Citation: Abba B. Gumel, C. Connell McCluskey, James Watmough. An sveir model for assessing potential impact of an imperfect anti-SARS vaccine[J]. Mathematical Biosciences and Engineering, 2006, 3(3): 485-512. doi: 10.3934/mbe.2006.3.485
[1] | Robert G. McLeod, John F. Brewster, Abba B. Gumel, Dean A. Slonowsky . Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Mathematical Biosciences and Engineering, 2006, 3(3): 527-544. doi: 10.3934/mbe.2006.3.527 |
[2] | Qingling Zeng, Kamran Khan, Jianhong Wu, Huaiping Zhu . The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season. Mathematical Biosciences and Engineering, 2007, 4(4): 739-754. doi: 10.3934/mbe.2007.4.739 |
[3] | Glenn Webb, Martin J. Blaser, Huaiping Zhu, Sten Ardal, Jianhong Wu . Critical role of nosocomial transmission in the Toronto SARS outbreak. Mathematical Biosciences and Engineering, 2004, 1(1): 1-13. doi: 10.3934/mbe.2004.1.1 |
[4] | Julijana Gjorgjieva, Kelly Smith, Gerardo Chowell, Fabio Sánchez, Jessica Snyder, Carlos Castillo-Chavez . The Role of Vaccination in the Control of SARS. Mathematical Biosciences and Engineering, 2005, 2(4): 753-769. doi: 10.3934/mbe.2005.2.753 |
[5] | A. M. Elaiw, Raghad S. Alsulami, A. D. Hobiny . Global dynamics of IAV/SARS-CoV-2 coinfection model with eclipse phase and antibody immunity. Mathematical Biosciences and Engineering, 2023, 20(2): 3873-3917. doi: 10.3934/mbe.2023182 |
[6] | Fang Wang, Lianying Cao, Xiaoji Song . Mathematical modeling of mutated COVID-19 transmission with quarantine, isolation and vaccination. Mathematical Biosciences and Engineering, 2022, 19(8): 8035-8056. doi: 10.3934/mbe.2022376 |
[7] | Sarafa A. Iyaniwura, Rabiu Musa, Jude D. Kong . A generalized distributed delay model of COVID-19: An endemic model with immunity waning. Mathematical Biosciences and Engineering, 2023, 20(3): 5379-5412. doi: 10.3934/mbe.2023249 |
[8] | A. D. Al Agha, A. M. Elaiw . Global dynamics of SARS-CoV-2/malaria model with antibody immune response. Mathematical Biosciences and Engineering, 2022, 19(8): 8380-8410. doi: 10.3934/mbe.2022390 |
[9] | Maoxing Liu, Yuhang Li . Dynamics analysis of an SVEIR epidemic model in a patchy environment. Mathematical Biosciences and Engineering, 2023, 20(9): 16962-16977. doi: 10.3934/mbe.2023756 |
[10] | Adel Alatawi, Abba B. Gumel . Mathematical assessment of control strategies against the spread of MERS-CoV in humans and camels in Saudi Arabia. Mathematical Biosciences and Engineering, 2024, 21(7): 6425-6470. doi: 10.3934/mbe.2024281 |
1. | J Nainggolan, Sudradjat Supian, A K Supriatna, N Anggriani, Mathematical Model Of Tuberculosis Transmission With Reccurent Infection And Vaccination, 2013, 423, 1742-6588, 012059, 10.1088/1742-6596/423/1/012059 | |
2. | Mehdi Lotfi, Azizeh Jabbari, Hossein Kheiri, A mathematical analysis of a tuberculosis epidemic model with two treatments and exogenous re-infection, 2020, 13, 1793-5245, 2050082, 10.1142/S1793524520500825 | |
3. | Jean Jules Tewa, Samuel Bowong, S.C. Oukouomi Noutchie, Mathematical analysis of a two-patch model of tuberculosis disease with staged progression, 2012, 36, 0307904X, 5792, 10.1016/j.apm.2012.01.026 | |
4. | C. Connell McCluskey, Global stability for a class of mass action systems allowing for latency in tuberculosis, 2008, 338, 0022247X, 518, 10.1016/j.jmaa.2007.05.012 | |
5. | Lili Wang, Rui Xu, Global stability of an SEIR epidemic model with vaccination, 2016, 09, 1793-5245, 1650082, 10.1142/S1793524516500820 | |
6. | Bruno Buonomo, Analysis of a malaria model with mosquito host choice and bed-net control, 2015, 08, 1793-5245, 1550077, 10.1142/S1793524515500771 | |
7. | Muhammad Altaf Khan, Rizwan Khan, Yasir Khan, Saeed Islam, A mathematical analysis of Pine Wilt disease with variable population size and optimal control strategies, 2018, 108, 09600779, 205, 10.1016/j.chaos.2018.02.002 | |
8. | T.K. Kar, Swapan Kumar Nandi, Soovoojeet Jana, Manotosh Mandal, Stability and bifurcation analysis of an epidemic model with the effect of media, 2019, 120, 09600779, 188, 10.1016/j.chaos.2019.01.025 | |
9. | Xue-yong Zhou, Jing-an Cui, Zhong-hua Zhang, Global results for a cholera model with imperfect vaccination, 2012, 349, 00160032, 770, 10.1016/j.jfranklin.2011.09.013 | |
10. | Lianwen Wang, Zhijun Liu, Xingan Zhang, Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence, 2016, 284, 00963003, 47, 10.1016/j.amc.2016.02.058 | |
11. | Sk Shahid Nadim, Indrajit Ghosh, Joydev Chattopadhyay, Global Dynamics of a Vector-Borne Disease Model with Two Transmission Routes, 2020, 30, 0218-1274, 2050083, 10.1142/S0218127420500832 | |
12. | Isam Al-Darabsah, Threshold dynamics of a time-delayed epidemic model for continuous imperfect-vaccine with a generalized nonmonotone incidence rate, 2020, 101, 0924-090X, 1281, 10.1007/s11071-020-05825-x | |
13. | Abhishek Kumar, Kanica Goel, , A deterministic time-delayed SIR epidemic model: mathematical modeling and analysis, 2020, 139, 1431-7613, 67, 10.1007/s12064-019-00300-7 | |
14. | Isam Al-Darabsah, A time-delayed SVEIR model for imperfect vaccine with a generalized nonmonotone incidence and application to measles, 2021, 91, 0307904X, 74, 10.1016/j.apm.2020.08.084 | |
15. | Muhammad Altaf Khan, Saif Ullah, Yasir Khan, Muhammad Farhan, Modeling and scientific computing for the transmission dynamics of Avian influenza with half-saturated incidence, 2020, 11, 1793-9623, 2050035, 10.1142/S179396232050035X | |
16. | Sandip Banerjee, Ram Keval, Sunita Gakkhar, Global dynamics of hepatitis C viral infection with logistic proliferation, 2016, 09, 1793-5245, 1650056, 10.1142/S179352451650056X | |
17. | Waheed Ahmad, Muhammad Rafiq, Mujahid Abbas, Mathematical analysis to control the spread of Ebola virus epidemic through voluntary vaccination, 2020, 135, 2190-5444, 10.1140/epjp/s13360-020-00683-3 | |
18. | Fatima Sulayman, Farah Aini Abdullah, Mohd Hafiz Mohd, An SVEIRE Model of Tuberculosis to Assess the Effect of an Imperfect Vaccine and Other Exogenous Factors, 2021, 9, 2227-7390, 327, 10.3390/math9040327 | |
19. | Abhishek Kumar, , Stability of a Time Delayed SIR Epidemic Model Along with Nonlinear Incidence Rate and Holling Type-II Treatment Rate, 2018, 15, 0219-8762, 1850055, 10.1142/S021987621850055X | |
20. | Muhammad Altaf Khan, Yasir Khan, Saeed Islam, Complex dynamics of an SEIR epidemic model with saturated incidence rate and treatment, 2018, 493, 03784371, 210, 10.1016/j.physa.2017.10.038 | |
21. | Xueyong Zhou, Zhen Guo, Analysis of an influenza A (H1N1) epidemic model with vaccination, 2012, 1, 2193-5343, 267, 10.1007/s40065-012-0013-6 | |
22. | Xueyong Zhou, Jingan Cui, Modeling and stability analysis for a cholera model with vaccination, 2011, 34, 01704214, 1711, 10.1002/mma.1477 | |
23. | Bruno Buonomo, Cruz Vargas-De-León, Global stability for an HIV-1 infection model including an eclipse stage of infected cells, 2012, 385, 0022247X, 709, 10.1016/j.jmaa.2011.07.006 | |
24. | Abhishek Kumar, , Stability of a delayed SIR epidemic model by introducing two explicit treatment classes along with nonlinear incidence rate and Holling type treatment, 2019, 38, 2238-3603, 10.1007/s40314-019-0866-9 | |
25. | Chengjun Sun, Wei Yang, Global results for an SIRS model with vaccination and isolation, 2010, 11, 14681218, 4223, 10.1016/j.nonrwa.2010.05.009 | |
26. | Lin Hu, Lin‐Fei Nie, Dynamic modeling and analysis of COVID‐19 in different transmission process and control strategies, 2021, 44, 0170-4214, 1409, 10.1002/mma.6839 | |
27. | Jing'an Cui, Zhanmin Wu, Xueyong Zhou, Mathematical Analysis of a Cholera Model with Vaccination, 2014, 2014, 1110-757X, 1, 10.1155/2014/324767 | |
28. | Chiyori T. Urabe, Gouhei Tanaka, Takahiro Oshima, Aya Maruyama, Takako Misaki, Nobuhiko Okabe, Kazuyuki Aihara, Ka Chun Chong, Comparing catch-up vaccination programs based on analysis of 2012–13 rubella outbreak in Kawasaki City, Japan, 2020, 15, 1932-6203, e0237312, 10.1371/journal.pone.0237312 | |
29. | O. Sharomi, A.B. Gumel, Curtailing smoking dynamics: A mathematical modeling approach, 2008, 195, 00963003, 475, 10.1016/j.amc.2007.05.012 | |
30. | Olusola Kolebaje, Oyebola Popoola, Muhammad Altaf Khan, Oluwole Oyewande, An epidemiological approach to insurgent population modeling with the Atangana–Baleanu fractional derivative, 2020, 139, 09600779, 109970, 10.1016/j.chaos.2020.109970 | |
31. | Qin Wang, Laijun Zhao, Rongbing Huang, Youping Yang, Jianhong Wu, Interaction of media and disease dynamics and its impact on emerging infection management, 2015, 20, 1553-524X, 215, 10.3934/dcdsb.2015.20.215 | |
32. | Abhishek Kumar, , Dynamic Behavior of an SIR Epidemic Model along with Time Delay; Crowley–Martin Type Incidence Rate and Holling Type II Treatment Rate, 2019, 20, 1565-1339, 757, 10.1515/ijnsns-2018-0208 | |
33. | Reza Memarbashi, Elahe Sorouri, Modeling the effect of information transmission on the drug dynamic, 2020, 135, 2190-5444, 10.1140/epjp/s13360-019-00064-5 | |
34. | Abhishek Kumar, , Effects of Nonmonotonic Functional Responses on a Disease Transmission Model: Modeling and Simulation, 2021, 2194-6701, 10.1007/s40304-020-00217-4 | |
35. | Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang, Backward bifurcation and global stability in an epidemic model with treatment and vaccination, 2014, 19, 1553-524X, 999, 10.3934/dcdsb.2014.19.999 | |
36. | Drew Posny, Jin Wang, Zindoga Mukandavire, Chairat Modnak, Analyzing transmission dynamics of cholera with public health interventions, 2015, 264, 00255564, 38, 10.1016/j.mbs.2015.03.006 | |
37. | L. N. Nkamba, J. M. Ntaganda, H. Abboubakar, J. C. Kamgang, Lorenzo Castelli, Global Stability of a SVEIR Epidemic Model: Application to Poliomyelitis Transmission Dynamics, 2017, 05, 2327-4018, 98, 10.4236/ojmsi.2017.51008 | |
38. | SARA SOTTILE, XINZHI LIU, TIME-VARYING EPIDEMIC TRANSMISSION IN HETEROGENEOUS NETWORKS AND APPLICATIONS TO MEASLES, 2020, 28, 0218-3390, 901, 10.1142/S0218339020500217 | |
39. | Kimberly M. Thompson, Dominika A. Kalkowska, Kamran Badizadegan, Hypothetical emergence of poliovirus in 2020: Part 2. Exploration of the potential role of vaccines in control and eradication, 2021, 1476-0584, 10.1080/14760584.2021.1891889 | |
40. | Abdias Laohombé, Isabelle Ngningone Eya, Jean Jules Tewa, Alassane Bah, Samuel Bowong, Suares Clovis Oukouomi Noutchie, Mathematical Analysis of a General Two-Patch Model of Tuberculosis Disease with Lost Sight Individuals, 2014, 2014, 1085-3375, 1, 10.1155/2014/263780 | |
41. | Sveir epidemiological model with varying infectivity and distributed delays, 2011, 8, 1551-0018, 875, 10.3934/mbe.2011.8.875 | |
42. | Gamaliel Blé, Lourdes Esteva, Alejandro Peregrino, Global analysis of a mathematical model for hepatitis C considering the host immune system, 2018, 461, 0022247X, 1378, 10.1016/j.jmaa.2018.01.050 | |
43. | D.S. Degefa, O. D. Makinde, D.T. Temesgen, Modeling potato virus Y disease dynamics in a mixed-cropping system, 2021, 0228-6203, 1, 10.1080/02286203.2021.1919818 | |
44. | N.I. Akinwande, T.T. Ashezua, R.I. Gweryina, S.A. Somma, F.A. Oguntolu, A. Usman, O.N. Abdurrahman, F.S. Kaduna, T.P. Adajime, F.A. Kuta, S. Abdulrahman, R.O. Olayiwola, A.I. Enagi, G.A. Bolarin, M.D. Shehu, Mathematical model of COVID-19 transmission dynamics incorporating booster vaccine program and environmental contamination, 2022, 8, 24058440, e11513, 10.1016/j.heliyon.2022.e11513 | |
45. | Xueyong Zhou, Xiangyun Shi, Stability analysis and backward bifurcation on an SEIQR epidemic model with nonlinear innate immunity, 2022, 30, 2688-1594, 3481, 10.3934/era.2022178 | |
46. | Anil Kumar Rajak, , A Fractional-Order Epidemic Model with Quarantine Class and Nonmonotonic Incidence: Modeling and Simulations, 2022, 46, 1028-6276, 1249, 10.1007/s40995-022-01339-w | |
47. | Mayowa M. Ojo, Olumuyiwa James Peter, Emile Franc Doungmo Goufo, Kottakkaran Sooppy Nisar, A mathematical model for the co-dynamics of COVID-19 and tuberculosis, 2023, 207, 03784754, 499, 10.1016/j.matcom.2023.01.014 | |
48. | Bruno Buonomo, Rossella Della Marca, Alberto d’Onofrio, Maria Groppi, A behavioural modelling approach to assess the impact of COVID-19 vaccine hesitancy, 2022, 534, 00225193, 110973, 10.1016/j.jtbi.2021.110973 | |
49. | Miled El Hajji, Amer Hassan Albargi, A mathematical investigation of an "SVEIR" epidemic model for the measles transmission, 2022, 19, 1551-0018, 2853, 10.3934/mbe.2022131 | |
50. | Aatif Ali, Saif Ullah, Muhammad Altaf Khan, The impact of vaccination on the modeling of COVID-19 dynamics: a fractional order model, 2022, 110, 0924-090X, 3921, 10.1007/s11071-022-07798-5 | |
51. | Barducci Alessandro, Convolutional modelling of epidemics, 2022, 5, 26897636, 180, 10.17352/amp.000063 | |
52. | Abhishek Kumar, Stability of a Fractional-Order Epidemic Model with Nonlinear Incidences and Treatment Rates, 2020, 44, 1028-6276, 1505, 10.1007/s40995-020-00960-x | |
53. | Maria Czarina T. Lagura, Roden Jason A. David, Elvira P. de Lara-Tuprio, 2022, Chapter 23, 978-3-031-04027-6, 355, 10.1007/978-3-031-04028-3_23 | |
54. | M.L. Diagne, H. Rwezaura, S.A. Pedro, J.M. Tchuenche, Theoretical analysis of a measles model with nonlinear incidence functions, 2023, 117, 10075704, 106911, 10.1016/j.cnsns.2022.106911 | |
55. | Ian B. Augsburger, Grace K. Galanthay, Jacob H. Tarosky, Jan Rychtář, Dewey Taylor, Mabel Carabali, Voluntary vaccination may not stop monkeypox outbreak: A game-theoretic model, 2022, 16, 1935-2735, e0010970, 10.1371/journal.pntd.0010970 | |
56. | Taye Samuel Faniran, Aatif Ali, Nawal E. Al-Hazmi, Joshua Kiddy K. Asamoah, Taher A. Nofal, Matthew O. Adewole, Dan Selişteanu, New Variant of SARS-CoV-2 Dynamics with Imperfect Vaccine, 2022, 2022, 1099-0526, 1, 10.1155/2022/1062180 | |
57. | Liming Cai, Peixia Yue, Mini Ghosh, Xuezhi Li, Assessing the impact of agrochemicals on schistosomiasis transmission: A mathematical study, 2021, 14, 1793-5245, 10.1142/S1793524521500492 | |
58. | Subrata Paul, Animesh Mahata, Supriya Mukherjee, Banamali Roy, Mehdi Salimi, Ali Ahmadian, Study of Fractional Order SEIR Epidemic Model and Effect of Vaccination on the Spread of COVID-19, 2022, 8, 2349-5103, 10.1007/s40819-022-01411-4 | |
59. | Yasir Nawaz, Muhammad Shoaib Arif, Wasfi Shatanawi, A New Numerical Scheme for Time Fractional Diffusive SEAIR Model with Non-Linear Incidence Rate: An Application to Computational Biology, 2022, 6, 2504-3110, 78, 10.3390/fractalfract6020078 | |
60. | Mayowa M. Ojo, Olumuyiwa James Peter, Emile Franc Doungmo Goufo, Hasan S. Panigoro, Festus Abiodun Oguntolu, Mathematical model for control of tuberculosis epidemiology, 2023, 69, 1598-5865, 69, 10.1007/s12190-022-01734-x | |
61. | Hu Zhang, V. Madhusudanan, B. S. N. Murthy, M. N. Srinivas, Biruk Ambachew Adugna, Punit Gupta, Fuzzy Analysis of SVIRS Disease System with Holling Type-II Saturated Incidence Rate and Saturated Treatment, 2022, 2022, 1563-5147, 1, 10.1155/2022/1330875 | |
62. | Chao Zuo, Yuting Ling, Fenping Zhu, Xinyu Ma, Guochun Xiang, Exploring epidemic voluntary vaccinating behavior based on information-driven decisions and benefit-cost analysis, 2023, 447, 00963003, 127905, 10.1016/j.amc.2023.127905 | |
63. | Animesh Mahata, Subrata Paul, Supriya Mukherjee, Banamali Roy, Stability analysis and Hopf bifurcation in fractional order SEIRV epidemic model with a time delay in infected individuals, 2022, 5, 26668181, 100282, 10.1016/j.padiff.2022.100282 | |
64. | Subrata Paul, Animesh Mahata, Supriya Mukherjee, Mainak Chakraborty, Banamali Roy, 2022, Chapter 44, 978-981-19-0181-2, 435, 10.1007/978-981-19-0182-9_44 | |
65. | Ian B. Augsburger, Grace K. Galanthay, Jacob H. Tarosky, Jan Rychtář, Dewey Taylor, Imperfect vaccine can yield multiple Nash equilibria in vaccination games, 2023, 356, 00255564, 108967, 10.1016/j.mbs.2023.108967 | |
66. | Mayowa M. Ojo, Temitope O. Benson, Olumuyiwa James Peter, Emile Franc Doungmo Goufo, Nonlinear optimal control strategies for a mathematical model of COVID-19 and influenza co-infection, 2022, 607, 03784371, 128173, 10.1016/j.physa.2022.128173 | |
67. | Mayowa M. Ojo, Emile Franc Doungmo Goufo, The impact of COVID-19 on a Malaria dominated region: A mathematical analysis and simulations, 2023, 65, 11100168, 23, 10.1016/j.aej.2022.09.045 | |
68. | Eduardo V. M. dos Reis, Marcelo A. Savi, A dynamical map to describe COVID-19 epidemics, 2022, 231, 1951-6355, 893, 10.1140/epjs/s11734-021-00340-5 | |
69. | Purnami Widyaningsih, Laila F. Aminni, Dewi R. S. Saputro, 2022, 2566, 0094-243X, 030008, 10.1063/5.0116992 | |
70. | Hetsron L. Nyandjo Bamen, Jean Marie Ntaganda, Aurelien Tellier, Olivier Menoukeu Pamen, Impact of Imperfect Vaccine, Vaccine Trade-Off and Population Turnover on Infectious Disease Dynamics, 2023, 11, 2227-7390, 1240, 10.3390/math11051240 | |
71. | Mamadou Lamine Diagne, Herieth Rwezaura, S.A. Pedro, Jean Michel Tchuenche, Theoretical Analysis of a Measles Model with Nonlinear Incidence Functions, 2022, 1556-5068, 10.2139/ssrn.4160579 | |
72. | Miled El Hajji, Dalal M. Alshaikh, Nada A. Almuallem, Periodic Behaviour of an Epidemic in a Seasonal Environment with Vaccination, 2023, 11, 2227-7390, 2350, 10.3390/math11102350 | |
73. | Huda Abdul Satar, Raid Kamel Naji, A Mathematical Study for the Transmission of Coronavirus Disease, 2023, 11, 2227-7390, 2330, 10.3390/math11102330 | |
74. | Abu Zobayer, Mohammad Sharif Ullah, K. M. Ariful Kabir, A cyclic behavioral modeling aspect to understand the effects of vaccination and treatment on epidemic transmission dynamics, 2023, 13, 2045-2322, 10.1038/s41598-023-35188-3 | |
75. | Mariapia De Rosa, Fabio Giampaolo, Francesco Piccialli, Salvatore Cuomo, 2023, Modelling the COVID-19 infection rate through a Physics-Informed learning approach, 979-8-3503-3763-1, 212, 10.1109/PDP59025.2023.00041 | |
76. | Zhihui Ma, Shenghua Li, Shuyan Han, Bifurcation and optimal control for an infectious disease model with the impact of information, 2024, 17, 1793-5245, 10.1142/S1793524523500067 | |
77. | Abhishek Kumar, Kanica Goel, Modeling and analysis of a fractional-order nonlinear epidemic model incorporating the compartments of infodemic and aware populations, 2023, 98, 0031-8949, 095224, 10.1088/1402-4896/aceb3f | |
78. | Yanshu Wang, Hailiang Zhang, Dynamical Analysis of an Age-Structured SVEIR Model with Imperfect Vaccine, 2023, 11, 2227-7390, 3526, 10.3390/math11163526 | |
79. | Roumen Anguelov, Jean M.-S. Lubuma, Forward invariant set preservation in discrete dynamical systems and numerical schemes for ODEs: application in biosciences, 2023, 2023, 2731-4235, 10.1186/s13662-023-03784-2 | |
80. | Abhishek Kumar, Kanica Goel, , Dynamics of a nonlinear epidemic transmission model incorporating a class of hospitalized individuals: a qualitative analysis and simulation, 2023, 56, 1751-8113, 415601, 10.1088/1751-8121/acf9cf | |
81. | Aakash Pandey, Abigail B. Feuka, Melinda Cosgrove, Megan Moriarty, Anthony Duffiney, Kurt C. VerCauteren, Henry Campa, Kim M. Pepin, Yamir Moreno, Wildlife vaccination strategies for eliminating bovine tuberculosis in white-tailed deer populations, 2024, 20, 1553-7358, e1011287, 10.1371/journal.pcbi.1011287 | |
82. | Manal Alqhtani, Khaled M. Saad, Rahat Zarin, Amir Khan, Waleed M. Hamanah, Qualitative behavior of a highly non-linear Cutaneous Leishmania epidemic model under convex incidence rate with real data, 2024, 21, 1551-0018, 2084, 10.3934/mbe.2024092 | |
83. | Aytül Gökçe, Burcu Gürbüz, Alan D. Rendall, Dynamics of a mathematical model of virus spreading incorporating the effect of a vaccine, 2024, 78, 14681218, 104097, 10.1016/j.nonrwa.2024.104097 | |
84. | Sarita Bugalia, Jai Prakash Tripathi, Hao Wang, Mutations make pandemics worse or better: modeling SARS-CoV-2 variants and imperfect vaccination, 2024, 88, 0303-6812, 10.1007/s00285-024-02068-x | |
85. | Xinghao Wang, Liang Zhang, Xiao-Bing Zhang, Dynamics of a Stochastic SVEIR Epidemic Model with Nonlinear Incidence Rate, 2024, 16, 2073-8994, 467, 10.3390/sym16040467 | |
86. | Zuchong Shang, Yuanhua Qiao, Complex dynamics of a four-species food web model with nonlinear top predator harvesting and fear effect, 2024, 03784754, 10.1016/j.matcom.2024.04.024 | |
87. | Atena Ghasemabadi, Mathematical modeling and control of Covid‐19, 2024, 0170-4214, 10.1002/mma.10134 | |
88. | Abhishek Kumar, Vishesh Lonial, Qualitative Study of a Novel Fractional-Order Epidemic Model with Nonmonotone Incidences, Level of Awareness, and Quarantine Class, 2024, 2731-8095, 10.1007/s40995-024-01656-2 | |
89. | Handika Lintang Saputra, 2024, 3083, 0094-243X, 040009, 10.1063/5.0225767 | |
90. | Chunya Liu, Hua Liu, Xinjie Zhu, Xiaofen Lin, Qibin Zhang, Yumei Wei, Dynamic analysis of human papillomavirus transmission model under vaccine intervention: a case study of cervical cancer patients from Hungary, 2024, 2024, 2731-4235, 10.1186/s13662-024-03838-z | |
91. |
Fatima Cherkaoui, Fatima Ezzahrae Fadili, Khalid Hilal,
Stability analysis of a delayed fractional-order SIR epidemic model with Crowley–Martin type incidence rate and Holling type II treatment rate,
2024,
1982-6907,
10.1007/s40863-024-00470-3
|
|
92. | Abhishek Kumar, Rajiv Aggarwal, A novel nonlinear SAZIQHR epidemic transmission model: mathematical modeling, simulation, and optimal control, 2025, 100, 0031-8949, 015002, 10.1088/1402-4896/ad8700 | |
93. | Xiaoqing Mu, Stability analysis of a conventional SEIR epidemic model with relapse and general nonlinear incidence, 2024, 2905, 1742-6588, 012036, 10.1088/1742-6596/2905/1/012036 | |
94. | Qun Dai, Zeheng Wang, SIRV fractional epidemic model of influenza with vaccine game theory and stability analysis, 2024, 32, 2688-1594, 6792, 10.3934/era.2024318 | |
95. | Zuchong Shang, Yuanhua Qiao, Complex Dynamics of a Quad-Trophic Food Chain Model with Beddington–DeAngelis Functional Response, Fear Effect and Prey Refuge, 2025, 24, 1575-5460, 10.1007/s12346-024-01208-4 | |
96. | Spalding Garakani, Luis Flores, Guillermo Alvarez-Pardo, Jan Rychtář, Dewey Taylor, The effect of heterogeneity of relative vaccine costs on the mean population vaccination rate with mpox as an example, 2025, 00225193, 112062, 10.1016/j.jtbi.2025.112062 | |
97. | 乐 张, Sensitivity Analysis of Infectious Disease Models with Vaccination Behavior Decision Functions, 2025, 14, 2324-7991, 171, 10.12677/aam.2025.142062 | |
98. | Kedeng Cheng, Yuanhua Qiao, Bifurcation and stability analysis and control strategy study of a class SEIWR infectious disease models considering viral loads in the environment, 2025, 198, 09600779, 116490, 10.1016/j.chaos.2025.116490 |