Research article

An effective homotopy analysis method to solve the cubic isothermal auto-catalytic chemical system

  • We established an effective algorithm for the homotopy analysis method (HAM) to solve a cubic isothermal auto-catalytic chemical system (CIACS). Our solution comes in a rapidly convergent series where the intervals of convergence given by h-curves and to find the optimal values of h, we used the averaged residual errors. The HAM solutions are compared with the solutions obtained by Mathematica in-built numerical solver. We also show the behavior of the HAM solution.

    Citation: K. M. Saad, O. S. Iyiola, P. Agarwal. An effective homotopy analysis method to solve the cubic isothermal auto-catalytic chemical system[J]. AIMS Mathematics, 2018, 3(1): 183-194. doi: 10.3934/Math.2018.1.183

    Related Papers:

    [1] Fangyuan Chen, Rong Yuan . Dynamic behavior of swine influenza transmission during the breed-slaughter process. Mathematical Biosciences and Engineering, 2020, 17(5): 5849-5863. doi: 10.3934/mbe.2020312
    [2] Aurelie Akossi, Gerardo Chowell-Puente, Alexandra Smirnova . Numerical study of discretization algorithms for stable estimation of disease parameters and epidemic forecasting. Mathematical Biosciences and Engineering, 2019, 16(5): 3674-3693. doi: 10.3934/mbe.2019182
    [3] Kasia A. Pawelek, Anne Oeldorf-Hirsch, Libin Rong . Modeling the impact of twitter on influenza epidemics. Mathematical Biosciences and Engineering, 2014, 11(6): 1337-1356. doi: 10.3934/mbe.2014.11.1337
    [4] Meili Li, Ruijun Zhai, Junling Ma . The effects of disease control measures on the reproduction number of COVID-19 in British Columbia, Canada. Mathematical Biosciences and Engineering, 2023, 20(8): 13849-13863. doi: 10.3934/mbe.2023616
    [5] Karen R. Ríos-Soto, Baojun Song, Carlos Castillo-Chavez . Epidemic spread of influenza viruses: The impact of transient populations on disease dynamics. Mathematical Biosciences and Engineering, 2011, 8(1): 199-222. doi: 10.3934/mbe.2011.8.199
    [6] Rodolfo Acuňa-Soto, Luis Castaňeda-Davila, Gerardo Chowell . A perspective on the 2009 A/H1N1 influenza pandemic in Mexico. Mathematical Biosciences and Engineering, 2011, 8(1): 223-238. doi: 10.3934/mbe.2011.8.223
    [7] Qingling Zeng, Kamran Khan, Jianhong Wu, Huaiping Zhu . The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season. Mathematical Biosciences and Engineering, 2007, 4(4): 739-754. doi: 10.3934/mbe.2007.4.739
    [8] Akhil Kumar Srivastav, Pankaj Kumar Tiwari, Prashant K Srivastava, Mini Ghosh, Yun Kang . A mathematical model for the impacts of face mask, hospitalization and quarantine on the dynamics of COVID-19 in India: deterministic vs. stochastic. Mathematical Biosciences and Engineering, 2021, 18(1): 182-213. doi: 10.3934/mbe.2021010
    [9] Hiroshi Nishiura . Joint quantification of transmission dynamics and diagnostic accuracy applied to influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 49-64. doi: 10.3934/mbe.2011.8.49
    [10] Oren Barnea, Rami Yaari, Guy Katriel, Lewi Stone . Modelling seasonal influenza in Israel. Mathematical Biosciences and Engineering, 2011, 8(2): 561-573. doi: 10.3934/mbe.2011.8.561
  • We established an effective algorithm for the homotopy analysis method (HAM) to solve a cubic isothermal auto-catalytic chemical system (CIACS). Our solution comes in a rapidly convergent series where the intervals of convergence given by h-curves and to find the optimal values of h, we used the averaged residual errors. The HAM solutions are compared with the solutions obtained by Mathematica in-built numerical solver. We also show the behavior of the HAM solution.



    [1] S. Abbasbandy and M. Jalili, Determination of optimal convergence-control parameter value in homotopy analysis method, Numer. Algorithms, 64 (2013), 593-605.
    [2] S. Abbasbandya, E. Shivaniana and K. Vajravelub, Mathematical properties of h-curve in the frame work of the homotopy analysis method, Commun. Nonlinear Sci., 16 (2011), 4268-4275.
    [3] S. M. Abo-Dahab, S. Mohamed and T. A. Nofal, A One Step Optimal Homotopy Analysis Method for propagation of harmonic waves in nonlinear generalized magneto-thermoelasticity with two relaxation times under influence of rotation, Abstr. Appl. Anal., 2013 (2013), 1-14.
    [4] A. Sami Bataineh, M. S. M. Noorani and I. Hashim, The homotopy analysis method for Cauchy reaction diffusion problems, Phys. Lett. A, 372 (2008), 613-618.
    [5] K. A. Gepreel and M. S. Mohamed, An optimal homotopy analysis method nonlinear fractional differential equation, Journal of Advanced Research in Dynamical and Control Systems, 6 (2014), 1-10.
    [6] M. Ghanbari, S. Abbasbandy and T. Allahviranloo, A new approach to determine the convergencecontrol parameter in the application of the homotopy analysis method to systems of linear equations, Appl. Comput. Math., 12 (2013), 355-364.
    [7] J. H. Merkin, D. J. Needham and S. K. Scott, Coupled reaction-diffusion waves in an isothermal autocatalytic chemical system, IMA J. Appl. Math., 50 (1993), 43-76.
    [8] O. S. Iyiola, A numerical study of ito equation and Sawada-Kotera equation both of time-fractional type, Adv. Math., 2 (2013), 71-79.
    [9] O. S. Iyiola, A fractional diffusion equation model for cancer tumor, American Institute of Physics Advances, 4 (2014), 107121.
    [10] O. S. Iyiola, Exact and Approximate Solutions of Fractional Diffusion Equations with Fractional Reaction Terms, Progress in Fractional Di erentiation and Applications, 2 (2016), 21-30.
    [11] O. S. Iyiola and G. O. Ojo, On the analytical solution of Fornberg-Whitham equation with the new fractional derivative, Pramana, 85 (2015), 567-575.
    [12] O.S. Iyiola, O. Tasbozan, A. Kurt, et al. On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion, Chaos, Solitons and Fractals, 94 (2017), 1-7.
    [13] S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University, 1992.
    [14] S. J. Liao, Beyond perturbation: introduction to the homotopy analysis method, Boca Raton: Chapman and Hall/CRC Press, 2003.
    [15] S. J. Liao, An optimal homotopy analysis approach for strongly nonlinear differential equations, Commun. Nonlinear Sci., 15 (2010), 2003-2016.
    [16] M. Russo and R. V. Gorder, Control of error in the homotopy analysis of nonlinear Klein-Gordon initial value problems, Appl. Math. Comput., 219 (2013), 6494-6509.
    [17] K. M. Saad, An approximate analytical solutions of coupled nonlinear fractional diffusion equations, Journal of Fractional Calculus and Applications, 5 (2014), 58-72.
    [18] K. M. Saad, E. H. AL-Shareef, S. Mohamed, et al. Optimal q-homotopy analysis method for timespace fractional gas dynamics equation, Eur. Phys. J. Plus, 132 (2017), 23.
    [19] K. M. Saad and A. A. AL-Shomrani, An application of homotopy analysis transform method for riccati differential equation of fractional order, Journal of Fractional Calculus and Applications, 7 (2016), 61-72.
    [20] M. Shaban, E. Shivanian and S. Abbasbandy, Analyzing magneto-hydrodynamic squeezing flow between two parallel disks with suction or injection by a new hybrid method based on the Tau method and the homotopy analysis method, Eur. Phys. J. Plus, 128 (2013), 133.
    [21] E. Shivanian and S. Abbasbandy, Predictor homotopy analysis method: Two points second order boundary value problems, Nonlinear Anal-Real, 15 (2014), 89-99.
    [22] E. Shivanian, H. H. Alsulami, M. S Alhuthali, et al. Predictor Homotopy Analysis Method (Pham) for Nano Boundary Layer Flows with Nonlinear Navier Boundary Condition: Existence of Four Solutions, Filomat, 28 (2014), 1687-1697.
    [23] L. A. Soltania, E. Shivanianb and R. Ezzatia, Convection-radiation heat transfer in solar heat exchangers filled with a porous medium: Exact and shooting homotopy analysis solution, Appl. Therm. Eng., 103 (2016), 537-542.
    [24] H. Vosoughi, E. Shivanian and S. Abbasbandy, Unique and multiple PHAM series solutions of a class of nonlinear reactive transport model, Numer. Algorithms, 61 (2012), 515-524.
    [25] H. Vosughi, E. Shivanian and S. Abbasbandy, A new analytical technique to solve Volterra's integral equations, Math. methods appl. sci., 34 (2011), 1243-1253.
    [26] M. Yamashita, K. Yabushita and K. Tsuboi, An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method, J. Phys. A, 40 (2007), 8403-8416.
    [27] X. Zhang, P. Agarwal, Z. Liu, et al. Existence and uniqueness of solutions for stochastic differential equations of fractional-order q > 1 with finite delays, Adv. Di er. Equ-NY, 123 (2017), 1-18.
    [28] M. Ruzhansky, Y. J. Cho, P. Agarwal, et al. Advances in Real and Complex Analysis with Applications, Springer Singapore, 2017.
    [29] S. Salahshour, A. Ahmadian, N. Senu, et al. On analytical solutions of the fractional differential equation with uncertainty: application to the Basset problem, Entropy, 17 (2015), 885-902.
  • This article has been cited by:

    1. Md. Samsuzzoha, Manmohan Singh, David Lucy, A numerical study on an influenza epidemic model with vaccination and diffusion, 2012, 219, 00963003, 122, 10.1016/j.amc.2012.04.089
    2. S. Dorjee, Z. Poljak, C. W. Revie, J. Bridgland, B. McNab, E. Leger, J. Sanchez, A Review of Simulation Modelling Approaches Used for the Spread of Zoonotic Influenza Viruses in Animal and Human Populations, 2013, 60, 18631959, 383, 10.1111/zph.12010
    3. Jon Brugger, Christian L. Althaus, Transmission of and susceptibility to seasonal influenza in Switzerland from 2003 to 2015, 2020, 30, 17554365, 100373, 10.1016/j.epidem.2019.100373
    4. Hiroshi Nishiura, Ping Yan, Candace K. Sleeman, Charles J. Mode, Estimating the transmission potential of supercritical processes based on the final size distribution of minor outbreaks, 2012, 294, 00225193, 48, 10.1016/j.jtbi.2011.10.039
    5. Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng, 2019, Chapter 9, 978-1-4939-9826-5, 311, 10.1007/978-1-4939-9828-9_9
    6. Rodolfo Acuna-Soto, 2009, Chapter 9, 978-90-481-2312-4, 189, 10.1007/978-90-481-2313-1_9
    7. Parameter estimation and uncertainty quantification for an epidemic model, 2012, 9, 1551-0018, 553, 10.3934/mbe.2012.9.553
    8. Y. Yang, J. D. Sugimoto, M. E. Halloran, N. E. Basta, D. L. Chao, L. Matrajt, G. Potter, E. Kenah, I. M. Longini, The Transmissibility and Control of Pandemic Influenza A (H1N1) Virus, 2009, 326, 0036-8075, 729, 10.1126/science.1177373
    9. Gerardo Chowell, Fred Brauer, 2009, Chapter 1, 978-90-481-2312-4, 1, 10.1007/978-90-481-2313-1_1
    10. Chaeshin Chu, Junehawk Lee, Dong Hoon Choi, Seung-Ki Youn, Jong-Koo Lee, Sensitivity Analysis of the Parameters of Korea’s Pandemic Influenza Preparedness Plan, 2011, 2, 22109099, 210, 10.1016/j.phrp.2011.11.048
    11. Tridip Sardar, Soumalya Mukhopadhyay, Amiya Ranjan Bhowmick, Joydev Chattopadhyay, Alessandro Vespignani, An Optimal Cost Effectiveness Study on Zimbabwe Cholera Seasonal Data from 2008–2011, 2013, 8, 1932-6203, e81231, 10.1371/journal.pone.0081231
    12. Lisa Sattenspiel, Regional patterns of mortality during the 1918 influenza pandemic in Newfoundland, 2011, 29, 0264410X, B33, 10.1016/j.vaccine.2011.02.046
    13. Ian York, Ruben O. Donis, 2012, Chapter 221, 978-3-642-36870-7, 241, 10.1007/82_2012_221
    14. Charlotte Jackson, Emilia Vynnycky, Punam Mangtani, The Relationship Between School Holidays and Transmission of Influenza in England and Wales, 2016, 184, 0002-9262, 644, 10.1093/aje/kww083
    15. Gerardo Chowell, Hiroshi Nishiura, Quantifying the transmission potential of pandemic influenza, 2008, 5, 15710645, 50, 10.1016/j.plrev.2007.12.001
    16. Maciej F Boni, Bui Huu Manh, Pham Quang Thai, Jeremy Farrar, Tran Tinh Hien, Nguyen Tran Hien, Nguyen Van Kinh, Peter Horby, Modelling the progression of pandemic influenza A (H1N1) in Vietnam and the opportunities for reassortment with other influenza viruses, 2009, 7, 1741-7015, 10.1186/1741-7015-7-43
    17. Nadhem Selmi, A model of the 2014 Ebola virus: Evidence of West Africa, 2019, 010, 10.29328/journal.ijcv.1001004
    18. Leonardo López, Germán Burguerner, Leonardo Giovanini, Addressing population heterogeneity and distribution in epidemics models using a cellular automata approach, 2014, 7, 1756-0500, 10.1186/1756-0500-7-234
    19. I. De Falco, A. Della Cioppa, U. Scafuri, E. Tarantino, 2021, 9780128245361, 75, 10.1016/B978-0-12-824536-1.00005-8
    20. Imelda Trejo, Nicolas W. Hengartner, Alberto d’Onofrio, A modified Susceptible-Infected-Recovered model for observed under-reported incidence data, 2022, 17, 1932-6203, e0263047, 10.1371/journal.pone.0263047
    21. Ella Ziegler, Katarina L. Matthes, Peter W. Middelkamp, Verena J. Schuenemann, Christian L. Althaus, Frank Rühli, Kaspar Staub, Retrospective modelling of the disease and mortality burden of the 1918–1920 influenza pandemic in Zurich, Switzerland, 2025, 50, 17554365, 100813, 10.1016/j.epidem.2025.100813
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5434) PDF downloads(1115) Cited by(24)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog