Citation: Junling Ma, Zhien Ma. Epidemic threshold conditions for seasonally forced SEIR models[J]. Mathematical Biosciences and Engineering, 2006, 3(1): 161-172. doi: 10.3934/mbe.2006.3.161
[1] | Yilei Tang, Dongmei Xiao, Weinian Zhang, Di Zhu . Dynamics of epidemic models with asymptomatic infection and seasonal succession. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1407-1424. doi: 10.3934/mbe.2017073 |
[2] | Ayako Suzuki, Hiroshi Nishiura . Seasonal transmission dynamics of varicella in Japan: The role of temperature and school holidays. Mathematical Biosciences and Engineering, 2023, 20(2): 4069-4081. doi: 10.3934/mbe.2023190 |
[3] | Kazunori Sato . Basic reproduction number of SEIRS model on regular lattice. Mathematical Biosciences and Engineering, 2019, 16(6): 6708-6727. doi: 10.3934/mbe.2019335 |
[4] | Zhenguo Bai . Threshold dynamics of a periodic SIR model with delay in an infected compartment. Mathematical Biosciences and Engineering, 2015, 12(3): 555-564. doi: 10.3934/mbe.2015.12.555 |
[5] | Steady Mushayabasa, Drew Posny, Jin Wang . Modeling the intrinsic dynamics of foot-and-mouth disease. Mathematical Biosciences and Engineering, 2016, 13(2): 425-442. doi: 10.3934/mbe.2015010 |
[6] | Abdelheq Mezouaghi, Salih Djillali, Anwar Zeb, Kottakkaran Sooppy Nisar . Global proprieties of a delayed epidemic model with partial susceptible protection. Mathematical Biosciences and Engineering, 2022, 19(1): 209-224. doi: 10.3934/mbe.2022011 |
[7] | John E. Franke, Abdul-Aziz Yakubu . Periodically forced discrete-time SIS epidemic model with disease induced mortality. Mathematical Biosciences and Engineering, 2011, 8(2): 385-408. doi: 10.3934/mbe.2011.8.385 |
[8] | Islam A. Moneim, David Greenhalgh . Use Of A Periodic Vaccination Strategy To Control The Spread Of Epidemics With Seasonally Varying Contact Rate. Mathematical Biosciences and Engineering, 2005, 2(3): 591-611. doi: 10.3934/mbe.2005.2.591 |
[9] | Hai-Feng Huo, Qian Yang, Hong Xiang . Dynamics of an edge-based SEIR model for sexually transmitted diseases. Mathematical Biosciences and Engineering, 2020, 17(1): 669-699. doi: 10.3934/mbe.2020035 |
[10] | Xinli Hu . Threshold dynamics for a Tuberculosis model with seasonality. Mathematical Biosciences and Engineering, 2012, 9(1): 111-122. doi: 10.3934/mbe.2012.9.111 |
1. | Wendi Wang, Xiao-Qiang Zhao, Threshold Dynamics for Compartmental Epidemic Models in Periodic Environments, 2008, 20, 1040-7294, 699, 10.1007/s10884-008-9111-8 | |
2. | Yuguo Lin, Daqing Jiang, Taihui Liu, Nontrivial periodic solution of a stochastic epidemic model with seasonal variation, 2015, 45, 08939659, 103, 10.1016/j.aml.2015.01.021 | |
3. | Yongli Cai, Xixi Wang, Weiming Wang, Min Zhao, Stochastic Dynamics of an SIRS Epidemic Model with Ratio-Dependent Incidence Rate, 2013, 2013, 1085-3375, 1, 10.1155/2013/172631 | |
4. | Yongli Cai, Weiming Wang, Dynamics of a parasite-host epidemiological model in spatial heterogeneous environment, 2015, 20, 1531-3492, 989, 10.3934/dcdsb.2015.20.989 | |
5. | Nicolas Bacaër, Rachid Ouifki, Growth rate and basic reproduction number for population models with a simple periodic factor, 2007, 210, 00255564, 647, 10.1016/j.mbs.2007.07.005 | |
6. | Xiuxiang Liu, Xiao-Qiang Zhao, A Periodic Epidemic Model with Age Structure in a Patchy Environment, 2011, 71, 0036-1399, 1896, 10.1137/100813610 | |
7. | M. Marvá, R. Bravo de la Parra, J.-C. Poggiale, Approximate aggregation of a two time scales periodic multi-strain SIS epidemic model: A patchy environment with fast migrations, 2012, 10, 1476945X, 34, 10.1016/j.ecocom.2011.09.002 | |
8. | Jean M. Tchuenche, Alexander Nwagwo, Richard Levins, Global behaviour of an SIR epidemic model with time delay, 2007, 30, 01704214, 733, 10.1002/mma.810 | |
9. | Hui Cao, Yicang Zhou, The basic reproduction number of discrete SIR and SEIS models with periodic parameters, 2013, 18, 1553-524X, 37, 10.3934/dcdsb.2013.18.37 | |
10. | Kaniz Fatema Nipa, Linda J. S. Allen, 2021, Chapter 2, 978-3-030-50825-8, 15, 10.1007/978-3-030-50826-5_2 | |
11. | Karsten Hempel, David J. D. Earn, A century of transitions in New York City's measles dynamics, 2015, 12, 1742-5689, 20150024, 10.1098/rsif.2015.0024 | |
12. | Tailei Zhang, Junli Liu, Zhidong Teng, Existence of positive periodic solutions of an SEIR model with periodic coefficients, 2012, 57, 0862-7940, 601, 10.1007/s10492-012-0036-5 | |
13. | Gui-Quan Sun, Zhenguo Bai, Zi-Ke Zhang, Tao Zhou, Zhen Jin, Positive Periodic Solutions of an Epidemic Model with Seasonality, 2013, 2013, 1537-744X, 1, 10.1155/2013/470646 | |
14. | Xinzhi Liu, Peter Stechlinski, Transmission dynamics of a switched multi-city model with transport-related infections, 2013, 14, 14681218, 264, 10.1016/j.nonrwa.2012.06.003 | |
15. | Xinzhi Liu, Peter Stechlinski, SIS models with switching and pulse control, 2014, 232, 00963003, 727, 10.1016/j.amc.2013.12.100 | |
16. | Christopher Mitchell, Christopher Kribs, Invasion reproductive numbers for periodic epidemic models, 2019, 4, 24680427, 124, 10.1016/j.idm.2019.04.002 | |
17. | Wenyu Zheng, Zhigang Chen, Jia Wu, Kanghuai Liu, Cooperative‐routing mechanism based on node classification and task allocation for opportunistic social networks, 2020, 14, 1751-8636, 420, 10.1049/iet-com.2019.0756 | |
18. | Alexis Erich S. Almocera, Van Kinh Nguyen, Esteban A. Hernandez-Vargas, Multiscale model within-host and between-host for viral infectious diseases, 2018, 77, 0303-6812, 1035, 10.1007/s00285-018-1241-y | |
19. | Junli Liu, Tailei Zhang, Epidemic spreading of an SEIRS model in scale-free networks, 2011, 16, 10075704, 3375, 10.1016/j.cnsns.2010.11.019 | |
20. | Maia Martcheva, 2015, Chapter 11, 978-1-4899-7611-6, 281, 10.1007/978-1-4899-7612-3_11 | |
21. | Yongli Cai, Xinze Lian, Zhihang Peng, Weiming Wang, Spatiotemporal transmission dynamics for influenza disease in a heterogenous environment, 2019, 46, 14681218, 178, 10.1016/j.nonrwa.2018.09.006 | |
22. | Michelangelo Bin, Peter Y. K. Cheung, Emanuele Crisostomi, Pietro Ferraro, Hugo Lhachemi, Roderick Murray-Smith, Connor Myant, Thomas Parisini, Robert Shorten, Sebastian Stein, Lewi Stone, Mercedes Pascual, Post-lockdown abatement of COVID-19 by fast periodic switching, 2021, 17, 1553-7358, e1008604, 10.1371/journal.pcbi.1008604 | |
23. | Irena Papst, David J. D. Earn, Invariant predictions of epidemic patterns from radically different forms of seasonal forcing, 2019, 16, 1742-5689, 20190202, 10.1098/rsif.2019.0202 | |
24. | Zuqin Ding, Yong Li, Yongli Cai, Yueping Dong, Weiming Wang, Optimal Control Strategies of HFMD in Wenzhou, China, 2020, 2020, 1076-2787, 1, 10.1155/2020/5902698 | |
25. | Curtis L. Wesley, Linda J.S. Allen, The basic reproduction number in epidemic models with periodic demographics, 2009, 3, 1751-3758, 116, 10.1080/17513750802304893 | |
26. | Daihai He, Jonathan Dushoff, Raluca Eftimie, David J. D. Earn, Patterns of spread of influenza A in Canada, 2013, 280, 0962-8452, 20131174, 10.1098/rspb.2013.1174 | |
27. | Guy Katriel, Lewi Stone, Attack rates of seasonal epidemics, 2012, 235, 00255564, 56, 10.1016/j.mbs.2011.10.007 | |
28. | Kaniz Fatema Nipa, Sophia R.-J. Jang, Linda J.S. Allen, The effect of demographic and environmental variability on disease outbreak for a dengue model with a seasonally varying vector population, 2021, 331, 00255564, 108516, 10.1016/j.mbs.2020.108516 | |
29. | Gilberto González-Parra, Abraham J. Arenas, Lucas Jódar, Piecewise finite series solutions of seasonal diseases models using multistage Adomian method, 2009, 14, 10075704, 3967, 10.1016/j.cnsns.2009.02.023 | |
30. | Modelling seasonal HFMD with the recessive infection in Shandong, China, 2013, 10, 1551-0018, 1159, 10.3934/mbe.2013.10.1159 | |
31. | Zhenguo Bai, Dan Liu, Modeling seasonal measles transmission in China, 2015, 25, 10075704, 19, 10.1016/j.cnsns.2014.09.030 | |
32. | M. Marvá, R. Bravo de la Parra, P. Auger, Reproductive Numbers for Nonautonomous Spatially Distributed Periodic SIS Models Acting on Two Time Scales, 2012, 60, 0001-5342, 139, 10.1007/s10441-011-9141-1 | |
33. | Juan Zhang, Zhen Jin, Gui-Quan Sun, Xiang-Dong Sun, Shigui Ruan, Modeling Seasonal Rabies Epidemics in China, 2012, 74, 0092-8240, 1226, 10.1007/s11538-012-9720-6 | |
34. | Jian Zu, Lin Wang, Periodic solutions for a seasonally forced SIR model with impact of media coverage, 2015, 2015, 1687-1847, 10.1186/s13662-015-0477-8 | |
35. | Lin Wang, EXISTENCE OF PERIODIC SOLUTIONS OF SEASONALLY FORCED SIR MODELS WITH IMPULSE VACCINATION, 2015, 19, 1027-5487, 10.11650/tjm.19.2015.5356 | |
36. | Nicolas Bacaër, Souad Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, 2006, 53, 0303-6812, 421, 10.1007/s00285-006-0015-0 | |
37. | Xiao-Yan Zhao, Shu-Min Guo, Mini Ghosh, Xue-Zhi Li, Stability and Persistence of an Avian Influenza Epidemic Model with Impacts of Climate Change, 2016, 2016, 1026-0226, 1, 10.1155/2016/7871251 | |
38. | Xinzhi Liu, Peter Stechlinski, 2017, Chapter 5, 978-3-319-53206-6, 135, 10.1007/978-3-319-53208-0_5 | |
39. | TAILEI ZHANG, JUNLI LIU, ZHIDONG TENG, DIFFERENTIAL SUSCEPTIBILITY TIME-DEPENDENT SIR EPIDEMIC MODEL, 2008, 01, 1793-5245, 45, 10.1142/S1793524508000059 | |
40. | Jean M. Tchuenche, Christinah Chiyaka, Global dynamics of a time delayedSIRmodel with varying population size, 2012, 27, 1468-9367, 145, 10.1080/14689367.2011.607798 | |
41. | Shigui Ruan, Modeling the transmission dynamics and control of rabies in China, 2017, 286, 00255564, 65, 10.1016/j.mbs.2017.02.005 | |
42. | Rigobert C. Ngeleja, Livingstone S. Luboobi, Yaw Nkansah-Gyekye, Plague disease model with weather seasonality, 2018, 302, 00255564, 80, 10.1016/j.mbs.2018.05.013 | |
43. | Zhenguo Bai, Yicang Zhou, Addendum, 2011, 15, 1553-524X, 915, 10.3934/dcdsb.2011.15.915 | |
44. | Maia Martcheva, A non-autonomous multi-strain SIS epidemic model, 2009, 3, 1751-3758, 235, 10.1080/17513750802638712 | |
45. | Zhenguo Bai, Yicang Zhou, Existence of two periodic solutions for a non-autonomous SIR epidemic model, 2011, 35, 0307904X, 382, 10.1016/j.apm.2010.07.002 | |
46. | Daihai He, Jonathan Dushoff, Troy Day, Junling Ma, David J. D. Earn, Inferring the causes of the three waves of the 1918 influenza pandemic in England and Wales, 2013, 280, 0962-8452, 20131345, 10.1098/rspb.2013.1345 | |
47. | Drew Posny, Jin Wang, Computing the basic reproductive numbers for epidemiological models in nonhomogeneous environments, 2014, 242, 00963003, 473, 10.1016/j.amc.2014.05.079 | |
48. | Mikael Jagan, Michelle S. deJonge, Olga Krylova, David J. D. Earn, Jane M. Heffernan, Fast estimation of time-varying infectious disease transmission rates, 2020, 16, 1553-7358, e1008124, 10.1371/journal.pcbi.1008124 | |
49. | JINLIANG WANG, SHENGQIANG LIU, YASUHIRO TAKEUCHI, THRESHOLD DYNAMICS IN A PERIODIC SVEIR EPIDEMIC MODEL, 2011, 04, 1793-5245, 493, 10.1142/S1793524511001490 | |
50. | Mark Jackson, Benito M. Chen-Charpentier, Modeling plant virus propagation with seasonality, 2019, 345, 03770427, 310, 10.1016/j.cam.2018.06.022 | |
51. | Bassidy Dembele, Avner Friedman, Abdul-Aziz Yakubu, Malaria model with periodic mosquito birth and death rates, 2009, 3, 1751-3758, 430, 10.1080/17513750802495816 | |
52. | Edgar Pereira, César M. Silva, Jacques A.L. da Silva, A generalized nonautonomous SIRVS model, 2013, 36, 01704214, 275, 10.1002/mma.2586 | |
53. | Tailei Zhang, Zhidong Teng, Shujing Gao, Threshold conditions for a non-autonomous epidemic model with vaccination, 2008, 87, 0003-6811, 181, 10.1080/00036810701772196 | |
54. | Yukihiko Nakata, Toshikazu Kuniya, Global dynamics of a class of SEIRS epidemic models in a periodic environment, 2010, 363, 0022247X, 230, 10.1016/j.jmaa.2009.08.027 | |
55. | Kanghuai Liu, Zhigang Chen, Jia Wu, Leilei Wang, FCNS: A Fuzzy Routing-Forwarding Algorithm Exploiting Comprehensive Node Similarity in Opportunistic Social Networks, 2018, 10, 2073-8994, 338, 10.3390/sym10080338 | |
56. | Yeting Zhu, Boyang Xu, Xinze Lian, Wang Lin, Zumu Zhou, Weiming Wang, A Hand-Foot-and-Mouth Disease Model with Periodic Transmission Rate in Wenzhou, China, 2014, 2014, 1085-3375, 1, 10.1155/2014/234509 | |
57. | Nicolas Bacaër, Approximation of the Basic Reproduction Number R 0 for Vector-Borne Diseases with a Periodic Vector Population, 2007, 69, 0092-8240, 1067, 10.1007/s11538-006-9166-9 | |
58. | Abraham J. Arenas, Gilberto González-Parra, Benito M. Chen-Charpentier, Dynamical analysis of the transmission of seasonal diseases using the differential transformation method, 2009, 50, 08957177, 765, 10.1016/j.mcm.2009.05.005 | |
59. | NECIBE TUNCER, MAIA MARTCHEVA, MODELING SEASONALITY IN AVIAN INFLUENZA H5N1, 2013, 21, 0218-3390, 1340004, 10.1142/S0218339013400044 | |
60. | Tailei Zhang, Junli Liu, Zhidong Teng, A non-autonomous epidemic model with time delay and vaccination, 2009, 01704214, n/a, 10.1002/mma.1142 | |
61. | v b, Test high volume of citations, 2012, 4, 0037-7333, 28, 10.5555/20120925-a1 | |
62. | Feng Rao, Weiming Wang, Zhibin Li, Stability analysis of an epidemic model with diffusion and stochastic perturbation, 2012, 17, 10075704, 2551, 10.1016/j.cnsns.2011.10.005 | |
63. | Nicolas Bacaër, Xamxinur Abdurahman, Resonance of the epidemic threshold in a periodic environment, 2008, 57, 0303-6812, 649, 10.1007/s00285-008-0183-1 | |
64. | Xinzhi Liu, Peter Stechlinski, Infectious disease models with time-varying parameters and general nonlinear incidence rate, 2012, 36, 0307904X, 1974, 10.1016/j.apm.2011.08.019 | |
65. | Olga Krylova, David J. D. Earn, Effects of the infectious period distribution on predicted transitions in childhood disease dynamics, 2013, 10, 1742-5689, 20130098, 10.1098/rsif.2013.0098 | |
66. | G. Katriel, Existence of Periodic Solutions for the Periodically Forced Sir Model, 2014, 201, 1072-3374, 335, 10.1007/s10958-014-1993-x | |
67. | Christopher Mitchell, Christopher Kribs, A Comparison of Methods for Calculating the Basic Reproductive Number for Periodic Epidemic Systems, 2017, 79, 0092-8240, 1846, 10.1007/s11538-017-0309-y | |
68. | Csaba Farkas, David Iclanzan, Boróka Olteán-Péter, Géza Vekov, Estimation of parameters for a humidity-dependent compartmental model of the COVID-19 outbreak, 2021, 9, 2167-8359, e10790, 10.7717/peerj.10790 | |
69. | Harshana Rajakaruna, Mark Lewis, Temperature cycles affect colonization potential of calanoid copepods, 2017, 419, 00225193, 77, 10.1016/j.jtbi.2017.01.044 | |
70. | Zhongwei Cao, Wei Feng, Xiangdan Wen, Li Zu, Jinyao Gao, Nontrivial periodic solution of a stochastic seasonal rabies epidemic model, 2020, 545, 03784371, 123361, 10.1016/j.physa.2019.123361 | |
71. | 2011, Global dynamics of the periodic SEIR epidemic model, 978-1-4244-8727-1, 346, 10.1109/CSAE.2011.5953236 | |
72. | Nicholas C Grassly, Christophe Fraser, Seasonal infectious disease epidemiology, 2006, 273, 0962-8452, 2541, 10.1098/rspb.2006.3604 | |
73. |
Jean M. Tchuenche,
A SIR SIR epidemic model with incubation period,
2015,
26,
1012-9405,
77,
10.1007/s13370-013-0189-8
|
|
74. | Joseph Livni, Lewi Stone, The stabilizing role of the Sabbath in pre-monarchic Israel:a mathematical model, 2015, 41, 0092-0606, 203, 10.1007/s10867-014-9373-9 | |
75. | Xinxin Li, Yongli Cai, Kai Wang, Shengmao Fu, Weiming Wang, Non-constant positive steady states of a host-parasite model with frequency- and density-dependent transmissions, 2020, 357, 00160032, 4392, 10.1016/j.jfranklin.2020.02.058 | |
76. | Zhenguo Bai, Yicang Zhou, Tailei Zhang, Existence of multiple periodic solutions for an SIR model with seasonality, 2011, 74, 0362546X, 3548, 10.1016/j.na.2011.03.008 | |
77. | Manli Jin, Yuguo Lin, Periodic solution of a stochastic SIRS epidemic model with seasonal variation, 2018, 12, 1751-3758, 1, 10.1080/17513758.2017.1396369 | |
78. | Xinzhi Liu, Peter Stechlinski, Pulse and constant control schemes for epidemic models with seasonality, 2011, 12, 14681218, 931, 10.1016/j.nonrwa.2010.08.017 | |
79. | Toshikazu Kuniya, Yukihiko Nakata, Permanence and extinction for a nonautonomous SEIRS epidemic model, 2012, 218, 00963003, 9321, 10.1016/j.amc.2012.03.011 | |
80. | Xinzhi Liu, Peter Stechlinski, 2017, Chapter 4, 978-3-319-53206-6, 83, 10.1007/978-3-319-53208-0_4 | |
81. | Chadi M. Saad-Roy, Simon A. Levin, C. Jessica E. Metcalf, Bryan T. Grenfell, Trajectory of individual immunity and vaccination required for SARS-CoV-2 community immunity: a conceptual investigation, 2021, 18, 1742-5662, 20200683, 10.1098/rsif.2020.0683 | |
82. | Qianqian Qu, Cong Fang, Le Zhang, Wanru Jia, Jie Weng, Yong Li, A mumps model with seasonality in China, 2017, 2, 24680427, 1, 10.1016/j.idm.2016.10.001 | |
83. | Daihai He, David J. D. Earn, The cohort effect in childhood disease dynamics, 2016, 13, 1742-5689, 20160156, 10.1098/rsif.2016.0156 | |
84. | Liang Zhang, Zhi-Cheng Wang, Xiao-Qiang Zhao, Time periodic traveling wave solutions for a Kermack–McKendrick epidemic model with diffusion and seasonality, 2020, 20, 1424-3199, 1029, 10.1007/s00028-019-00544-2 | |
85. | Xinzhi Liu, Peter Stechlinski, 2017, Chapter 3, 978-3-319-53206-6, 43, 10.1007/978-3-319-53208-0_3 | |
86. | Lin Wang, Existence of Periodic Solutions of Seasonally Forced SEIR Models with Pulse Vaccination, 2020, 2020, 1026-0226, 1, 10.1155/2020/9381375 | |
87. | Long Zhang, Xiaolin Fan, Zhidong Teng, Global dynamics of a nonautonomous SEIRS epidemic model with vaccination and nonlinear incidence, 2021, 0170-4214, 10.1002/mma.7359 | |
88. | Linda J. S. Allen, Xueying Wang, Stochastic models of infectious diseases in a periodic environment with application to cholera epidemics, 2021, 82, 0303-6812, 10.1007/s00285-021-01603-4 | |
89. | Nabeela Anwar, Muhammad Shoaib, Iftikhar Ahmad, Shafaq Naz, Adiqa Kausar Kiani, Muhammad Asif Zahoor Raja, Intelligent computing networks for nonlinear influenza-A epidemic model, 2023, 16, 1793-5245, 10.1142/S1793524522500978 | |
90. | Franklin Platini Agouanet, Israël Tankam-Chedjou, Remy M. Etoua, Jean Jules Tewa, Mathematical modelling of Banana Black Sigatoka Disease with delay and Seasonality, 2021, 99, 0307904X, 380, 10.1016/j.apm.2021.06.030 | |
91. | Nurbek Azimaqin, Zhihang Peng, Xinzhi Ren, Yangjiang Wei, Xianning Liu, Vaccine failure, seasonality and demographic changes associate with mumps outbreaks in Jiangsu Province, China: Age-structured mathematical modelling study, 2022, 544, 00225193, 111125, 10.1016/j.jtbi.2022.111125 | |
92. | Hossein Khazaei, Keith Paarporn, Alfredo Garcia, Ceyhun Eksin, 2021, Disease spread coupled with evolutionary social distancing dynamics can lead to growing oscillations, 978-1-6654-3659-5, 4280, 10.1109/CDC45484.2021.9683594 | |
93. | Xiaoyan Gao, Nonconstant positive steady states and pattern formation of a diffusive epidemic model, 2022, 14173875, 1, 10.14232/ejqtde.2022.1.20 | |
94. | I. A. Moneim, G. A. Mosa, A realistic model for the periodic dynamics of the hand-foot-and-mouth disease, 2022, 7, 2473-6988, 2585, 10.3934/math.2022145 | |
95. | Heng Zhang, Zhigang Chen, Jia Wu, Kanghuai Liu, FRRF: A Fuzzy Reasoning Routing-Forwarding Algorithm Using Mobile Device Similarity in Mobile Edge Computing-Based Opportunistic Mobile Social Networks, 2019, 7, 2169-3536, 35874, 10.1109/ACCESS.2019.2905420 | |
96. | 若琳 亓, Analysis on Stability for a Class of Epidemiological Model, 2022, 11, 2324-7991, 1715, 10.12677/AAM.2022.114187 | |
97. | Miled El Hajji, Dalal M. Alshaikh, Nada A. Almuallem, Periodic Behaviour of an Epidemic in a Seasonal Environment with Vaccination, 2023, 11, 2227-7390, 2350, 10.3390/math11102350 | |
98. | Changlei Tan, Shuang Li, Yong Li, Zhihang Peng, Dynamic modeling and data fitting of climatic and environmental factors and people's behavior factors on hand, foot, and mouth disease (HFMD) in Shanghai, China, 2023, 24058440, e18212, 10.1016/j.heliyon.2023.e18212 | |
99. | Miled El Hajji, Periodic solutions for chikungunya virus dynamics in a seasonal environment with a general incidence rate, 2023, 8, 2473-6988, 24888, 10.3934/math.20231269 | |
100. | Thi Minh Thao Le, Erida Gjini, Sten Madec, Quasi-neutral dynamics in a coinfection system with N strains and asymmetries along multiple traits, 2023, 87, 0303-6812, 10.1007/s00285-023-01977-7 | |
101. | Shaday Guerrero‐Flores, Osvaldo Osuna, Cruz Vargas‐De‐León, Periodic solutions of seasonal epidemiological models with information‐dependent vaccination, 2023, 0170-4214, 10.1002/mma.9728 | |
102. | Eduardo L. Brugnago, Enrique C. Gabrick, Kelly C. Iarosz, José D. Szezech, Ricardo L. Viana, Antonio M. Batista, Iberê L. Caldas, Multistability and chaos in SEIRS epidemic model with a periodic time-dependent transmission rate, 2023, 33, 1054-1500, 10.1063/5.0156452 | |
103. | Miled El Hajji, Rahmah Mohammed Alnjrani, Periodic Behaviour of HIV Dynamics with Three Infection Routes, 2023, 12, 2227-7390, 123, 10.3390/math12010123 | |
104. | Protyusha Dutta, Guruprasad Samanta, Juan J. Nieto, Periodic transmission and vaccination effects in epidemic dynamics: a study using the SIVIS model, 2024, 0924-090X, 10.1007/s11071-023-09157-4 | |
105. | Carmen Legarreta, Manuel De la Sen, Santiago Alonso-Quesada, On the Properties of a Newly Susceptible, Non-Seriously Infected, Hospitalized, and Recovered Subpopulation Epidemic Model, 2024, 12, 2227-7390, 245, 10.3390/math12020245 | |
106. | Destiny S. Lutero, Timothy Robin Y. Teng, Mark Anthony C. Tolentino, 2024, 3016, 0094-243X, 020002, 10.1063/5.0192872 | |
107. | Mamadou L. Diagne, Folashade B. Agusto, Herieth Rwezaura, Jean M. Tchuenche, Suzanne Lenhart, Optimal control of an epidemic model with treatment in the presence of media coverage, 2024, 24, 24682276, e02138, 10.1016/j.sciaf.2024.e02138 | |
108. | Timothy Robin Y. Teng, Destiny S. Lutero, Mark Anthony C. Tolentino, 2024, Chapter 44, 978-3-031-52964-1, 571, 10.1007/978-3-031-52965-8_44 | |
109. | Miled El Hajji, Mohammed Faraj S. Aloufi, Mohammed H. Alharbi, Influence of seasonality on Zika virus transmission, 2024, 9, 2473-6988, 19361, 10.3934/math.2024943 | |
110. | Asma Akter Akhi, Kazi Mehedi Mohammad, Md. Kamrujjaman, Seasonal Variability and Stochastic Branching Process in Malaria Outbreak Probability, 2024, 0001706X, 107311, 10.1016/j.actatropica.2024.107311 | |
111. | Miled El Hajji, Fahad Ahmed S. Alzahrani, Mohammed H. Alharbi, Mathematical Analysis for Honeybee Dynamics Under the Influence of Seasonality, 2024, 12, 2227-7390, 3496, 10.3390/math12223496 | |
112. | Protyusha Dutta, Guruprasad Samanta, Juan J. Nieto, Nipah virus transmission dynamics: equilibrium states, sensitivity and uncertainty analysis, 2024, 0924-090X, 10.1007/s11071-024-10549-3 | |
113. | Rujie Yang, Hong Qiu, A Valid Transport Related SVEIHR Stochastic Epidemic Model with Coverage and Time Delays, 2024, 23, 2224-2880, 815, 10.37394/23206.2024.23.84 | |
114. | David J.D. Earn, Daihai He, Mark B. Loeb, Kevin Fonseca, Bonita E. Lee, Jonathan Dushoff, Effects of School Closure on Incidence of Pandemic Influenza in Alberta, Canada, 2012, 156, 0003-4819, 173, 10.7326/0003-4819-156-3-201202070-00005 | |
115. | Bashir Al-Hdaibat, Mahmoud H. DarAssi, Irfan Ahmad, Muhammad Altaf Khan, Reem Algethamie, Ebraheem Alzahrani, Numerical investigation of an SIR fractional order delay epidemic model in the framework of Mittag–Leffler kernel, 2025, 0924-090X, 10.1007/s11071-025-11006-5 | |
116. | Yan Zhuang, Weihua Li, Yang Liu, Information and Knowledge Diffusion Dynamics in Complex Networks with Independent Spreaders, 2025, 27, 1099-4300, 234, 10.3390/e27030234 | |
117. | Gabriel Benedetti, Ryan Weightman, Benedetto Piccoli, Optimizing overlapping non-pharmaceutical interventions with a socio-demographic model, 2025, 1972-6724, 10.1007/s40574-025-00477-4 | |
118. | Carlos Andreu-Vilarroig, Gilberto González-Parra, Rafael-Jacinto Villanueva, Mathematical Modeling of Influenza Dynamics: Integrating Seasonality and Gradual Waning Immunity, 2025, 87, 0092-8240, 10.1007/s11538-025-01454-w |