Loading [Contrib]/a11y/accessibility-menu.js

Basic stage structure measure valued evolutionary game model

  • Received: 01 April 2014 Accepted: 29 June 2018 Published: 01 December 2014
  • MSC : Primary: 91A22, 34G20, 37C25, 92D25.

  • The ideas and techniques developed in [12,3] are extended to a basic stage structured model. Each strategy consists of two stages: a Juvenile (L for larvae), and Adult (A). A general model of this basic stage structure is formulated as a dynamical system on the state space of finite signed measures.Nonnegativity, well-posedness and uniform eventual boundedness are established under biologically natural conditions on the rates. Similar to [12] we also have the unifying of discrete and continuous systems and the containment of the classic nonlinearities.

    Citation: John Cleveland. Basic stage structure measure valued evolutionary game model[J]. Mathematical Biosciences and Engineering, 2015, 12(2): 291-310. doi: 10.3934/mbe.2015.12.291

    Related Papers:

    [1] Michiel Bertsch, Masayasu Mimura, Tohru Wakasa . Modeling contact inhibition of growth: Traveling waves. Networks and Heterogeneous Media, 2013, 8(1): 131-147. doi: 10.3934/nhm.2013.8.131
    [2] Tong Li . Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8(3): 773-781. doi: 10.3934/nhm.2013.8.773
    [3] Avner Friedman . PDE problems arising in mathematical biology. Networks and Heterogeneous Media, 2012, 7(4): 691-703. doi: 10.3934/nhm.2012.7.691
    [4] Pierre Degond, Sophie Hecht, Nicolas Vauchelet . Incompressible limit of a continuum model of tissue growth for two cell populations. Networks and Heterogeneous Media, 2020, 15(1): 57-85. doi: 10.3934/nhm.2020003
    [5] Leonid Berlyand, Mykhailo Potomkin, Volodymyr Rybalko . Sharp interface limit in a phase field model of cell motility. Networks and Heterogeneous Media, 2017, 12(4): 551-590. doi: 10.3934/nhm.2017023
    [6] Andrea Corli, Lorenzo di Ruvo, Luisa Malaguti, Massimiliano D. Rosini . Traveling waves for degenerate diffusive equations on networks. Networks and Heterogeneous Media, 2017, 12(3): 339-370. doi: 10.3934/nhm.2017015
    [7] Hiroshi Matano, Ken-Ichi Nakamura, Bendong Lou . Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit. Networks and Heterogeneous Media, 2006, 1(4): 537-568. doi: 10.3934/nhm.2006.1.537
    [8] Arnaud Ducrot, Michel Langlais, Pierre Magal . Multiple travelling waves for an $SI$-epidemic model. Networks and Heterogeneous Media, 2013, 8(1): 171-190. doi: 10.3934/nhm.2013.8.171
    [9] Don A. Jones, Hal L. Smith, Horst R. Thieme . Spread of viral infection of immobilized bacteria. Networks and Heterogeneous Media, 2013, 8(1): 327-342. doi: 10.3934/nhm.2013.8.327
    [10] François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik . A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Networks and Heterogeneous Media, 2013, 8(1): 275-289. doi: 10.3934/nhm.2013.8.275
  • The ideas and techniques developed in [12,3] are extended to a basic stage structured model. Each strategy consists of two stages: a Juvenile (L for larvae), and Adult (A). A general model of this basic stage structure is formulated as a dynamical system on the state space of finite signed measures.Nonnegativity, well-posedness and uniform eventual boundedness are established under biologically natural conditions on the rates. Similar to [12] we also have the unifying of discrete and continuous systems and the containment of the classic nonlinearities.


    [1] Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 917-928.
    [2] Math. Models Methods Appl. Sci., 9 (1999), 1379-1391.
    [3] submitted JDE.
    [4] Springer-Verlag, 1994.
    [5] The American Naturalist, 177 (2011), 397-409.
    [6] J. Math. Biol., 27 (1989), 179-190.
    [7] Ann. Rev. Ecol. Evol. Syst., 38 (2007), 403-435.
    [8] J. Math. Biol., 48 (2004), 135-159.
    [9] J. Math. Biol., 54 (2007), 489-511.
    [10] Theoretical Population Biology, 69 (2006), 297-321.
    [11] Cambridge University Press, Cambridge, 1994.
    [12] Nonlinear Anal. Real World Appl., 14 (2013), 785-797.
    [13] Math. Model. Nat. Phenom., 1 (2006), 65-82.
    [14] Integr. Equ. Oper. Theory, 63 (2009), 351-371.
    [15] Journal of mathematical biology, 63 (2011), 493-517.
    [16] Biology Direct, 1 (2006), 1-19.
    [17] PNAS, 54 (1965), 731-736.
    [18] Ecology, 63 (1982), 607-615.
    [19] Secaucus, New Jersey, Springer Verlag, 1983.
    [20] Belknap Press, 2006.
    [21] Frontiers in Mathematics series, Birkhauser, 2007.
    [22] Monatsh. Math., 165 (2012), 117-144.
    [23] Acta Appl. Math., 114 (2011), 1-14.
    [24] Nature, 246 (1973), 15-18.
    [25] Princeton University Press, 2003.
    [26] Math. Biosci., 180 (2002), 207-235.
  • This article has been cited by:

    1. Robert Kersner, Mihály Klincsik, Dinara Zhanuzakova, A competition system with nonlinear cross-diffusion: exact periodic patterns, 2022, 116, 1578-7303, 10.1007/s13398-022-01299-1
    2. Gonzalo Galiano, Sergey Shmarev, Julian Velasco, Existence and multiplicity of segregated solutions to a cell-growth contact inhibition problem, 2015, 35, 1553-5231, 1479, 10.3934/dcds.2015.35.1479
    3. Hideki Murakawa, Hideru Togashi, Continuous models for cell–cell adhesion, 2015, 374, 00225193, 1, 10.1016/j.jtbi.2015.03.002
    4. G. Svantnerné Sebestyén, István Faragó, Róbert Horváth, R. Kersner, M. Klincsik, Stability of patterns and of constant steady states for a cross-diffusion system, 2016, 293, 03770427, 208, 10.1016/j.cam.2015.03.041
    5. M. BERTSCH, D. HILHORST, H. IZUHARA, M. MIMURA, T. WAKASA, Travelling wave solutions of a parabolic-hyperbolic system for contact inhibition of cell-growth, 2015, 26, 0956-7925, 297, 10.1017/S0956792515000042
    6. Benoît Perthame, Min Tang, Nicolas Vauchelet, Traveling wave solution of the Hele–Shaw model of tumor growth with nutrient, 2014, 24, 0218-2025, 2601, 10.1142/S0218202514500316
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2501) PDF downloads(533) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog