The effect of interspike interval statistics on the information gainunder the rate coding hypothesis

  • Received: 01 December 2012 Accepted: 29 June 2018 Published: 01 September 2013
  • MSC : Primary: 60G55, 62P10; Secondary: 94A17.

  • The question, how much information can be theoreticallygained from variable neuronal firing rate with respect to constantaverage firing rate is investigated.We employ the statistical concept of information based on the Kullback-Leibler divergence,and assume rate-modulated renewal processes as a model of spike trains.We show thatif the firing rate variation is sufficiently small and slow(with respect to the mean interspike interval), the information gaincan be expressed by the Fisher information.Furthermore, under certain assumptions, the smallestpossible information gain is provided by gamma-distributed interspikeintervals.The methodology is illustrated and discussed on severaldifferent statistical models of neuronal activity.

    Citation: Shinsuke Koyama, Lubomir Kostal. The effect of interspike interval statistics on the information gainunder the rate coding hypothesis[J]. Mathematical Biosciences and Engineering, 2014, 11(1): 63-80. doi: 10.3934/mbe.2014.11.63

    Related Papers:

    [1] Sven Blankenburg, Benjamin Lindner . The effect of positive interspike interval correlations on neuronal information transmission. Mathematical Biosciences and Engineering, 2016, 13(3): 461-481. doi: 10.3934/mbe.2016001
    [2] Shinsuke Koyama, Ryota Kobayashi . Fluctuation scaling in neural spike trains. Mathematical Biosciences and Engineering, 2016, 13(3): 537-550. doi: 10.3934/mbe.2016006
    [3] Aldana M. González Montoro, Ricardo Cao, Christel Faes, Geert Molenberghs, Nelson Espinosa, Javier Cudeiro, Jorge Mariño . Cross nearest-spike interval based method to measure synchrony dynamics. Mathematical Biosciences and Engineering, 2014, 11(1): 27-48. doi: 10.3934/mbe.2014.11.27
    [4] Kamil Rajdl, Petr Lansky . Fano factor estimation. Mathematical Biosciences and Engineering, 2014, 11(1): 105-123. doi: 10.3934/mbe.2014.11.105
    [5] Antonio Di Crescenzo, Maria Longobardi, Barbara Martinucci . On a spike train probability model with interacting neural units. Mathematical Biosciences and Engineering, 2014, 11(2): 217-231. doi: 10.3934/mbe.2014.11.217
    [6] Yan Tang, Zhijin Zhao, Chun Li, Xueyi Ye . Open set recognition algorithm based on Conditional Gaussian Encoder. Mathematical Biosciences and Engineering, 2021, 18(5): 6620-6637. doi: 10.3934/mbe.2021328
    [7] Marie Levakova . Effect of spontaneous activity on stimulus detection in a simple neuronal model. Mathematical Biosciences and Engineering, 2016, 13(3): 551-568. doi: 10.3934/mbe.2016007
    [8] Zuozhi Liu, Xiaotian Wang, Quan Yuan . Robust detection of neural spikes using sparse coding based features. Mathematical Biosciences and Engineering, 2020, 17(4): 4257-4270. doi: 10.3934/mbe.2020235
    [9] Karim El Laithy, Martin Bogdan . Synaptic energy drives the information processing mechanisms in spiking neural networks. Mathematical Biosciences and Engineering, 2014, 11(2): 233-256. doi: 10.3934/mbe.2014.11.233
    [10] Kyle Wendling, Cheng Ly . Firing rate distributions in a feedforward network of neural oscillators with intrinsic and network heterogeneity. Mathematical Biosciences and Engineering, 2019, 16(4): 2023-2048. doi: 10.3934/mbe.2019099
  • The question, how much information can be theoreticallygained from variable neuronal firing rate with respect to constantaverage firing rate is investigated.We employ the statistical concept of information based on the Kullback-Leibler divergence,and assume rate-modulated renewal processes as a model of spike trains.We show thatif the firing rate variation is sufficiently small and slow(with respect to the mean interspike interval), the information gaincan be expressed by the Fisher information.Furthermore, under certain assumptions, the smallestpossible information gain is provided by gamma-distributed interspikeintervals.The methodology is illustrated and discussed on severaldifferent statistical models of neuronal activity.


    [1] Dover Publications, Inc., New York, 1966.
    [2] Br. Med. J., 1 (1954).
    [3] Journal of Neuroscience Methods, 105 (2001), 25-37.
    [4] Biometrika, 68 (1981), 143-152.
    [5] J. Roy. Stat. Soc. B, 41 (1979), 113-147.
    [6] Eur. Phys. J. B, 24 (2001), 409-413.
    [7] J. Neuroendocrinol., 16 (2004), 390-397.
    [8] Brain Res., 1434 (2012), 47-61.
    [9] Nature Neurosci., 2 (1999), 947-958.
    [10] Neural Computation, 10 (1998), 1731-1757.
    [11] Marcel Dekker, New York, 1989.
    [12] IEEE Transactions on Information Theory, 14 (1968), 591-592.
    [13] Methuen & Co., Ltd., London; John Wiley & Sons, Inc., New York, 1966.
    [14] Neural Networks, 22 (2009), 1235-1246.
    [15] in "Neural Information Processing Systems" (eds. J. C. Platt, D. Koller, Y. Singer and S. Roweis), Vol. 20, (2008), 329-336.
    [16] Second edition, Probability and its Applications (New York), Springer-Verlag, New York, 2003.
    [17] J. Neurobiology, 65 (2005), 97-114.
    [18] John Wiley & Sons, Inc., New York, 1968.
    [19] Biophys. J., 4 (1964), 41-68.
    [20] Charles Griffin & Co., Ltd., London; Hafner Publishing Co., New York, N. Y., 1950.
    [21] Biometrika, 58 (1971), 255-277.
    [22] Neural Comput., 17 (2005), 2240-2257.
    [23] Biol. Cybern., 92 (2005), 199-205.
    [24] Phys. Rev. Lett., 84 (2000), 4773-4776.
    [25] Brain Res., 1434 (2012), 123-135.
    [26] Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1981.
    [27] Neural Comput., 21 (2009), 1714-1748.
    [28] Biological Cybernetics, 77 (1997), 289-295.
    [29] Lecture Notes in Statistics, 9, Springer-Verlag, New York-Berlin, 1982.
    [30] John Wiley & Sons, New York, 1973.
    [31] Neural Computation, 13 (2001), 1713-1720.
    [32] Prentice Hall, New Jersey, 1993.
    [33] Phys. Rev. E, 82 (2010), 026115.
    [34] Brain Res., 1434 (2012), 136-141.
    [35] PLoS ONE, 6 (2011), e21998.
    [36] Entropy, 14 (2012), 1221-1233.
    [37] in "Neural Information Processing Systems," Vol. 25, The Institute of Statistical Mathematics, 2013.
    [38] Neural Computation, 20 (2008), 1776-1795.
    [39] Dover Publications, Inc., Mineola, New York, 1968.
    [40] Second edition, Springer Texts in Statistics, Springer-Verlag, New York, 1998.
    [41] Biol. Cybern., 65 (1991), 459-467.
    [42] Neural Comput., 20 (2008), 1325-1343.
    [43] Neurosci. Res. Prog. Sum., 3 (1968), 405-527.
    [44] in "Neural Information Processing Systems" (eds. Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams and A. Culotta), Vol. 22, (2008), 1473-1481.
    [45] Monographs on Applied Probability and Statistics, Chapman and Hall, London; A Halsted Press Book, John Wiley & Sons, New York, 1979.
    [46] J. Neurosci. Methods, 181 (2009), 119-144.
    [47] Journal of Neuroscience, 18 (1998), 10090-10104.
    [48] Journal of Neurophysiology, 57 (1987), 147-161.
    [49] IEEE Trans. Inf. Theory, 42 (1996), 40-47.
    [50] John Wiley & Sons, Inc., New York; Chapman & Hill, Ltd., London, 1954.
    [51] Proceedings of the National Academy of Sciences of the United States of America, 90 (1993), 10749-10753.
    [52] University of Illinois Press, Urbana, Illinois, 1949.
    [53] Biophys. J., 7 (1967), 797-826.
    [54] J. Comput. Neurosci., 2 (1995), 149-162.
    [55] Cambridge Studies in Mathematical Biology, 8, Cambridge University Press, Cambridge, 1988.
    [56] Cambridge Series in Statistical and Probabilistic Mathematics, 3, Cambridge University Press, Cambridge, 1998.
    [57] Neural Computation, 11 (1999), 75-84.
  • This article has been cited by:

    1. Stevan Pilarski, Ondrej Pokora, On the Cramér–Rao bound applicability and the role of Fisher information in computational neuroscience, 2015, 136, 03032647, 11, 10.1016/j.biosystems.2015.07.009
    2. Marie Levakova, Massimiliano Tamborrino, Lubomir Kostal, Petr Lansky, Accuracy of rate coding: When shorter time window and higher spontaneous activity help, 2017, 95, 2470-0045, 10.1103/PhysRevE.95.022310
    3. Lubomir Kostal, Petr Lansky, Michael Stiber, Statistics of inverse interspike intervals: The instantaneous firing rate revisited, 2018, 28, 1054-1500, 106305, 10.1063/1.5036831
    4. Kamil Rajdl, Petr Lansky, Lubomir Kostal, Fano Factor: A Potentially Useful Information, 2020, 14, 1662-5188, 10.3389/fncom.2020.569049
    5. Lubomir Kostal, Shigeru Shinomoto, Efficient information transfer by Poisson neurons, 2016, 13, 1551-0018, 509, 10.3934/mbe.2016004
    6. Petr Lansky, Laura Sacerdote, Cristina Zucca, The Gamma renewal process as an output of the diffusion leaky integrate-and-fire neuronal model, 2016, 110, 0340-1200, 193, 10.1007/s00422-016-0690-x
    7. Shinsuke Koyama, On the Spike Train Variability Characterized by Variance-to-Mean Power Relationship, 2015, 27, 0899-7667, 1530, 10.1162/NECO_a_00748
    8. Kamil Rajdl, Petr Lansky, Stein’s neuronal model with pooled renewal input, 2015, 109, 0340-1200, 389, 10.1007/s00422-015-0650-x
    9. K. Rajdl, P. Lansky, L. Kostal, Entropy factor for randomness quantification in neuronal data, 2017, 95, 08936080, 57, 10.1016/j.neunet.2017.07.016
    10. Shinuk Kim, A miRNA- and mRNA-seq-Based Feature Selection Approach for Kidney Cancer Biomakers, 2020, 19, 1176-9351, 117693512090830, 10.1177/1176935120908301
    11. Marie Levakova, Effect of spontaneous activity on stimulus detection in a simple neuronal model, 2016, 13, 1551-0018, 551, 10.3934/mbe.2016007
    12. Rimjhim Tomar, Review: Methods of firing rate estimation, 2019, 183, 03032647, 103980, 10.1016/j.biosystems.2019.103980
    13. Marie Levakova, Efficiency of rate and latency coding with respect to metabolic cost and time, 2017, 161, 03032647, 31, 10.1016/j.biosystems.2017.06.005
    14. Saleh Fayaz, Mohammad Amin Fakharian, Ali Ghazizadeh, Alireza Soltani, Stimulus presentation can enhance spiking irregularity across subcortical and cortical regions, 2022, 18, 1553-7358, e1010256, 10.1371/journal.pcbi.1010256
    15. Lubomir Kostal, Kristyna Kovacova, Estimation of firing rate from instantaneous interspike intervals, 2024, 01680102, 10.1016/j.neures.2024.06.006
    16. Katherine Zavez, Ofer Harel, Teaching Statistical Concepts Using Computing Tools: A Review of the Literature, 2025, 2693-9169, 1, 10.1080/26939169.2024.2445541
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3129) PDF downloads(462) Cited by(16)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog