Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland

  • Received: 01 November 2006 Accepted: 29 June 2018 Published: 01 May 2007
  • MSC : 92D30.

  • At the outset of an influenza pandemic, early estimates of the number of secondary cases generated by a primary influenza case (reproduction number, R) and its associated uncertainty can help determine the intensity of interventions necessary for control. Using a compartmental model and hospital notification data of the first two waves of the Spanish flu pandemic in Geneva, Switzerland in 1918, we estimate the reproduction number from the early phase of the pandemic waves. For the spring and fall pandemic waves, we estimate reproduction numbers of 1.57 (95% CI: 1.45, 1.70) and 3.10 (2.81, 3.39), respectively, from the initial epidemic phase comprising the first 10 epidemic days of the corresponding wave. Estimates of the variance of our point estimates of R were computed via a parametric bootstrap. We compare these estimates with others obtained using different observation windows to provide insight into how early into an epidemic the reproduction number can be estimated.

    Citation: Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland[J]. Mathematical Biosciences and Engineering, 2007, 4(3): 457-470. doi: 10.3934/mbe.2007.4.457

    Related Papers:

    [1] Fangyuan Chen, Rong Yuan . Dynamic behavior of swine influenza transmission during the breed-slaughter process. Mathematical Biosciences and Engineering, 2020, 17(5): 5849-5863. doi: 10.3934/mbe.2020312
    [2] Aurelie Akossi, Gerardo Chowell-Puente, Alexandra Smirnova . Numerical study of discretization algorithms for stable estimation of disease parameters and epidemic forecasting. Mathematical Biosciences and Engineering, 2019, 16(5): 3674-3693. doi: 10.3934/mbe.2019182
    [3] Kasia A. Pawelek, Anne Oeldorf-Hirsch, Libin Rong . Modeling the impact of twitter on influenza epidemics. Mathematical Biosciences and Engineering, 2014, 11(6): 1337-1356. doi: 10.3934/mbe.2014.11.1337
    [4] Meili Li, Ruijun Zhai, Junling Ma . The effects of disease control measures on the reproduction number of COVID-19 in British Columbia, Canada. Mathematical Biosciences and Engineering, 2023, 20(8): 13849-13863. doi: 10.3934/mbe.2023616
    [5] Karen R. Ríos-Soto, Baojun Song, Carlos Castillo-Chavez . Epidemic spread of influenza viruses: The impact of transient populations on disease dynamics. Mathematical Biosciences and Engineering, 2011, 8(1): 199-222. doi: 10.3934/mbe.2011.8.199
    [6] Rodolfo Acuňa-Soto, Luis Castaňeda-Davila, Gerardo Chowell . A perspective on the 2009 A/H1N1 influenza pandemic in Mexico. Mathematical Biosciences and Engineering, 2011, 8(1): 223-238. doi: 10.3934/mbe.2011.8.223
    [7] Qingling Zeng, Kamran Khan, Jianhong Wu, Huaiping Zhu . The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season. Mathematical Biosciences and Engineering, 2007, 4(4): 739-754. doi: 10.3934/mbe.2007.4.739
    [8] Akhil Kumar Srivastav, Pankaj Kumar Tiwari, Prashant K Srivastava, Mini Ghosh, Yun Kang . A mathematical model for the impacts of face mask, hospitalization and quarantine on the dynamics of COVID-19 in India: deterministic vs. stochastic. Mathematical Biosciences and Engineering, 2021, 18(1): 182-213. doi: 10.3934/mbe.2021010
    [9] Hiroshi Nishiura . Joint quantification of transmission dynamics and diagnostic accuracy applied to influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 49-64. doi: 10.3934/mbe.2011.8.49
    [10] Oren Barnea, Rami Yaari, Guy Katriel, Lewi Stone . Modelling seasonal influenza in Israel. Mathematical Biosciences and Engineering, 2011, 8(2): 561-573. doi: 10.3934/mbe.2011.8.561
  • At the outset of an influenza pandemic, early estimates of the number of secondary cases generated by a primary influenza case (reproduction number, R) and its associated uncertainty can help determine the intensity of interventions necessary for control. Using a compartmental model and hospital notification data of the first two waves of the Spanish flu pandemic in Geneva, Switzerland in 1918, we estimate the reproduction number from the early phase of the pandemic waves. For the spring and fall pandemic waves, we estimate reproduction numbers of 1.57 (95% CI: 1.45, 1.70) and 3.10 (2.81, 3.39), respectively, from the initial epidemic phase comprising the first 10 epidemic days of the corresponding wave. Estimates of the variance of our point estimates of R were computed via a parametric bootstrap. We compare these estimates with others obtained using different observation windows to provide insight into how early into an epidemic the reproduction number can be estimated.


  • This article has been cited by:

    1. Md. Samsuzzoha, Manmohan Singh, David Lucy, A numerical study on an influenza epidemic model with vaccination and diffusion, 2012, 219, 00963003, 122, 10.1016/j.amc.2012.04.089
    2. S. Dorjee, Z. Poljak, C. W. Revie, J. Bridgland, B. McNab, E. Leger, J. Sanchez, A Review of Simulation Modelling Approaches Used for the Spread of Zoonotic Influenza Viruses in Animal and Human Populations, 2013, 60, 18631959, 383, 10.1111/zph.12010
    3. Jon Brugger, Christian L. Althaus, Transmission of and susceptibility to seasonal influenza in Switzerland from 2003 to 2015, 2020, 30, 17554365, 100373, 10.1016/j.epidem.2019.100373
    4. Hiroshi Nishiura, Ping Yan, Candace K. Sleeman, Charles J. Mode, Estimating the transmission potential of supercritical processes based on the final size distribution of minor outbreaks, 2012, 294, 00225193, 48, 10.1016/j.jtbi.2011.10.039
    5. Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng, 2019, Chapter 9, 978-1-4939-9826-5, 311, 10.1007/978-1-4939-9828-9_9
    6. Rodolfo Acuna-Soto, 2009, Chapter 9, 978-90-481-2312-4, 189, 10.1007/978-90-481-2313-1_9
    7. Parameter estimation and uncertainty quantification for an epidemic model, 2012, 9, 1551-0018, 553, 10.3934/mbe.2012.9.553
    8. Y. Yang, J. D. Sugimoto, M. E. Halloran, N. E. Basta, D. L. Chao, L. Matrajt, G. Potter, E. Kenah, I. M. Longini, The Transmissibility and Control of Pandemic Influenza A (H1N1) Virus, 2009, 326, 0036-8075, 729, 10.1126/science.1177373
    9. Gerardo Chowell, Fred Brauer, 2009, Chapter 1, 978-90-481-2312-4, 1, 10.1007/978-90-481-2313-1_1
    10. Chaeshin Chu, Junehawk Lee, Dong Hoon Choi, Seung-Ki Youn, Jong-Koo Lee, Sensitivity Analysis of the Parameters of Korea’s Pandemic Influenza Preparedness Plan, 2011, 2, 22109099, 210, 10.1016/j.phrp.2011.11.048
    11. Tridip Sardar, Soumalya Mukhopadhyay, Amiya Ranjan Bhowmick, Joydev Chattopadhyay, Alessandro Vespignani, An Optimal Cost Effectiveness Study on Zimbabwe Cholera Seasonal Data from 2008–2011, 2013, 8, 1932-6203, e81231, 10.1371/journal.pone.0081231
    12. Lisa Sattenspiel, Regional patterns of mortality during the 1918 influenza pandemic in Newfoundland, 2011, 29, 0264410X, B33, 10.1016/j.vaccine.2011.02.046
    13. Ian York, Ruben O. Donis, 2012, Chapter 221, 978-3-642-36870-7, 241, 10.1007/82_2012_221
    14. Charlotte Jackson, Emilia Vynnycky, Punam Mangtani, The Relationship Between School Holidays and Transmission of Influenza in England and Wales, 2016, 184, 0002-9262, 644, 10.1093/aje/kww083
    15. Gerardo Chowell, Hiroshi Nishiura, Quantifying the transmission potential of pandemic influenza, 2008, 5, 15710645, 50, 10.1016/j.plrev.2007.12.001
    16. Maciej F Boni, Bui Huu Manh, Pham Quang Thai, Jeremy Farrar, Tran Tinh Hien, Nguyen Tran Hien, Nguyen Van Kinh, Peter Horby, Modelling the progression of pandemic influenza A (H1N1) in Vietnam and the opportunities for reassortment with other influenza viruses, 2009, 7, 1741-7015, 10.1186/1741-7015-7-43
    17. Nadhem Selmi, A model of the 2014 Ebola virus: Evidence of West Africa, 2019, 010, 10.29328/journal.ijcv.1001004
    18. Leonardo López, Germán Burguerner, Leonardo Giovanini, Addressing population heterogeneity and distribution in epidemics models using a cellular automata approach, 2014, 7, 1756-0500, 10.1186/1756-0500-7-234
    19. I. De Falco, A. Della Cioppa, U. Scafuri, E. Tarantino, 2021, 9780128245361, 75, 10.1016/B978-0-12-824536-1.00005-8
    20. Imelda Trejo, Nicolas W. Hengartner, Alberto d’Onofrio, A modified Susceptible-Infected-Recovered model for observed under-reported incidence data, 2022, 17, 1932-6203, e0263047, 10.1371/journal.pone.0263047
    21. Ella Ziegler, Katarina L. Matthes, Peter W. Middelkamp, Verena J. Schuenemann, Christian L. Althaus, Frank Rühli, Kaspar Staub, Retrospective modelling of the disease and mortality burden of the 1918–1920 influenza pandemic in Zurich, Switzerland, 2025, 50, 17554365, 100813, 10.1016/j.epidem.2025.100813
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3430) PDF downloads(670) Cited by(21)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog