Citation: Joanna Tyrcha, John Hertz. Network inference with hidden units[J]. Mathematical Biosciences and Engineering, 2014, 11(1): 149-165. doi: 10.3934/mbe.2014.11.149
[1] | Shichao Wu, Xianzhou Lv, Yingbo Liu, Ming Jiang, Xingxu Li, Dan Jiang, Jing Yu, Yunyu Gong, Rong Jiang . Enhanced SSD framework for detecting defects in cigarette appearance using variational Bayesian inference under limited sample conditions. Mathematical Biosciences and Engineering, 2024, 21(2): 3281-3303. doi: 10.3934/mbe.2024145 |
[2] | William Chad Young, Adrian E. Raftery, Ka Yee Yeung . A posterior probability approach for gene regulatory network inference in genetic perturbation data. Mathematical Biosciences and Engineering, 2016, 13(6): 1241-1251. doi: 10.3934/mbe.2016041 |
[3] | Xianli Liu, Yongquan Zhou, Weiping Meng, Qifang Luo . Functional extreme learning machine for regression and classification. Mathematical Biosciences and Engineering, 2023, 20(2): 3768-3792. doi: 10.3934/mbe.2023177 |
[4] | Jia Yu, Huiling Peng, Guoqiang Wang, Nianfeng Shi . A topical VAEGAN-IHMM approach for automatic story segmentation. Mathematical Biosciences and Engineering, 2024, 21(7): 6608-6630. doi: 10.3934/mbe.2024289 |
[5] | Mengya Zhang, Qing Wu, Zezhou Xu . Tuning extreme learning machine by an improved electromagnetism-like mechanism algorithm for classification problem. Mathematical Biosciences and Engineering, 2019, 16(5): 4692-4707. doi: 10.3934/mbe.2019235 |
[6] | Xiwen Qin, Dongmei Yin, Xiaogang Dong, Dongxue Chen, Shuang Zhang . Survival prediction model for right-censored data based on improved composite quantile regression neural network. Mathematical Biosciences and Engineering, 2022, 19(8): 7521-7542. doi: 10.3934/mbe.2022354 |
[7] | Chao Ma, Yanfeng Lu . Distributed nonsynchronous event-triggered state estimation of genetic regulatory networks with hidden Markovian jumping parameters. Mathematical Biosciences and Engineering, 2022, 19(12): 13878-13910. doi: 10.3934/mbe.2022647 |
[8] | Jingchi Jiang, Xuehui Yu, Yi Lin, Yi Guan . PercolationDF: A percolation-based medical diagnosis framework. Mathematical Biosciences and Engineering, 2022, 19(6): 5832-5849. doi: 10.3934/mbe.2022273 |
[9] | Michele La Rocca, Cira Perna . Designing neural networks for modeling biological data: A statistical perspective. Mathematical Biosciences and Engineering, 2014, 11(2): 331-342. doi: 10.3934/mbe.2014.11.331 |
[10] | R Nandhini Abiram, P M Durai Raj Vincent . Identity preserving multi-pose facial expression recognition using fine tuned VGG on the latent space vector of generative adversarial network. Mathematical Biosciences and Engineering, 2021, 18(4): 3699-3717. doi: 10.3934/mbe.2021186 |
[1] | Cogn. Sci., 9 (1985), 147-169. |
[2] | IEE Transactions on Automatic Control, AC-19 (1974), 716-723. |
[3] | chapter 11, Cambridge Univ. Press, 2012. |
[4] | J. Roy. Stat. Soc. B, 39 (1977), 1-38. |
[5] | Phys. Rev. E, 87 (2013), 022127. |
[6] | J. Math. Phys., 4 (1963), 294-307. |
[7] | in "Principles of Neural Coding" (eds. S. Panzeri and R. R. Quiroga), CRC Press, (2013), 527-546. |
[8] | chapter 2, World Scientific Lecture Notes in Physics, 9, World Scientific Publishing Co., Inc., Teaneck, NJ, 1987. |
[9] | Neural Computation, 1 (1989), 263-269. |
[10] | Biol. Cybern., 50 (1984), 51-62. |
[11] | Phys. Rev. Lett., 59 (1987), 2229-2232. |
[12] | Phys. Rev. Lett., 106 (2011), 048702. |
[13] | Phys. Rev. E, 79 (2009), 051915. |
[14] | in "Parallel Distributed Processing" (eds. D. E. Rumelhart and J. L. McClelland), Vol. 1, Chapter 8, MIT Press, 1986. |
[15] | J. Art. Intel. Res., 4 (1996), 61-76. |
[16] | Nature, 440 (2006), 1007-1012. |
[17] | Annals of Statistics, 6 (1978), 461-464. |
[18] | Scand. J. Statistics, 1 (1974), 49-58. |
[19] | Phys. Rev. Lett., 35 (1975), 1792-1796. |
[20] | Philos. Mag., 92 (1974), 272-279. |
[21] | Neural Comp., 1 (1989), 270-280. |
1. | B Bravi, P Sollich, Inference for dynamics of continuous variables: the extended Plefka expansion with hidden nodes, 2017, 2017, 1742-5468, 063404, 10.1088/1742-5468/aa657d | |
2. | C Battistin, J Hertz, J Tyrcha, Y Roudi, Belief propagation and replicas for inference and learning in a kinetic Ising model with hidden spins, 2015, 2015, 1742-5468, P05021, 10.1088/1742-5468/2015/05/P05021 | |
3. | Braden A. W. Brinkman, Fred Rieke, Eric Shea-Brown, Michael A. Buice, Jeff Beck, Predicting how and when hidden neurons skew measured synaptic interactions, 2018, 14, 1553-7358, e1006490, 10.1371/journal.pcbi.1006490 | |
4. | Yasser Roudi, Graham Taylor, Learning with hidden variables, 2015, 35, 09594388, 110, 10.1016/j.conb.2015.07.006 | |
5. | Ludovica Bachschmid-Romano, Manfred Opper, Inferring hidden states in a random kinetic Ising model: replica analysis, 2014, 2014, 1742-5468, P06013, 10.1088/1742-5468/2014/06/P06013 | |
6. | Daniel Soudry, Suraj Keshri, Patrick Stinson, Min-hwan Oh, Garud Iyengar, Liam Paninski, Matthias Bethge, Efficient "Shotgun" Inference of Neural Connectivity from Highly Sub-sampled Activity Data, 2015, 11, 1553-7358, e1004464, 10.1371/journal.pcbi.1004464 | |
7. | Christian Donner, Manfred Opper, Inverse Ising problem in continuous time: A latent variable approach, 2017, 96, 2470-0045, 10.1103/PhysRevE.96.062104 | |
8. | Yasser Roudi, Benjamin Dunn, John Hertz, Multi-neuronal activity and functional connectivity in cell assemblies, 2015, 32, 09594388, 38, 10.1016/j.conb.2014.10.011 | |
9. | Danh-Tai Hoang, Junghyo Jo, Vipul Periwal, Data-driven inference of hidden nodes in networks, 2019, 99, 2470-0045, 10.1103/PhysRevE.99.042114 | |
10. | Haiping Huang, Effects of hidden nodes on network structure inference, 2015, 48, 1751-8113, 355002, 10.1088/1751-8113/48/35/355002 | |
11. | Benjamin Dunn, Claudia Battistin, The appropriateness of ignorance in the inverse kinetic Ising model, 2017, 50, 1751-8113, 124002, 10.1088/1751-8121/aa59dc | |
12. | Ludovica Bachschmid-Romano, Manfred Opper, Learning of couplings for random asymmetric kinetic Ising models revisited: random correlation matrices and learning curves, 2015, 2015, 1742-5468, P09016, 10.1088/1742-5468/2015/09/P09016 | |
13. | Francesco Randi, Andrew M. Leifer, Nonequilibrium Green’s Functions for Functional Connectivity in the Brain, 2021, 126, 0031-9007, 10.1103/PhysRevLett.126.118102 | |
14. | Claudia Battistin, Benjamin Dunn, Yasser Roudi, Learning with unknowns: Analyzing biological data in the presence of hidden variables, 2017, 1, 24523100, 122, 10.1016/j.coisb.2016.12.010 | |
15. | David Dahmen, Sonja Grün, Markus Diesmann, Moritz Helias, Second type of criticality in the brain uncovers rich multiple-neuron dynamics, 2019, 116, 0027-8424, 13051, 10.1073/pnas.1818972116 | |
16. | Francesca Puppo, Deborah Pré, Anne G. Bang, Gabriel A. Silva, Super-Selective Reconstruction of Causal and Direct Connectivity With Application to in vitro iPSC Neuronal Networks, 2021, 15, 1662-453X, 10.3389/fnins.2021.647877 | |
17. | Louis-Brahim Beaufort, Pierre-Yves Massé, Antonin Reboulet, Laurent Oudre, Network reconstruction problem for an epidemic reaction--diffusion system, 2022, 10, 2051-1329, 10.1093/comnet/cnac047 | |
18. | Sangwon Lee, Vipul Periwal, Junghyo Jo, Inference of stochastic time series with missing data, 2021, 104, 2470-0045, 10.1103/PhysRevE.104.024119 | |
19. | Weinuo Jiang, Shihong Wang, Detecting hidden nodes in networks based on random variable resetting method, 2023, 33, 1054-1500, 043109, 10.1063/5.0134953 | |
20. | Tong Liang, Braden A. W. Brinkman, Statistically inferred neuronal connections in subsampled neural networks strongly correlate with spike train covariances, 2024, 109, 2470-0045, 10.1103/PhysRevE.109.044404 | |
21. |
Zhongqi Cai, Enrico Gerding, Markus Brede,
Enhanced network inference from sparse incomplete time series through automatically adapted regularization,
2024,
9,
2364-8228,
10.1007/s41109-024-00621-7
|