Citation: Shinsuke Koyama, Lubomir Kostal. The effect of interspike interval statistics on the information gainunder the rate coding hypothesis[J]. Mathematical Biosciences and Engineering, 2014, 11(1): 63-80. doi: 10.3934/mbe.2014.11.63
[1] | Sven Blankenburg, Benjamin Lindner . The effect of positive interspike interval correlations on neuronal information transmission. Mathematical Biosciences and Engineering, 2016, 13(3): 461-481. doi: 10.3934/mbe.2016001 |
[2] | Shinsuke Koyama, Ryota Kobayashi . Fluctuation scaling in neural spike trains. Mathematical Biosciences and Engineering, 2016, 13(3): 537-550. doi: 10.3934/mbe.2016006 |
[3] | Aldana M. González Montoro, Ricardo Cao, Christel Faes, Geert Molenberghs, Nelson Espinosa, Javier Cudeiro, Jorge Mariño . Cross nearest-spike interval based method to measure synchrony dynamics. Mathematical Biosciences and Engineering, 2014, 11(1): 27-48. doi: 10.3934/mbe.2014.11.27 |
[4] | Kamil Rajdl, Petr Lansky . Fano factor estimation. Mathematical Biosciences and Engineering, 2014, 11(1): 105-123. doi: 10.3934/mbe.2014.11.105 |
[5] | Antonio Di Crescenzo, Maria Longobardi, Barbara Martinucci . On a spike train probability model with interacting neural units. Mathematical Biosciences and Engineering, 2014, 11(2): 217-231. doi: 10.3934/mbe.2014.11.217 |
[6] | Yan Tang, Zhijin Zhao, Chun Li, Xueyi Ye . Open set recognition algorithm based on Conditional Gaussian Encoder. Mathematical Biosciences and Engineering, 2021, 18(5): 6620-6637. doi: 10.3934/mbe.2021328 |
[7] | Marie Levakova . Effect of spontaneous activity on stimulus detection in a simple neuronal model. Mathematical Biosciences and Engineering, 2016, 13(3): 551-568. doi: 10.3934/mbe.2016007 |
[8] | Zuozhi Liu, Xiaotian Wang, Quan Yuan . Robust detection of neural spikes using sparse coding based features. Mathematical Biosciences and Engineering, 2020, 17(4): 4257-4270. doi: 10.3934/mbe.2020235 |
[9] | Karim El Laithy, Martin Bogdan . Synaptic energy drives the information processing mechanisms in spiking neural networks. Mathematical Biosciences and Engineering, 2014, 11(2): 233-256. doi: 10.3934/mbe.2014.11.233 |
[10] | Kyle Wendling, Cheng Ly . Firing rate distributions in a feedforward network of neural oscillators with intrinsic and network heterogeneity. Mathematical Biosciences and Engineering, 2019, 16(4): 2023-2048. doi: 10.3934/mbe.2019099 |
[1] | Dover Publications, Inc., New York, 1966. |
[2] | Br. Med. J., 1 (1954). |
[3] | Journal of Neuroscience Methods, 105 (2001), 25-37. |
[4] | Biometrika, 68 (1981), 143-152. |
[5] | J. Roy. Stat. Soc. B, 41 (1979), 113-147. |
[6] | Eur. Phys. J. B, 24 (2001), 409-413. |
[7] | J. Neuroendocrinol., 16 (2004), 390-397. |
[8] | Brain Res., 1434 (2012), 47-61. |
[9] | Nature Neurosci., 2 (1999), 947-958. |
[10] | Neural Computation, 10 (1998), 1731-1757. |
[11] | Marcel Dekker, New York, 1989. |
[12] | IEEE Transactions on Information Theory, 14 (1968), 591-592. |
[13] | Methuen & Co., Ltd., London; John Wiley & Sons, Inc., New York, 1966. |
[14] | Neural Networks, 22 (2009), 1235-1246. |
[15] | in "Neural Information Processing Systems" (eds. J. C. Platt, D. Koller, Y. Singer and S. Roweis), Vol. 20, (2008), 329-336. |
[16] | Second edition, Probability and its Applications (New York), Springer-Verlag, New York, 2003. |
[17] | J. Neurobiology, 65 (2005), 97-114. |
[18] | John Wiley & Sons, Inc., New York, 1968. |
[19] | Biophys. J., 4 (1964), 41-68. |
[20] | Charles Griffin & Co., Ltd., London; Hafner Publishing Co., New York, N. Y., 1950. |
[21] | Biometrika, 58 (1971), 255-277. |
[22] | Neural Comput., 17 (2005), 2240-2257. |
[23] | Biol. Cybern., 92 (2005), 199-205. |
[24] | Phys. Rev. Lett., 84 (2000), 4773-4776. |
[25] | Brain Res., 1434 (2012), 123-135. |
[26] | Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1981. |
[27] | Neural Comput., 21 (2009), 1714-1748. |
[28] | Biological Cybernetics, 77 (1997), 289-295. |
[29] | Lecture Notes in Statistics, 9, Springer-Verlag, New York-Berlin, 1982. |
[30] | John Wiley & Sons, New York, 1973. |
[31] | Neural Computation, 13 (2001), 1713-1720. |
[32] | Prentice Hall, New Jersey, 1993. |
[33] | Phys. Rev. E, 82 (2010), 026115. |
[34] | Brain Res., 1434 (2012), 136-141. |
[35] | PLoS ONE, 6 (2011), e21998. |
[36] | Entropy, 14 (2012), 1221-1233. |
[37] | in "Neural Information Processing Systems," Vol. 25, The Institute of Statistical Mathematics, 2013. |
[38] | Neural Computation, 20 (2008), 1776-1795. |
[39] | Dover Publications, Inc., Mineola, New York, 1968. |
[40] | Second edition, Springer Texts in Statistics, Springer-Verlag, New York, 1998. |
[41] | Biol. Cybern., 65 (1991), 459-467. |
[42] | Neural Comput., 20 (2008), 1325-1343. |
[43] | Neurosci. Res. Prog. Sum., 3 (1968), 405-527. |
[44] | in "Neural Information Processing Systems" (eds. Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams and A. Culotta), Vol. 22, (2008), 1473-1481. |
[45] | Monographs on Applied Probability and Statistics, Chapman and Hall, London; A Halsted Press Book, John Wiley & Sons, New York, 1979. |
[46] | J. Neurosci. Methods, 181 (2009), 119-144. |
[47] | Journal of Neuroscience, 18 (1998), 10090-10104. |
[48] | Journal of Neurophysiology, 57 (1987), 147-161. |
[49] | IEEE Trans. Inf. Theory, 42 (1996), 40-47. |
[50] | John Wiley & Sons, Inc., New York; Chapman & Hill, Ltd., London, 1954. |
[51] | Proceedings of the National Academy of Sciences of the United States of America, 90 (1993), 10749-10753. |
[52] | University of Illinois Press, Urbana, Illinois, 1949. |
[53] | Biophys. J., 7 (1967), 797-826. |
[54] | J. Comput. Neurosci., 2 (1995), 149-162. |
[55] | Cambridge Studies in Mathematical Biology, 8, Cambridge University Press, Cambridge, 1988. |
[56] | Cambridge Series in Statistical and Probabilistic Mathematics, 3, Cambridge University Press, Cambridge, 1998. |
[57] | Neural Computation, 11 (1999), 75-84. |
1. | Stevan Pilarski, Ondrej Pokora, On the Cramér–Rao bound applicability and the role of Fisher information in computational neuroscience, 2015, 136, 03032647, 11, 10.1016/j.biosystems.2015.07.009 | |
2. | Marie Levakova, Massimiliano Tamborrino, Lubomir Kostal, Petr Lansky, Accuracy of rate coding: When shorter time window and higher spontaneous activity help, 2017, 95, 2470-0045, 10.1103/PhysRevE.95.022310 | |
3. | Lubomir Kostal, Petr Lansky, Michael Stiber, Statistics of inverse interspike intervals: The instantaneous firing rate revisited, 2018, 28, 1054-1500, 106305, 10.1063/1.5036831 | |
4. | Kamil Rajdl, Petr Lansky, Lubomir Kostal, Fano Factor: A Potentially Useful Information, 2020, 14, 1662-5188, 10.3389/fncom.2020.569049 | |
5. | Lubomir Kostal, Shigeru Shinomoto, Efficient information transfer by Poisson neurons, 2016, 13, 1551-0018, 509, 10.3934/mbe.2016004 | |
6. | Petr Lansky, Laura Sacerdote, Cristina Zucca, The Gamma renewal process as an output of the diffusion leaky integrate-and-fire neuronal model, 2016, 110, 0340-1200, 193, 10.1007/s00422-016-0690-x | |
7. | Shinsuke Koyama, On the Spike Train Variability Characterized by Variance-to-Mean Power Relationship, 2015, 27, 0899-7667, 1530, 10.1162/NECO_a_00748 | |
8. | Kamil Rajdl, Petr Lansky, Stein’s neuronal model with pooled renewal input, 2015, 109, 0340-1200, 389, 10.1007/s00422-015-0650-x | |
9. | K. Rajdl, P. Lansky, L. Kostal, Entropy factor for randomness quantification in neuronal data, 2017, 95, 08936080, 57, 10.1016/j.neunet.2017.07.016 | |
10. | Shinuk Kim, A miRNA- and mRNA-seq-Based Feature Selection Approach for Kidney Cancer Biomakers, 2020, 19, 1176-9351, 117693512090830, 10.1177/1176935120908301 | |
11. | Marie Levakova, Effect of spontaneous activity on stimulus detection in a simple neuronal model, 2016, 13, 1551-0018, 551, 10.3934/mbe.2016007 | |
12. | Rimjhim Tomar, Review: Methods of firing rate estimation, 2019, 183, 03032647, 103980, 10.1016/j.biosystems.2019.103980 | |
13. | Marie Levakova, Efficiency of rate and latency coding with respect to metabolic cost and time, 2017, 161, 03032647, 31, 10.1016/j.biosystems.2017.06.005 | |
14. | Saleh Fayaz, Mohammad Amin Fakharian, Ali Ghazizadeh, Alireza Soltani, Stimulus presentation can enhance spiking irregularity across subcortical and cortical regions, 2022, 18, 1553-7358, e1010256, 10.1371/journal.pcbi.1010256 | |
15. | Lubomir Kostal, Kristyna Kovacova, Estimation of firing rate from instantaneous interspike intervals, 2024, 01680102, 10.1016/j.neures.2024.06.006 | |
16. | Katherine Zavez, Ofer Harel, Teaching Statistical Concepts Using Computing Tools: A Review of the Literature, 2025, 2693-9169, 1, 10.1080/26939169.2024.2445541 |