An individual, stochastic model of growth incorporating state-dependent risk and random foraging and climate

  • Received: 01 January 2006 Accepted: 29 June 2018 Published: 01 November 2006
  • MSC : 92D25, 92D40, 92D50.

  • We model the effects of both stochastic and deterministic temperature variations on arthropod predator-prey systems. Specifically, we study the stochastic dynamics of arthropod predator-prey interactions under a varying temperature regime, and we develop an individual model of a prey under pressure from a predator, with vigilance (or foraging effort), search rates, attack rates, and other predation parameters dependent on daily temperature variations. Simulations suggest that an increase in the daily average temperature may benefit both predator and prey. Furthermore, simulations show that anti-predator behavior may indeed decrease predation but at the expense of reduced prey survivorship because of a greater increase in other types of mortality.

    Citation: William Wolesensky, J. David Logan. An individual, stochastic model of growth incorporating state-dependent risk and random foraging and climate[J]. Mathematical Biosciences and Engineering, 2007, 4(1): 67-84. doi: 10.3934/mbe.2007.4.67

    Related Papers:

    [1] J. David Logan, William Wolesensky, Anthony Joern . Insect development under predation risk, variable temperature, and variable food quality. Mathematical Biosciences and Engineering, 2007, 4(1): 47-65. doi: 10.3934/mbe.2007.4.47
    [2] Qi Wang, Lifang Huang, Kunwen Wen, Jianshe Yu . The mean and noise of stochastic gene transcription with cell division. Mathematical Biosciences and Engineering, 2018, 15(5): 1255-1270. doi: 10.3934/mbe.2018058
    [3] Christopher M. Kribs-Zaleta, Christopher Mitchell . Modeling colony collapse disorder in honeybees as a contagion. Mathematical Biosciences and Engineering, 2014, 11(6): 1275-1294. doi: 10.3934/mbe.2014.11.1275
    [4] Elena Izquierdo-Kulich, José Manuel Nieto-Villar . Morphogenesis of the tumor patterns. Mathematical Biosciences and Engineering, 2008, 5(2): 299-313. doi: 10.3934/mbe.2008.5.299
    [5] Tuan Anh Phan, Jianjun Paul Tian . Basic stochastic model for tumor virotherapy. Mathematical Biosciences and Engineering, 2020, 17(4): 4271-4294. doi: 10.3934/mbe.2020236
    [6] Simone Göttlich, Stephan Knapp . Modeling random traffic accidents by conservation laws. Mathematical Biosciences and Engineering, 2020, 17(2): 1677-1701. doi: 10.3934/mbe.2020088
    [7] Alex John Quijano, Michele L. Joyner, Edith Seier, Nathaniel Hancock, Michael Largent, Thomas C. Jones . An aggregate stochastic model incorporating individual dynamics for predation movements of anelosimus studiosus. Mathematical Biosciences and Engineering, 2015, 12(3): 585-607. doi: 10.3934/mbe.2015.12.585
    [8] Antonio Di Crescenzo, Fabio Travaglino . Probabilistic analysis of systems alternating for state-dependent dichotomous noise. Mathematical Biosciences and Engineering, 2019, 16(6): 6386-6405. doi: 10.3934/mbe.2019319
    [9] Mayee Chen, Junping Shi . Effect of rotational grazing on plant and animal production. Mathematical Biosciences and Engineering, 2018, 15(2): 393-406. doi: 10.3934/mbe.2018017
    [10] Katarzyna Pichór, Ryszard Rudnicki . Stochastic models of population growth. Mathematical Biosciences and Engineering, 2025, 22(1): 1-22. doi: 10.3934/mbe.2025001
  • We model the effects of both stochastic and deterministic temperature variations on arthropod predator-prey systems. Specifically, we study the stochastic dynamics of arthropod predator-prey interactions under a varying temperature regime, and we develop an individual model of a prey under pressure from a predator, with vigilance (or foraging effort), search rates, attack rates, and other predation parameters dependent on daily temperature variations. Simulations suggest that an increase in the daily average temperature may benefit both predator and prey. Furthermore, simulations show that anti-predator behavior may indeed decrease predation but at the expense of reduced prey survivorship because of a greater increase in other types of mortality.


  • This article has been cited by:

    1. Brandon T. Barton, Oswald J. Schmitz, Experimental warming transforms multiple predator effects in a grassland food web, 2009, 12, 1461023X, 1317, 10.1111/j.1461-0248.2009.01386.x
    2. J. David Logan, Glenn Ledder, William Wolesensky, Type II functional response for continuous, physiologically structured models, 2009, 259, 00225193, 373, 10.1016/j.jtbi.2009.04.001
    3. J. David Logan, William Wolesensky, An index to measure the effects of temperature change on trophic interactions, 2007, 246, 00225193, 366, 10.1016/j.jtbi.2006.11.014
    4. J. David Logan, Phenologically-Structured Predator-Prey Dynamics with Temperature Dependence, 2008, 70, 0092-8240, 1, 10.1007/s11538-007-9237-6
    5. J. DAVID LOGAN, WILLIAM WOLESENSKY, ACCOUNTING FOR TEMPERATURE IN PREDATOR FUNCTIONAL RESPONSES, 2008, 20, 08908575, 549, 10.1111/j.1939-7445.2007.tb00220.x
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2581) PDF downloads(506) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog