Processing math: 100%

An sveir model for assessing potential impact of an imperfect anti-SARS vaccine

  • Received: 01 September 2005 Accepted: 29 June 2018 Published: 01 May 2006
  • MSC : 92D30.

  • The control of severe acute respiratory syndrome (SARS), a fatal contagious viral disease that spread to over 32 countries in 2003, was based on quarantine of latently infected individuals and isolation of individuals with clinical symptoms of SARS. Owing to the recent ongoing clinical trials of some candidate anti-SARS vaccines, this study aims to assess, via mathematical modelling, the potential impact of a SARS vaccine, assumed to be imperfect, in curtailing future outbreaks. A relatively simple deterministic model is designed for this purpose. It is shown, using Lyapunov function theory and the theory of compound matrices, that the dynamics of the model are determined by a certain threshold quantity known as the control reproduction number (\Rv). If \Rv1, the disease will be eliminated from the community; whereas an epidemic occurs if \Rv>1. This study further shows that an imperfect SARS vaccine with infection-blocking efficacy is always beneficial in reducing disease spread within the community, although its overall impact increases with increasing efficacy and coverage. In particular, it is shown that the fraction of individuals vaccinated at steady-state and vaccine efficacy play equal roles in reducing disease burden, and the vaccine must have efficacy of at least 75% to lead to effective control of SARS (assuming \R=4). Numerical simulations are used to explore the severity of outbreaks when \Rv>1.

    Citation: Abba B. Gumel, C. Connell McCluskey, James Watmough. An sveir model for assessing potential impact of an imperfect anti-SARS vaccine[J]. Mathematical Biosciences and Engineering, 2006, 3(3): 485-512. doi: 10.3934/mbe.2006.3.485

    Related Papers:

    [1] Robert G. McLeod, John F. Brewster, Abba B. Gumel, Dean A. Slonowsky . Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Mathematical Biosciences and Engineering, 2006, 3(3): 527-544. doi: 10.3934/mbe.2006.3.527
    [2] Qingling Zeng, Kamran Khan, Jianhong Wu, Huaiping Zhu . The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season. Mathematical Biosciences and Engineering, 2007, 4(4): 739-754. doi: 10.3934/mbe.2007.4.739
    [3] Glenn Webb, Martin J. Blaser, Huaiping Zhu, Sten Ardal, Jianhong Wu . Critical role of nosocomial transmission in the Toronto SARS outbreak. Mathematical Biosciences and Engineering, 2004, 1(1): 1-13. doi: 10.3934/mbe.2004.1.1
    [4] Julijana Gjorgjieva, Kelly Smith, Gerardo Chowell, Fabio Sánchez, Jessica Snyder, Carlos Castillo-Chavez . The Role of Vaccination in the Control of SARS. Mathematical Biosciences and Engineering, 2005, 2(4): 753-769. doi: 10.3934/mbe.2005.2.753
    [5] A. M. Elaiw, Raghad S. Alsulami, A. D. Hobiny . Global dynamics of IAV/SARS-CoV-2 coinfection model with eclipse phase and antibody immunity. Mathematical Biosciences and Engineering, 2023, 20(2): 3873-3917. doi: 10.3934/mbe.2023182
    [6] Fang Wang, Lianying Cao, Xiaoji Song . Mathematical modeling of mutated COVID-19 transmission with quarantine, isolation and vaccination. Mathematical Biosciences and Engineering, 2022, 19(8): 8035-8056. doi: 10.3934/mbe.2022376
    [7] Sarafa A. Iyaniwura, Rabiu Musa, Jude D. Kong . A generalized distributed delay model of COVID-19: An endemic model with immunity waning. Mathematical Biosciences and Engineering, 2023, 20(3): 5379-5412. doi: 10.3934/mbe.2023249
    [8] A. D. Al Agha, A. M. Elaiw . Global dynamics of SARS-CoV-2/malaria model with antibody immune response. Mathematical Biosciences and Engineering, 2022, 19(8): 8380-8410. doi: 10.3934/mbe.2022390
    [9] Maoxing Liu, Yuhang Li . Dynamics analysis of an SVEIR epidemic model in a patchy environment. Mathematical Biosciences and Engineering, 2023, 20(9): 16962-16977. doi: 10.3934/mbe.2023756
    [10] Adel Alatawi, Abba B. Gumel . Mathematical assessment of control strategies against the spread of MERS-CoV in humans and camels in Saudi Arabia. Mathematical Biosciences and Engineering, 2024, 21(7): 6425-6470. doi: 10.3934/mbe.2024281
  • The control of severe acute respiratory syndrome (SARS), a fatal contagious viral disease that spread to over 32 countries in 2003, was based on quarantine of latently infected individuals and isolation of individuals with clinical symptoms of SARS. Owing to the recent ongoing clinical trials of some candidate anti-SARS vaccines, this study aims to assess, via mathematical modelling, the potential impact of a SARS vaccine, assumed to be imperfect, in curtailing future outbreaks. A relatively simple deterministic model is designed for this purpose. It is shown, using Lyapunov function theory and the theory of compound matrices, that the dynamics of the model are determined by a certain threshold quantity known as the control reproduction number (\Rv). If \Rv1, the disease will be eliminated from the community; whereas an epidemic occurs if \Rv>1. This study further shows that an imperfect SARS vaccine with infection-blocking efficacy is always beneficial in reducing disease spread within the community, although its overall impact increases with increasing efficacy and coverage. In particular, it is shown that the fraction of individuals vaccinated at steady-state and vaccine efficacy play equal roles in reducing disease burden, and the vaccine must have efficacy of at least 75% to lead to effective control of SARS (assuming \R=4). Numerical simulations are used to explore the severity of outbreaks when \Rv>1.


  • This article has been cited by:

    1. J Nainggolan, Sudradjat Supian, A K Supriatna, N Anggriani, Mathematical Model Of Tuberculosis Transmission With Reccurent Infection And Vaccination, 2013, 423, 1742-6588, 012059, 10.1088/1742-6596/423/1/012059
    2. Mehdi Lotfi, Azizeh Jabbari, Hossein Kheiri, A mathematical analysis of a tuberculosis epidemic model with two treatments and exogenous re-infection, 2020, 13, 1793-5245, 2050082, 10.1142/S1793524520500825
    3. Jean Jules Tewa, Samuel Bowong, S.C. Oukouomi Noutchie, Mathematical analysis of a two-patch model of tuberculosis disease with staged progression, 2012, 36, 0307904X, 5792, 10.1016/j.apm.2012.01.026
    4. C. Connell McCluskey, Global stability for a class of mass action systems allowing for latency in tuberculosis, 2008, 338, 0022247X, 518, 10.1016/j.jmaa.2007.05.012
    5. Lili Wang, Rui Xu, Global stability of an SEIR epidemic model with vaccination, 2016, 09, 1793-5245, 1650082, 10.1142/S1793524516500820
    6. Bruno Buonomo, Analysis of a malaria model with mosquito host choice and bed-net control, 2015, 08, 1793-5245, 1550077, 10.1142/S1793524515500771
    7. Muhammad Altaf Khan, Rizwan Khan, Yasir Khan, Saeed Islam, A mathematical analysis of Pine Wilt disease with variable population size and optimal control strategies, 2018, 108, 09600779, 205, 10.1016/j.chaos.2018.02.002
    8. T.K. Kar, Swapan Kumar Nandi, Soovoojeet Jana, Manotosh Mandal, Stability and bifurcation analysis of an epidemic model with the effect of media, 2019, 120, 09600779, 188, 10.1016/j.chaos.2019.01.025
    9. Xue-yong Zhou, Jing-an Cui, Zhong-hua Zhang, Global results for a cholera model with imperfect vaccination, 2012, 349, 00160032, 770, 10.1016/j.jfranklin.2011.09.013
    10. Lianwen Wang, Zhijun Liu, Xingan Zhang, Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence, 2016, 284, 00963003, 47, 10.1016/j.amc.2016.02.058
    11. Sk Shahid Nadim, Indrajit Ghosh, Joydev Chattopadhyay, Global Dynamics of a Vector-Borne Disease Model with Two Transmission Routes, 2020, 30, 0218-1274, 2050083, 10.1142/S0218127420500832
    12. Isam Al-Darabsah, Threshold dynamics of a time-delayed epidemic model for continuous imperfect-vaccine with a generalized nonmonotone incidence rate, 2020, 101, 0924-090X, 1281, 10.1007/s11071-020-05825-x
    13. Abhishek Kumar, Kanica Goel, , A deterministic time-delayed SIR epidemic model: mathematical modeling and analysis, 2020, 139, 1431-7613, 67, 10.1007/s12064-019-00300-7
    14. Isam Al-Darabsah, A time-delayed SVEIR model for imperfect vaccine with a generalized nonmonotone incidence and application to measles, 2021, 91, 0307904X, 74, 10.1016/j.apm.2020.08.084
    15. Muhammad Altaf Khan, Saif Ullah, Yasir Khan, Muhammad Farhan, Modeling and scientific computing for the transmission dynamics of Avian influenza with half-saturated incidence, 2020, 11, 1793-9623, 2050035, 10.1142/S179396232050035X
    16. Sandip Banerjee, Ram Keval, Sunita Gakkhar, Global dynamics of hepatitis C viral infection with logistic proliferation, 2016, 09, 1793-5245, 1650056, 10.1142/S179352451650056X
    17. Waheed Ahmad, Muhammad Rafiq, Mujahid Abbas, Mathematical analysis to control the spread of Ebola virus epidemic through voluntary vaccination, 2020, 135, 2190-5444, 10.1140/epjp/s13360-020-00683-3
    18. Fatima Sulayman, Farah Aini Abdullah, Mohd Hafiz Mohd, An SVEIRE Model of Tuberculosis to Assess the Effect of an Imperfect Vaccine and Other Exogenous Factors, 2021, 9, 2227-7390, 327, 10.3390/math9040327
    19. Abhishek Kumar, , Stability of a Time Delayed SIR Epidemic Model Along with Nonlinear Incidence Rate and Holling Type-II Treatment Rate, 2018, 15, 0219-8762, 1850055, 10.1142/S021987621850055X
    20. Muhammad Altaf Khan, Yasir Khan, Saeed Islam, Complex dynamics of an SEIR epidemic model with saturated incidence rate and treatment, 2018, 493, 03784371, 210, 10.1016/j.physa.2017.10.038
    21. Xueyong Zhou, Zhen Guo, Analysis of an influenza A (H1N1) epidemic model with vaccination, 2012, 1, 2193-5343, 267, 10.1007/s40065-012-0013-6
    22. Xueyong Zhou, Jingan Cui, Modeling and stability analysis for a cholera model with vaccination, 2011, 34, 01704214, 1711, 10.1002/mma.1477
    23. Bruno Buonomo, Cruz Vargas-De-León, Global stability for an HIV-1 infection model including an eclipse stage of infected cells, 2012, 385, 0022247X, 709, 10.1016/j.jmaa.2011.07.006
    24. Abhishek Kumar, , Stability of a delayed SIR epidemic model by introducing two explicit treatment classes along with nonlinear incidence rate and Holling type treatment, 2019, 38, 2238-3603, 10.1007/s40314-019-0866-9
    25. Chengjun Sun, Wei Yang, Global results for an SIRS model with vaccination and isolation, 2010, 11, 14681218, 4223, 10.1016/j.nonrwa.2010.05.009
    26. Lin Hu, Lin‐Fei Nie, Dynamic modeling and analysis of COVID‐19 in different transmission process and control strategies, 2021, 44, 0170-4214, 1409, 10.1002/mma.6839
    27. Jing'an Cui, Zhanmin Wu, Xueyong Zhou, Mathematical Analysis of a Cholera Model with Vaccination, 2014, 2014, 1110-757X, 1, 10.1155/2014/324767
    28. Chiyori T. Urabe, Gouhei Tanaka, Takahiro Oshima, Aya Maruyama, Takako Misaki, Nobuhiko Okabe, Kazuyuki Aihara, Ka Chun Chong, Comparing catch-up vaccination programs based on analysis of 2012–13 rubella outbreak in Kawasaki City, Japan, 2020, 15, 1932-6203, e0237312, 10.1371/journal.pone.0237312
    29. O. Sharomi, A.B. Gumel, Curtailing smoking dynamics: A mathematical modeling approach, 2008, 195, 00963003, 475, 10.1016/j.amc.2007.05.012
    30. Olusola Kolebaje, Oyebola Popoola, Muhammad Altaf Khan, Oluwole Oyewande, An epidemiological approach to insurgent population modeling with the Atangana–Baleanu fractional derivative, 2020, 139, 09600779, 109970, 10.1016/j.chaos.2020.109970
    31. Qin Wang, Laijun Zhao, Rongbing Huang, Youping Yang, Jianhong Wu, Interaction of media and disease dynamics and its impact on emerging infection management, 2015, 20, 1553-524X, 215, 10.3934/dcdsb.2015.20.215
    32. Abhishek Kumar, , Dynamic Behavior of an SIR Epidemic Model along with Time Delay; Crowley–Martin Type Incidence Rate and Holling Type II Treatment Rate, 2019, 20, 1565-1339, 757, 10.1515/ijnsns-2018-0208
    33. Reza Memarbashi, Elahe Sorouri, Modeling the effect of information transmission on the drug dynamic, 2020, 135, 2190-5444, 10.1140/epjp/s13360-019-00064-5
    34. Abhishek Kumar, , Effects of Nonmonotonic Functional Responses on a Disease Transmission Model: Modeling and Simulation, 2021, 2194-6701, 10.1007/s40304-020-00217-4
    35. Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang, Backward bifurcation and global stability in an epidemic model with treatment and vaccination, 2014, 19, 1553-524X, 999, 10.3934/dcdsb.2014.19.999
    36. Drew Posny, Jin Wang, Zindoga Mukandavire, Chairat Modnak, Analyzing transmission dynamics of cholera with public health interventions, 2015, 264, 00255564, 38, 10.1016/j.mbs.2015.03.006
    37. L. N. Nkamba, J. M. Ntaganda, H. Abboubakar, J. C. Kamgang, Lorenzo Castelli, Global Stability of a SVEIR Epidemic Model: Application to Poliomyelitis Transmission Dynamics, 2017, 05, 2327-4018, 98, 10.4236/ojmsi.2017.51008
    38. SARA SOTTILE, XINZHI LIU, TIME-VARYING EPIDEMIC TRANSMISSION IN HETEROGENEOUS NETWORKS AND APPLICATIONS TO MEASLES, 2020, 28, 0218-3390, 901, 10.1142/S0218339020500217
    39. Kimberly M. Thompson, Dominika A. Kalkowska, Kamran Badizadegan, Hypothetical emergence of poliovirus in 2020: Part 2. Exploration of the potential role of vaccines in control and eradication, 2021, 1476-0584, 10.1080/14760584.2021.1891889
    40. Abdias Laohombé, Isabelle Ngningone Eya, Jean Jules Tewa, Alassane Bah, Samuel Bowong, Suares Clovis Oukouomi Noutchie, Mathematical Analysis of a General Two-Patch Model of Tuberculosis Disease with Lost Sight Individuals, 2014, 2014, 1085-3375, 1, 10.1155/2014/263780
    41. Sveir epidemiological model with varying infectivity and distributed delays, 2011, 8, 1551-0018, 875, 10.3934/mbe.2011.8.875
    42. Gamaliel Blé, Lourdes Esteva, Alejandro Peregrino, Global analysis of a mathematical model for hepatitis C considering the host immune system, 2018, 461, 0022247X, 1378, 10.1016/j.jmaa.2018.01.050
    43. D.S. Degefa, O. D. Makinde, D.T. Temesgen, Modeling potato virus Y disease dynamics in a mixed-cropping system, 2021, 0228-6203, 1, 10.1080/02286203.2021.1919818
    44. N.I. Akinwande, T.T. Ashezua, R.I. Gweryina, S.A. Somma, F.A. Oguntolu, A. Usman, O.N. Abdurrahman, F.S. Kaduna, T.P. Adajime, F.A. Kuta, S. Abdulrahman, R.O. Olayiwola, A.I. Enagi, G.A. Bolarin, M.D. Shehu, Mathematical model of COVID-19 transmission dynamics incorporating booster vaccine program and environmental contamination, 2022, 8, 24058440, e11513, 10.1016/j.heliyon.2022.e11513
    45. Xueyong Zhou, Xiangyun Shi, Stability analysis and backward bifurcation on an SEIQR epidemic model with nonlinear innate immunity, 2022, 30, 2688-1594, 3481, 10.3934/era.2022178
    46. Anil Kumar Rajak, , A Fractional-Order Epidemic Model with Quarantine Class and Nonmonotonic Incidence: Modeling and Simulations, 2022, 46, 1028-6276, 1249, 10.1007/s40995-022-01339-w
    47. Mayowa M. Ojo, Olumuyiwa James Peter, Emile Franc Doungmo Goufo, Kottakkaran Sooppy Nisar, A mathematical model for the co-dynamics of COVID-19 and tuberculosis, 2023, 207, 03784754, 499, 10.1016/j.matcom.2023.01.014
    48. Bruno Buonomo, Rossella Della Marca, Alberto d’Onofrio, Maria Groppi, A behavioural modelling approach to assess the impact of COVID-19 vaccine hesitancy, 2022, 534, 00225193, 110973, 10.1016/j.jtbi.2021.110973
    49. Miled El Hajji, Amer Hassan Albargi, A mathematical investigation of an "SVEIR" epidemic model for the measles transmission, 2022, 19, 1551-0018, 2853, 10.3934/mbe.2022131
    50. Aatif Ali, Saif Ullah, Muhammad Altaf Khan, The impact of vaccination on the modeling of COVID-19 dynamics: a fractional order model, 2022, 110, 0924-090X, 3921, 10.1007/s11071-022-07798-5
    51. Barducci Alessandro, Convolutional modelling of epidemics, 2022, 5, 26897636, 180, 10.17352/amp.000063
    52. Abhishek Kumar, Stability of a Fractional-Order Epidemic Model with Nonlinear Incidences and Treatment Rates, 2020, 44, 1028-6276, 1505, 10.1007/s40995-020-00960-x
    53. Maria Czarina T. Lagura, Roden Jason A. David, Elvira P. de Lara-Tuprio, 2022, Chapter 23, 978-3-031-04027-6, 355, 10.1007/978-3-031-04028-3_23
    54. M.L. Diagne, H. Rwezaura, S.A. Pedro, J.M. Tchuenche, Theoretical analysis of a measles model with nonlinear incidence functions, 2023, 117, 10075704, 106911, 10.1016/j.cnsns.2022.106911
    55. Ian B. Augsburger, Grace K. Galanthay, Jacob H. Tarosky, Jan Rychtář, Dewey Taylor, Mabel Carabali, Voluntary vaccination may not stop monkeypox outbreak: A game-theoretic model, 2022, 16, 1935-2735, e0010970, 10.1371/journal.pntd.0010970
    56. Taye Samuel Faniran, Aatif Ali, Nawal E. Al-Hazmi, Joshua Kiddy K. Asamoah, Taher A. Nofal, Matthew O. Adewole, Dan Selişteanu, New Variant of SARS-CoV-2 Dynamics with Imperfect Vaccine, 2022, 2022, 1099-0526, 1, 10.1155/2022/1062180
    57. Liming Cai, Peixia Yue, Mini Ghosh, Xuezhi Li, Assessing the impact of agrochemicals on schistosomiasis transmission: A mathematical study, 2021, 14, 1793-5245, 10.1142/S1793524521500492
    58. Subrata Paul, Animesh Mahata, Supriya Mukherjee, Banamali Roy, Mehdi Salimi, Ali Ahmadian, Study of Fractional Order SEIR Epidemic Model and Effect of Vaccination on the Spread of COVID-19, 2022, 8, 2349-5103, 10.1007/s40819-022-01411-4
    59. Yasir Nawaz, Muhammad Shoaib Arif, Wasfi Shatanawi, A New Numerical Scheme for Time Fractional Diffusive SEAIR Model with Non-Linear Incidence Rate: An Application to Computational Biology, 2022, 6, 2504-3110, 78, 10.3390/fractalfract6020078
    60. Mayowa M. Ojo, Olumuyiwa James Peter, Emile Franc Doungmo Goufo, Hasan S. Panigoro, Festus Abiodun Oguntolu, Mathematical model for control of tuberculosis epidemiology, 2023, 69, 1598-5865, 69, 10.1007/s12190-022-01734-x
    61. Hu Zhang, V. Madhusudanan, B. S. N. Murthy, M. N. Srinivas, Biruk Ambachew Adugna, Punit Gupta, Fuzzy Analysis of SVIRS Disease System with Holling Type-II Saturated Incidence Rate and Saturated Treatment, 2022, 2022, 1563-5147, 1, 10.1155/2022/1330875
    62. Chao Zuo, Yuting Ling, Fenping Zhu, Xinyu Ma, Guochun Xiang, Exploring epidemic voluntary vaccinating behavior based on information-driven decisions and benefit-cost analysis, 2023, 447, 00963003, 127905, 10.1016/j.amc.2023.127905
    63. Animesh Mahata, Subrata Paul, Supriya Mukherjee, Banamali Roy, Stability analysis and Hopf bifurcation in fractional order SEIRV epidemic model with a time delay in infected individuals, 2022, 5, 26668181, 100282, 10.1016/j.padiff.2022.100282
    64. Subrata Paul, Animesh Mahata, Supriya Mukherjee, Mainak Chakraborty, Banamali Roy, 2022, Chapter 44, 978-981-19-0181-2, 435, 10.1007/978-981-19-0182-9_44
    65. Ian B. Augsburger, Grace K. Galanthay, Jacob H. Tarosky, Jan Rychtář, Dewey Taylor, Imperfect vaccine can yield multiple Nash equilibria in vaccination games, 2023, 356, 00255564, 108967, 10.1016/j.mbs.2023.108967
    66. Mayowa M. Ojo, Temitope O. Benson, Olumuyiwa James Peter, Emile Franc Doungmo Goufo, Nonlinear optimal control strategies for a mathematical model of COVID-19 and influenza co-infection, 2022, 607, 03784371, 128173, 10.1016/j.physa.2022.128173
    67. Mayowa M. Ojo, Emile Franc Doungmo Goufo, The impact of COVID-19 on a Malaria dominated region: A mathematical analysis and simulations, 2023, 65, 11100168, 23, 10.1016/j.aej.2022.09.045
    68. Eduardo V. M. dos Reis, Marcelo A. Savi, A dynamical map to describe COVID-19 epidemics, 2022, 231, 1951-6355, 893, 10.1140/epjs/s11734-021-00340-5
    69. Purnami Widyaningsih, Laila F. Aminni, Dewi R. S. Saputro, 2022, 2566, 0094-243X, 030008, 10.1063/5.0116992
    70. Hetsron L. Nyandjo Bamen, Jean Marie Ntaganda, Aurelien Tellier, Olivier Menoukeu Pamen, Impact of Imperfect Vaccine, Vaccine Trade-Off and Population Turnover on Infectious Disease Dynamics, 2023, 11, 2227-7390, 1240, 10.3390/math11051240
    71. Mamadou Lamine Diagne, Herieth Rwezaura, S.A. Pedro, Jean Michel Tchuenche, Theoretical Analysis of a Measles Model with Nonlinear Incidence Functions, 2022, 1556-5068, 10.2139/ssrn.4160579
    72. Miled El Hajji, Dalal M. Alshaikh, Nada A. Almuallem, Periodic Behaviour of an Epidemic in a Seasonal Environment with Vaccination, 2023, 11, 2227-7390, 2350, 10.3390/math11102350
    73. Huda Abdul Satar, Raid Kamel Naji, A Mathematical Study for the Transmission of Coronavirus Disease, 2023, 11, 2227-7390, 2330, 10.3390/math11102330
    74. Abu Zobayer, Mohammad Sharif Ullah, K. M. Ariful Kabir, A cyclic behavioral modeling aspect to understand the effects of vaccination and treatment on epidemic transmission dynamics, 2023, 13, 2045-2322, 10.1038/s41598-023-35188-3
    75. Mariapia De Rosa, Fabio Giampaolo, Francesco Piccialli, Salvatore Cuomo, 2023, Modelling the COVID-19 infection rate through a Physics-Informed learning approach, 979-8-3503-3763-1, 212, 10.1109/PDP59025.2023.00041
    76. Zhihui Ma, Shenghua Li, Shuyan Han, Bifurcation and optimal control for an infectious disease model with the impact of information, 2024, 17, 1793-5245, 10.1142/S1793524523500067
    77. Abhishek Kumar, Kanica Goel, Modeling and analysis of a fractional-order nonlinear epidemic model incorporating the compartments of infodemic and aware populations, 2023, 98, 0031-8949, 095224, 10.1088/1402-4896/aceb3f
    78. Yanshu Wang, Hailiang Zhang, Dynamical Analysis of an Age-Structured SVEIR Model with Imperfect Vaccine, 2023, 11, 2227-7390, 3526, 10.3390/math11163526
    79. Roumen Anguelov, Jean M.-S. Lubuma, Forward invariant set preservation in discrete dynamical systems and numerical schemes for ODEs: application in biosciences, 2023, 2023, 2731-4235, 10.1186/s13662-023-03784-2
    80. Abhishek Kumar, Kanica Goel, , Dynamics of a nonlinear epidemic transmission model incorporating a class of hospitalized individuals: a qualitative analysis and simulation, 2023, 56, 1751-8113, 415601, 10.1088/1751-8121/acf9cf
    81. Aakash Pandey, Abigail B. Feuka, Melinda Cosgrove, Megan Moriarty, Anthony Duffiney, Kurt C. VerCauteren, Henry Campa, Kim M. Pepin, Yamir Moreno, Wildlife vaccination strategies for eliminating bovine tuberculosis in white-tailed deer populations, 2024, 20, 1553-7358, e1011287, 10.1371/journal.pcbi.1011287
    82. Manal Alqhtani, Khaled M. Saad, Rahat Zarin, Amir Khan, Waleed M. Hamanah, Qualitative behavior of a highly non-linear Cutaneous Leishmania epidemic model under convex incidence rate with real data, 2024, 21, 1551-0018, 2084, 10.3934/mbe.2024092
    83. Aytül Gökçe, Burcu Gürbüz, Alan D. Rendall, Dynamics of a mathematical model of virus spreading incorporating the effect of a vaccine, 2024, 78, 14681218, 104097, 10.1016/j.nonrwa.2024.104097
    84. Sarita Bugalia, Jai Prakash Tripathi, Hao Wang, Mutations make pandemics worse or better: modeling SARS-CoV-2 variants and imperfect vaccination, 2024, 88, 0303-6812, 10.1007/s00285-024-02068-x
    85. Xinghao Wang, Liang Zhang, Xiao-Bing Zhang, Dynamics of a Stochastic SVEIR Epidemic Model with Nonlinear Incidence Rate, 2024, 16, 2073-8994, 467, 10.3390/sym16040467
    86. Zuchong Shang, Yuanhua Qiao, Complex dynamics of a four-species food web model with nonlinear top predator harvesting and fear effect, 2024, 03784754, 10.1016/j.matcom.2024.04.024
    87. Atena Ghasemabadi, Mathematical modeling and control of Covid‐19, 2024, 0170-4214, 10.1002/mma.10134
    88. Abhishek Kumar, Vishesh Lonial, Qualitative Study of a Novel Fractional-Order Epidemic Model with Nonmonotone Incidences, Level of Awareness, and Quarantine Class, 2024, 2731-8095, 10.1007/s40995-024-01656-2
    89. Handika Lintang Saputra, 2024, 3083, 0094-243X, 040009, 10.1063/5.0225767
    90. Chunya Liu, Hua Liu, Xinjie Zhu, Xiaofen Lin, Qibin Zhang, Yumei Wei, Dynamic analysis of human papillomavirus transmission model under vaccine intervention: a case study of cervical cancer patients from Hungary, 2024, 2024, 2731-4235, 10.1186/s13662-024-03838-z
    91. Fatima Cherkaoui, Fatima Ezzahrae Fadili, Khalid Hilal, Stability analysis of a delayed fractional-order SIR
    epidemic model with Crowley–Martin type incidence rate and Holling type II treatment rate, 2024, 1982-6907, 10.1007/s40863-024-00470-3
    92. Abhishek Kumar, Rajiv Aggarwal, A novel nonlinear SAZIQHR epidemic transmission model: mathematical modeling, simulation, and optimal control, 2025, 100, 0031-8949, 015002, 10.1088/1402-4896/ad8700
    93. Xiaoqing Mu, Stability analysis of a conventional SEIR epidemic model with relapse and general nonlinear incidence, 2024, 2905, 1742-6588, 012036, 10.1088/1742-6596/2905/1/012036
    94. Qun Dai, Zeheng Wang, SIRV fractional epidemic model of influenza with vaccine game theory and stability analysis, 2024, 32, 2688-1594, 6792, 10.3934/era.2024318
    95. Zuchong Shang, Yuanhua Qiao, Complex Dynamics of a Quad-Trophic Food Chain Model with Beddington–DeAngelis Functional Response, Fear Effect and Prey Refuge, 2025, 24, 1575-5460, 10.1007/s12346-024-01208-4
    96. Spalding Garakani, Luis Flores, Guillermo Alvarez-Pardo, Jan Rychtář, Dewey Taylor, The effect of heterogeneity of relative vaccine costs on the mean population vaccination rate with mpox as an example, 2025, 00225193, 112062, 10.1016/j.jtbi.2025.112062
    97. 乐 张, Sensitivity Analysis of Infectious Disease Models with Vaccination Behavior Decision Functions, 2025, 14, 2324-7991, 171, 10.12677/aam.2025.142062
    98. Kedeng Cheng, Yuanhua Qiao, Bifurcation and stability analysis and control strategy study of a class SEIWR infectious disease models considering viral loads in the environment, 2025, 198, 09600779, 116490, 10.1016/j.chaos.2025.116490
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4239) PDF downloads(835) Cited by(98)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog