui Cao, Yicang Zhou, The basic reproduction number of discrete SIR and SEIS models with periodic parameters, 2013, 18, 1553-524X, 37, 10.3934/dcdsb.2013.18.37
    10. Kaniz Fatema Nipa, Linda J. S. Allen, 2021, Chapter 2, 978-3-030-50825-8, 15, 10.1007/978-3-030-50826-5_2
    11. Karsten Hempel, David J. D. Earn, A century of transitions in New York City's measles dynamics, 2015, 12, 1742-5689, 20150024, 10.1098/rsif.2015.0024
    12. Tailei Zhang, Junli Liu, Zhidong Teng, Existence of positive periodic solutions of an SEIR model with periodic coefficients, 2012, 57, 0862-7940, 601, 10.1007/s10492-012-0036-5
    13. Gui-Quan Sun, Zhenguo Bai, Zi-Ke Zhang, Tao Zhou, Zhen Jin, Positive Periodic Solutions of an Epidemic Model with Seasonality, 2013, 2013, 1537-744X, 1, 10.1155/2013/470646
    14. Xinzhi Liu, Peter Stechlinski, Transmission dynamics of a switched multi-city model with transport-related infections, 2013, 14, 14681218, 264, 10.1016/j.nonrwa.2012.06.003
    15. Xinzhi Liu, Peter Stechlinski, SIS models with switching and pulse control, 2014, 232, 00963003, 727, 10.1016/j.amc.2013.12.100
    16. Christopher Mitchell, Christopher Kribs, Invasion reproductive numbers for periodic epidemic models, 2019, 4, 24680427, 124, 10.1016/j.idm.2019.04.002
    17. Wenyu Zheng, Zhigang Chen, Jia Wu, Kanghuai Liu, Cooperative‐routing mechanism based on node classification and task allocation for opportunistic social networks, 2020, 14, 1751-8636, 420, 10.1049/iet-com.2019.0756
    18. Alexis Erich S. Almocera, Van Kinh Nguyen, Esteban A. Hernandez-Vargas, Multiscale model within-host and between-host for viral infectious diseases, 2018, 77, 0303-6812, 1035, 10.1007/s00285-018-1241-y
    19. Junli Liu, Tailei Zhang, Epidemic spreading of an SEIRS model in scale-free networks, 2011, 16, 10075704, 3375, 10.1016/j.cnsns.2010.11.019
    20. Maia Martcheva, 2015, Chapter 11, 978-1-4899-7611-6, 281, 10.1007/978-1-4899-7612-3_11
    21. Yongli Cai, Xinze Lian, Zhihang Peng, Weiming Wang, Spatiotemporal transmission dynamics for influenza disease in a heterogenous environment, 2019, 46, 14681218, 178, 10.1016/j.nonrwa.2018.09.006
    22. Michelangelo Bin, Peter Y. K. Cheung, Emanuele Crisostomi, Pietro Ferraro, Hugo Lhachemi, Roderick Murray-Smith, Connor Myant, Thomas Parisini, Robert Shorten, Sebastian Stein, Lewi Stone, Mercedes Pascual, Post-lockdown abatement of COVID-19 by fast periodic switching, 2021, 17, 1553-7358, e1008604, 10.1371/journal.pcbi.1008604
    23. Irena Papst, David J. D. Earn, Invariant predictions of epidemic patterns from radically different forms of seasonal forcing, 2019, 16, 1742-5689, 20190202, 10.1098/rsif.2019.0202
    24. Zuqin Ding, Yong Li, Yongli Cai, Yueping Dong, Weiming Wang, Optimal Control Strategies of HFMD in Wenzhou, China, 2020, 2020, 1076-2787, 1, 10.1155/2020/5902698
    25. Curtis L. Wesley, Linda J.S. Allen, The basic reproduction number in epidemic models with periodic demographics, 2009, 3, 1751-3758, 116, 10.1080/17513750802304893
    26. Daihai He, Jonathan Dushoff, Raluca Eftimie, David J. D. Earn, Patterns of spread of influenza A in Canada, 2013, 280, 0962-8452, 20131174, 10.1098/rspb.2013.1174
    27. Guy Katriel, Lewi Stone, Attack rates of seasonal epidemics, 2012, 235, 00255564, 56, 10.1016/j.mbs.2011.10.007
    28. Kaniz Fatema Nipa, Sophia R.-J. Jang, Linda J.S. Allen, The effect of demographic and environmental variability on disease outbreak for a dengue model with a seasonally varying vector population, 2021, 331, 00255564, 108516, 10.1016/j.mbs.2020.108516
    29. Gilberto González-Parra, Abraham J. Arenas, Lucas Jódar, Piecewise finite series solutions of seasonal diseases models using multistage Adomian method, 2009, 14, 10075704, 3967, 10.1016/j.cnsns.2009.02.023
    30. Modelling seasonal HFMD with the recessive infection in Shandong, China, 2013, 10, 1551-0018, 1159, 10.3934/mbe.2013.10.1159
    31. Zhenguo Bai, Dan Liu, Modeling seasonal measles transmission in China, 2015, 25, 10075704, 19, 10.1016/j.cnsns.2014.09.030
    32. M. Marvá, R. Bravo de la Parra, P. Auger, Reproductive Numbers for Nonautonomous Spatially Distributed Periodic SIS Models Acting on Two Time Scales, 2012, 60, 0001-5342, 139, 10.1007/s10441-011-9141-1
    33. Juan Zhang, Zhen Jin, Gui-Quan Sun, Xiang-Dong Sun, Shigui Ruan, Modeling Seasonal Rabies Epidemics in China, 2012, 74, 0092-8240, 1226, 10.1007/s11538-012-9720-6
    34. Jian Zu, Lin Wang, Periodic solutions for a seasonally forced SIR model with impact of media coverage, 2015, 2015, 1687-1847, 10.1186/s13662-015-0477-8
    35. Lin Wang, EXISTENCE OF PERIODIC SOLUTIONS OF SEASONALLY FORCED SIR MODELS WITH IMPULSE VACCINATION, 2015, 19, 1027-5487, 10.11650/tjm.19.2015.5356
    36. Nicolas Bacaër, Souad Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, 2006, 53, 0303-6812, 421, 10.1007/s00285-006-0015-0
    37. Xiao-Yan Zhao, Shu-Min Guo, Mini Ghosh, Xue-Zhi Li, Stability and Persistence of an Avian Influenza Epidemic Model with Impacts of Climate Change, 2016, 2016, 1026-0226, 1, 10.1155/2016/7871251
    38. Xinzhi Liu, Peter Stechlinski, 2017, Chapter 5, 978-3-319-53206-6, 135, 10.1007/978-3-319-53208-0_5
    39. TAILEI ZHANG, JUNLI LIU, ZHIDONG TENG, DIFFERENTIAL SUSCEPTIBILITY TIME-DEPENDENT SIR EPIDEMIC MODEL, 2008, 01, 1793-5245, 45, 10.1142/S1793524508000059
    40. Jean M. Tchuenche, Christinah Chiyaka, Global dynamics of a time delayedSIRmodel with varying population size, 2012, 27, 1468-9367, 145, 10.1080/14689367.2011.607798
    41. Shigui Ruan, Modeling the transmission dynamics and control of rabies in China, 2017, 286, 00255564, 65, 10.1016/j.mbs.2017.02.005
    42. Rigobert C. Ngeleja, Livingstone S. Luboobi, Yaw Nkansah-Gyekye, Plague disease model with weather seasonality, 2018, 302, 00255564, 80, 10.1016/j.mbs.2018.05.013
    43. Zhenguo Bai, Yicang Zhou, Addendum, 2011, 15, 1553-524X, 915, 10.3934/dcdsb.2011.15.915
    44. Maia Martcheva, A non-autonomous multi-strain SIS epidemic model, 2009, 3, 1751-3758, 235, 10.1080/17513750802638712
    45. Zhenguo Bai, Yicang Zhou, Existence of two periodic solutions for a non-autonomous SIR epidemic model, 2011, 35, 0307904X, 382, 10.1016/j.apm.2010.07.002
    46. Daihai He, Jonathan Dushoff, Troy Day, Junling Ma, David J. D. Earn, Inferring the causes of the three waves of the 1918 influenza pandemic in England and Wales, 2013, 280, 0962-8452, 20131345, 10.1098/rspb.2013.1345
    47. Drew Posny, Jin Wang, Computing the basic reproductive numbers for epidemiological models in nonhomogeneous environments, 2014, 242, 00963003, 473, 10.1016/j.amc.2014.05.079
    48. Mikael Jagan, Michelle S. deJonge, Olga Krylova, David J. D. Earn, Jane M. Heffernan, Fast estimation of time-varying infectious disease transmission rates, 2020, 16, 1553-7358, e1008124, 10.1371/journal.pcbi.1008124
    49. JINLIANG WANG, SHENGQIANG LIU, YASUHIRO TAKEUCHI, THRESHOLD DYNAMICS IN A PERIODIC SVEIR EPIDEMIC MODEL, 2011, 04, 1793-5245, 493, 10.1142/S1793524511001490
    50. Mark Jackson, Benito M. Chen-Charpentier, Modeling plant virus propagation with seasonality, 2019, 345, 03770427, 310, 10.1016/j.cam.2018.06.022
    51. Bassidy Dembele, Avner Friedman, Abdul-Aziz Yakubu, Malaria model with periodic mosquito birth and death rates, 2009, 3, 1751-3758, 430, 10.1080/17513750802495816
    52. Edgar Pereira, César M. Silva, Jacques A.L. da Silva, A generalized nonautonomous SIRVS model, 2013, 36, 01704214, 275, 10.1002/mma.2586
    53. Tailei Zhang, Zhidong Teng, Shujing Gao, Threshold conditions for a non-autonomous epidemic model with vaccination, 2008, 87, 0003-6811, 181, 10.1080/00036810701772196
    54. Yukihiko Nakata, Toshikazu Kuniya, Global dynamics of a class of SEIRS epidemic models in a periodic environment, 2010, 363, 0022247X, 230, 10.1016/j.jmaa.2009.08.027
    55. Kanghuai Liu, Zhigang Chen, Jia Wu, Leilei Wang, FCNS: A Fuzzy Routing-Forwarding Algorithm Exploiting Comprehensive Node Similarity in Opportunistic Social Networks, 2018, 10, 2073-8994, 338, 10.3390/sym10080338
    56. Yeting Zhu, Boyang Xu, Xinze Lian, Wang Lin, Zumu Zhou, Weiming Wang, A Hand-Foot-and-Mouth Disease Model with Periodic Transmission Rate in Wenzhou, China, 2014, 2014, 1085-3375, 1, 10.1155/2014/234509
    57. Nicolas Bacaër, Approximation of the Basic Reproduction Number R 0 for Vector-Borne Diseases with a Periodic Vector Population, 2007, 69, 0092-8240, 1067, 10.1007/s11538-006-9166-9
    58. Abraham J. Arenas, Gilberto González-Parra, Benito M. Chen-Charpentier, Dynamical analysis of the transmission of seasonal diseases using the differential transformation method, 2009, 50, 08957177, 765, 10.1016/j.mcm.2009.05.005
    59. NECIBE TUNCER, MAIA MARTCHEVA, MODELING SEASONALITY IN AVIAN INFLUENZA H5N1, 2013, 21, 0218-3390, 1340004, 10.1142/S0218339013400044
    60. Tailei Zhang, Junli Liu, Zhidong Teng, A non-autonomous epidemic model with time delay and vaccination, 2009, 01704214, n/a, 10.1002/mma.1142
    61. v b, Test high volume of citations, 2012, 4, 0037-7333, 28, 10.5555/20120925-a1
    62. Feng Rao, Weiming Wang, Zhibin Li, Stability analysis of an epidemic model with diffusion and stochastic perturbation, 2012, 17, 10075704, 2551, 10.1016/j.cnsns.2011.10.005
    63. Nicolas Bacaër, Xamxinur Abdurahman, Resonance of the epidemic threshold in a periodic environment, 2008, 57, 0303-6812, 649, 10.1007/s00285-008-0183-1
    64. Xinzhi Liu, Peter Stechlinski, Infectious disease models with time-varying parameters and general nonlinear incidence rate, 2012, 36, 0307904X, 1974, 10.1016/j.apm.2011.08.019
    65. Olga Krylova, David J. D. Earn, Effects of the infectious period distribution on predicted transitions in childhood disease dynamics, 2013, 10, 1742-5689, 20130098, 10.1098/rsif.2013.0098
    66. G. Katriel, Existence of Periodic Solutions for the Periodically Forced Sir Model, 2014, 201, 1072-3374, 335, 10.1007/s10958-014-1993-x
    67. Christopher Mitchell, Christopher Kribs, A Comparison of Methods for Calculating the Basic Reproductive Number for Periodic Epidemic Systems, 2017, 79, 0092-8240, 1846, 10.1007/s11538-017-0309-y
    68. Csaba Farkas, David Iclanzan, Boróka Olteán-Péter, Géza Vekov, Estimation of parameters for a humidity-dependent compartmental model of the COVID-19 outbreak, 2021, 9, 2167-8359, e10790, 10.7717/peerj.10790
    69. Harshana Rajakaruna, Mark Lewis, Temperature cycles affect colonization potential of calanoid copepods, 2017, 419, 00225193, 77, 10.1016/j.jtbi.2017.01.044
    70. Zhongwei Cao, Wei Feng, Xiangdan Wen, Li Zu, Jinyao Gao, Nontrivial periodic solution of a stochastic seasonal rabies epidemic model, 2020, 545, 03784371, 123361, 10.1016/j.physa.2019.123361
    71. 2011, Global dynamics of the periodic SEIR epidemic model, 978-1-4244-8727-1, 346, 10.1109/CSAE.2011.5953236
    72. Nicholas C Grassly, Christophe Fraser, Seasonal infectious disease epidemiology, 2006, 273, 0962-8452, 2541, 10.1098/rspb.2006.3604
    73. Jean M. Tchuenche, A SIR
    SIR epidemic model with incubation period, 2015, 26, 1012-9405, 77, 10.1007/s13370-013-0189-8
    74. Joseph Livni, Lewi Stone, The stabilizing role of the Sabbath in pre-monarchic Israel:a mathematical model, 2015, 41, 0092-0606, 203, 10.1007/s10867-014-9373-9
    75. Xinxin Li, Yongli Cai, Kai Wang, Shengmao Fu, Weiming Wang, Non-constant positive steady states of a host-parasite model with frequency- and density-dependent transmissions, 2020, 357, 00160032, 4392, 10.1016/j.jfranklin.2020.02.058
    76. Zhenguo Bai, Yicang Zhou, Tailei Zhang, Existence of multiple periodic solutions for an SIR model with seasonality, 2011, 74, 0362546X, 3548, 10.1016/j.na.2011.03.008
    77. Manli Jin, Yuguo Lin, Periodic solution of a stochastic SIRS epidemic model with seasonal variation, 2018, 12, 1751-3758, 1, 10.1080/17513758.2017.1396369
    78. Xinzhi Liu, Peter Stechlinski, Pulse and constant control schemes for epidemic models with seasonality, 2011, 12, 14681218, 931, 10.1016/j.nonrwa.2010.08.017
    79. Toshikazu Kuniya, Yukihiko Nakata, Permanence and extinction for a nonautonomous SEIRS epidemic model, 2012, 218, 00963003, 9321, 10.1016/j.amc.2012.03.011
    80. Xinzhi Liu, Peter Stechlinski, 2017, Chapter 4, 978-3-319-53206-6, 83, 10.1007/978-3-319-53208-0_4
    81. Chadi M. Saad-Roy, Simon A. Levin, C. Jessica E. Metcalf, Bryan T. Grenfell, Trajectory of individual immunity and vaccination required for SARS-CoV-2 community immunity: a conceptual investigation, 2021, 18, 1742-5662, 20200683, 10.1098/rsif.2020.0683
    82. Qianqian Qu, Cong Fang, Le Zhang, Wanru Jia, Jie Weng, Yong Li, A mumps model with seasonality in China, 2017, 2, 24680427, 1, 10.1016/j.idm.2016.10.001
    83. Daihai He, David J. D. Earn, The cohort effect in childhood disease dynamics, 2016, 13, 1742-5689, 20160156, 10.1098/rsif.2016.0156
    84. Liang Zhang, Zhi-Cheng Wang, Xiao-Qiang Zhao, Time periodic traveling wave solutions for a Kermack–McKendrick epidemic model with diffusion and seasonality, 2020, 20, 1424-3199, 1029, 10.1007/s00028-019-00544-2
    85. Xinzhi Liu, Peter Stechlinski, 2017, Chapter 3, 978-3-319-53206-6, 43, 10.1007/978-3-319-53208-0_3
    86. Lin Wang, Existence of Periodic Solutions of Seasonally Forced SEIR Models with Pulse Vaccination, 2020, 2020, 1026-0226, 1, 10.1155/2020/9381375
    87. Long Zhang, Xiaolin Fan, Zhidong Teng, Global dynamics of a nonautonomous SEIRS epidemic model with vaccination and nonlinear incidence, 2021, 0170-4214, 10.1002/mma.7359
    88. Linda J. S. Allen, Xueying Wang, Stochastic models of infectious diseases in a periodic environment with application to cholera epidemics, 2021, 82, 0303-6812, 10.1007/s00285-021-01603-4
    89. Nabeela Anwar, Muhammad Shoaib, Iftikhar Ahmad, Shafaq Naz, Adiqa Kausar Kiani, Muhammad Asif Zahoor Raja, Intelligent computing networks for nonlinear influenza-A epidemic model, 2023, 16, 1793-5245, 10.1142/S1793524522500978
    90. Franklin Platini Agouanet, Israël Tankam-Chedjou, Remy M. Etoua, Jean Jules Tewa, Mathematical modelling of Banana Black Sigatoka Disease with delay and Seasonality, 2021, 99, 0307904X, 380, 10.1016/j.apm.2021.06.030
    91. Nurbek Azimaqin, Zhihang Peng, Xinzhi Ren, Yangjiang Wei, Xianning Liu, Vaccine failure, seasonality and demographic changes associate with mumps outbreaks in Jiangsu Province, China: Age-structured mathematical modelling study, 2022, 544, 00225193, 111125, 10.1016/j.jtbi.2022.111125
    92. Hossein Khazaei, Keith Paarporn, Alfredo Garcia, Ceyhun Eksin, 2021, Disease spread coupled with evolutionary social distancing dynamics can lead to growing oscillations, 978-1-6654-3659-5, 4280, 10.1109/CDC45484.2021.9683594
    93. Xiaoyan Gao, Nonconstant positive steady states and pattern formation of a diffusive epidemic model, 2022, 14173875, 1, 10.14232/ejqtde.2022.1.20
    94. I. A. Moneim, G. A. Mosa, A realistic model for the periodic dynamics of the hand-foot-and-mouth disease, 2022, 7, 2473-6988, 2585, 10.3934/math.2022145
    95. Heng Zhang, Zhigang Chen, Jia Wu, Kanghuai Liu, FRRF: A Fuzzy Reasoning Routing-Forwarding Algorithm Using Mobile Device Similarity in Mobile Edge Computing-Based Opportunistic Mobile Social Networks, 2019, 7, 2169-3536, 35874, 10.1109/ACCESS.2019.2905420
    96. 若琳 亓, Analysis on Stability for a Class of Epidemiological Model, 2022, 11, 2324-7991, 1715, 10.12677/AAM.2022.114187
    97. Miled El Hajji, Dalal M. Alshaikh, Nada A. Almuallem, Periodic Behaviour of an Epidemic in a Seasonal Environment with Vaccination, 2023, 11, 2227-7390, 2350, 10.3390/math11102350
    98. Changlei Tan, Shuang Li, Yong Li, Zhihang Peng, Dynamic modeling and data fitting of climatic and environmental factors and people's behavior factors on hand, foot, and mouth disease (HFMD) in Shanghai, China, 2023, 24058440, e18212, 10.1016/j.heliyon.2023.e18212
    99. Miled El Hajji, Periodic solutions for chikungunya virus dynamics in a seasonal environment with a general incidence rate, 2023, 8, 2473-6988, 24888, 10.3934/math.20231269
    100. Thi Minh Thao Le, Erida Gjini, Sten Madec, Quasi-neutral dynamics in a coinfection system with N strains and asymmetries along multiple traits, 2023, 87, 0303-6812, 10.1007/s00285-023-01977-7
    101. Shaday Guerrero‐Flores, Osvaldo Osuna, Cruz Vargas‐De‐León, Periodic solutions of seasonal epidemiological models with information‐dependent vaccination, 2023, 0170-4214, 10.1002/mma.9728
    102. Eduardo L. Brugnago, Enrique C. Gabrick, Kelly C. Iarosz, José D. Szezech, Ricardo L. Viana, Antonio M. Batista, Iberê L. Caldas, Multistability and chaos in SEIRS epidemic model with a periodic time-dependent transmission rate, 2023, 33, 1054-1500, 10.1063/5.0156452
    103. Miled El Hajji, Rahmah Mohammed Alnjrani, Periodic Behaviour of HIV Dynamics with Three Infection Routes, 2023, 12, 2227-7390, 123, 10.3390/math12010123
    104. Protyusha Dutta, Guruprasad Samanta, Juan J. Nieto, Periodic transmission and vaccination effects in epidemic dynamics: a study using the SIVIS model, 2024, 0924-090X, 10.1007/s11071-023-09157-4
    105. Carmen Legarreta, Manuel De la Sen, Santiago Alonso-Quesada, On the Properties of a Newly Susceptible, Non-Seriously Infected, Hospitalized, and Recovered Subpopulation Epidemic Model, 2024, 12, 2227-7390, 245, 10.3390/math12020245
    106. Destiny S. Lutero, Timothy Robin Y. Teng, Mark Anthony C. Tolentino, 2024, 3016, 0094-243X, 020002, 10.1063/5.0192872
    107. Mamadou L. Diagne, Folashade B. Agusto, Herieth Rwezaura, Jean M. Tchuenche, Suzanne Lenhart, Optimal control of an epidemic model with treatment in the presence of media coverage, 2024, 24, 24682276, e02138, 10.1016/j.sciaf.2024.e02138
    108. Timothy Robin Y. Teng, Destiny S. Lutero, Mark Anthony C. Tolentino, 2024, Chapter 44, 978-3-031-52964-1, 571, 10.1007/978-3-031-52965-8_44
    109. Miled El Hajji, Mohammed Faraj S. Aloufi, Mohammed H. Alharbi, Influence of seasonality on Zika virus transmission, 2024, 9, 2473-6988, 19361, 10.3934/math.2024943
    110. Asma Akter Akhi, Kazi Mehedi Mohammad, Md. Kamrujjaman, Seasonal Variability and Stochastic Branching Process in Malaria Outbreak Probability, 2024, 0001706X, 107311, 10.1016/j.actatropica.2024.107311
    111. Miled El Hajji, Fahad Ahmed S. Alzahrani, Mohammed H. Alharbi, Mathematical Analysis for Honeybee Dynamics Under the Influence of Seasonality, 2024, 12, 2227-7390, 3496, 10.3390/math12223496
    112. Protyusha Dutta, Guruprasad Samanta, Juan J. Nieto, Nipah virus transmission dynamics: equilibrium states, sensitivity and uncertainty analysis, 2024, 0924-090X, 10.1007/s11071-024-10549-3
    113. Rujie Yang, Hong Qiu, A Valid Transport Related SVEIHR Stochastic Epidemic Model with Coverage and Time Delays, 2024, 23, 2224-2880, 815, 10.37394/23206.2024.23.84
    114. David J.D. Earn, Daihai He, Mark B. Loeb, Kevin Fonseca, Bonita E. Lee, Jonathan Dushoff, Effects of School Closure on Incidence of Pandemic Influenza in Alberta, Canada, 2012, 156, 0003-4819, 173, 10.7326/0003-4819-156-3-201202070-00005
    115. Bashir Al-Hdaibat, Mahmoud H. DarAssi, Irfan Ahmad, Muhammad Altaf Khan, Reem Algethamie, Ebraheem Alzahrani, Numerical investigation of an SIR fractional order delay epidemic model in the framework of Mittag–Leffler kernel, 2025, 0924-090X, 10.1007/s11071-025-11006-5
    116. Yan Zhuang, Weihua Li, Yang Liu, Information and Knowledge Diffusion Dynamics in Complex Networks with Independent Spreaders, 2025, 27, 1099-4300, 234, 10.3390/e27030234
    117. Gabriel Benedetti, Ryan Weightman, Benedetto Piccoli, Optimizing overlapping non-pharmaceutical interventions with a socio-demographic model, 2025, 1972-6724, 10.1007/s40574-025-00477-4
    118. Carlos Andreu-Vilarroig, Gilberto González-Parra, Rafael-Jacinto Villanueva, Mathematical Modeling of Influenza Dynamics: Integrating Seasonality and Gradual Waning Immunity, 2025, 87, 0092-8240, 10.1007/s11538-025-01454-w
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5349) PDF downloads(814) Cited by(118)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog