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Abstract: We established an effective algorithm for the homotopy analysis method (HAM) to solve a
cubic isothermal auto-catalytic chemical system (CIACS). Our solution comes in a rapidly convergent
series where the intervals of convergence given by h-curves and to find the optimal values of h, we
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1. Introduction

Recently, Merkin et al. in [7] considered the following reaction-diffusion traveling waves system in
region I as follows: for quadratic autocatalytic reaction

A + B→ 2B(rate k1ab), (1.1)

together with a linear decay step
B→ C(rate k2b), (1.2)

for cubic autocatalytic reaction
A + 2B→ 3B(rate k3ab2) (1.3)
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together with a linear decay step
B→ C(rate k4b), (1.4)

where a and b are concentrations of reactant A and auto-catalyst B, ki(i = 1, 4) are the rate constants
and C is some inert product of reaction. On the region II we assume that only the (1.1) and (1.3) are
taking place for quadratic autocatalytic reaction and cubic autocatalytic reaction respectively. Here,
we consider the following system for the dimensionless concentrations (α1, β1) and (α2, β2) in region I
and II of species A and B, respectively with x > 0 and t > 0:

∂α1

∂t
=

∂2α1

∂x2 − α1β
2
1, (1.5)

∂β1

∂t
=

∂2β1

∂x2 + α1β
2
1 − kβ1 + γ(β2 − β1), (1.6)

∂α2

∂t
=

∂2α2

∂x2 − α2β
2
2, (1.7)

∂β2

∂t
=

∂2β2

∂x2 + α2β
2
2 + γ(β1 − β2), (1.8)

with the boundary conditions

αi(0, t) = αi(L, t) = 1, βi(0, t) = βi(L, t) = 0, (1.9)

where k and γ are the strength of the auto-catalyst decay and the coupling between the two regions
respectively.

The present paper is organized as follows: In section-2, we described the idea of the standard HAM.
Section-3, is devoted to the application of HAM to CIACS and Section-4, devoted to the numerical
results. In the last section, we summarized the result in the conclusion.

2. Basic idea of HAM

In recent years, many authors presented homotopy analysis method and its application for differen-
tial equations in many ways (see, for example, [6, 13, 14, 26, 27, 28, 29] and also see for recent results
[2, 12, 20, 21, 22, 23, 24, 25]). After motivation with above mentioned works here we consider the
following nonlinear differential equation:

N[y(t)] = 0, t ≥ 0, (2.10)

where N is nonlinear differential operator and y(t) is an unknown function. Liao [14] constructed the
so-called zeroth-order deformation equation :

(1 − q)L[φ(t; q) − y0(t)] = qhH(t)N[φ(t; q)], (2.11)

where in the following, q ∈ [0, 1], h , 0, H(t) , 0, L, φ(t; q) be the embedding parameter, auxiliary
parameter, auxiliary function, auxiliary linear operator and, respectively, and y0(t) be an initial guess
for y(t) which satisfies the initial conditions. Clearly, when q = 0 and q = 1, the following relations
hold respectively

φ(t; 0) = y0(t), φ(t; 1) = y(t).
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Expanding φ(t; q) in Taylor series with respect to q, one has

φ(t; q) = y0(t) +

∞∑
m=1

ym(t)qm, (2.12)

where
ym(t) =

1
m!

∂mφ(t; q)
∂qm

∣∣∣∣∣
q=0
.

Let us assume that the h, H(t), y0(t) and L are selected such that the series (2.12) converges at q = 1,
and one has

y(t) = y0(t) +

∞∑
m=1

ym(t). (2.13)

We can deduce the governing equation from the zero order deformation equation by defining the vector

−→yn = {y0(t), y1(t), y2(t), . . . , yn(t)}.

Differentiating (2.11), m-times with respect to q, then by choosing q = 0 and dividing by m!, we get
the so-called mth-order deformation equation

L[ym(t) − χmym−1(t)] = ~H(t)Rm(−→y m−1(t)), m = 1, 2, 3, ...., n, (2.14)

where

Rm(−→y m−1) =
1

(m − 1)!
∂m−1N[φ(t; q)]

∂qm−1 |q=0, (2.15)

and

χm =

{
0, m ≤ 1
1, m > 1

More detailed analysis of HAM and the modified version of it together with various applications
could be found in [4, 8, 9, 10, 11, 17, 18, 19].

3. HAM solution of CIACS

Here, we apply the HAM on CIACS. We take the initial conditions to satisfy the boundary condi-
tions, namely

αi(x, 0) = 1 −
∞∑

n=1

ani cos(0.5(L − 2x)λn) sin(λnL/2), (i = 1, 2), (3.16)

βi(x, 0) =

∞∑
n=1

bni cos(0.5(L − 2x)λn) sin(λnL/2), (i = 1, 2), (3.17)

where λn = nπ
L . The HAM is based on a kind of continuous mapping

αi(x, t)→ φi(x, t; q), βi(x, t)→ ψi(x, t; q)

such that, as the embedding parameter q increases from 0 to 1, φi(x, t; q), ψi(x, t; q) and i = 1, 2 varies
from the initial approximation to the exact solution.
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We define the nonlinear operators

Ni(φi(x, t; q)) = φi,t(x, t; q) − φi,xx(x, t; q) + φi(x, t; q)ψ2
i (x, t; q),

Mi(ψi(x, t; q)) = ψi,t(x, t; q) − ψi,xx(x, t; q) + (−2(i − 1)k + ik)ψi(x, t; q)
+(−1)iγ(ψ1(x, t; q) − ψ2(x, t; q)) − φi(x, t; q)ψ2

i (x, t; q),

Now, we construct a set of equations, using the embedding parameter q

(1 − q)Li(φi(x, t; q) − αi0(x, t)) = qhH(x, t)Ni(φi(x, t; q)),

(1 − q)Li(ψi(x, t; q) − βi0(x, t)) = qhH(x, t)Mi(ψi(x, t; q)),

with the initial conditions

φi(x, 0; q) = αi0(x, 0), ψi(x, 0; q) = βi0(x, 0), (i = 1, 2)

Where h , 0 and H(x, t) , 0 are the auxiliary parameter and function, respectively. We expand
φi(x, t; q) and ψi(x, t; q) in a Taylor series with respect to q, and get

φi(x, t; q) = αi0(x, t) +

∞∑
m=1

αim(x, t)qm, (3.18)

ψi(x, t; q) = βi0(x, t) +

∞∑
m=1

βim(x, t)qm, (3.19)

where
αim(x, t) =

1
m!

∂mφi(x, t; q)
∂qm |q=0,

βim(x, t) =
1

m!
∂mψi(x, t; q)

∂qm |q=0.

Let q = 1 into (3.18)–(3.19), the series become

αi(x, t) = αi0(x, t) +

∞∑
m=1

αim(x, t),

βi(x, t) = βi0(x, t) +

∞∑
m=1

βim(x, t).

Now, we construct the mth-order deformation equation from (2.14)–(2.15) as follows:

Li(αim(x, t) − Xmαi(m−1)(x, t)) = hH(x, t)R1((~αi(m−1), ~βi(m−1))),

Li(βim(x, t) − Xmβi(m−1)(x, t)) = hH(x, t)R2((~αi(m−1), ~βi(m−1))),

with the initial conditions αim(x, 0) = 0, βim(x, 0) = 0,m > 1 where

R1((~αi(m−1), ~βi(m−1))) =
∂αi(m−1)

∂t
−
∂2αi(m−1)

∂x2 +

m−1∑
r=0

r∑
j=0

αi(m−1−r)βi( j)βi(r− j),
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R2((~αi(m−1), ~βi(m−1))) =
∂βi(m−1)

∂t
−
∂2βi(m−1)

∂x2 + (−2(i − 1)k + ik)βi(m−1)

+ (−1)iγ(β1(m−1) − β2(m−1)) −
m−1∑
r=0

r∑
j=0

αi(m−1−r)βi( j)βi(r− j).

If we take Li = d
dt , (i = 1, 2) then the right inverse of Li = d

dt will be
∫ t

0
(.)dτ

αim = Xmαi(m−1) + h
∫ t

0

∂αi(m−1)

∂τ
−
∂2αi(m−1)

∂x2 +

m−1∑
r=0

r∑
j=0

αi(m−1−r)βi( j)βi(r− j)

 dτ, (3.20)

βim =Xmβi(m−1) + h
∫ t

0

(
∂βi(m−1)

∂τ
−
∂2βi(m−1)

∂x2 + (−2(i − 1)k + ik)βi(m−1)

)
dτ

+ h
∫ t

0

(−1)iγ(β1(m−1) − β2(m−1)) −
m−1∑
r=0

r∑
j=0

αi(m−1−r)βi( j)βi(r− j)

 dτ.
(3.21)

Let the initial approximation

αi0(x, t) = αi0(x, 0), βi0(x, t) = βi0(x, 0). (3.22)

For m = 1, we obtain the first approximation as following:

αi1 = h
∫ t

0

(
∂αi0

∂τ
−
∂2αi0

∂x2 + αi0β
2
0i

)
dτ, (3.23)

βi1 = h
∫ t

0

(
∂βi0

∂τ
−
∂2βi0

∂x2 + (2 − i)kβi0 + (−1)iγ(β10 − β20) − αi0β
2
0i

)
dτ. (3.24)

4. Numerical results

Here, we compute the average residual error and the residual error and investigate the intervals of
convergence by the h-curves. Finally, we checked the accuracy of the HAM solutions by comparing
with another numerical method. The first approximation of αi1(x, t) and βi1(x, t) are

αi,1(x, t) =

∞∑
n=1

λ2
nani cos(δn) sin(λnL/2)ht + αi0(x, t)βi0(x, t)2ht, (4.25)

βi,1(x, t) =

∞∑
n=1

λ2
nbni cos(δn) sin(λnL/2)ht + (2 − i)k

∞∑
n=1

bni cos(δn) sin(λnL/2)ht

+(−1)iγ

 ∞∑
n=1

bni cos(δn) sin(λnL/2) −
∞∑

n=1

bni cos(δn) sin(λnL/2)

 ht (4.26)

−αi0(x, t)βi0(x, t)2ht,

αi0(x, t)βi0(x, t)2 =

∞∑
n=1

∞∑
m=1

bnibmi cos(δn) sin(λnL/2) cos(δm) sin(λmL/2)ht
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−

∞∑
n=1

∞∑
m=1

∞∑
r=1

bnibmi cos(δn) sin(λnL/2)bmi cos(δm) sin(λmL/2)ht (4.27)

×bri cos(δr) sin(λrL/2)ht,

δn = (0.5(L − 2x)λn), δm = (0.5(L − 2x)λm), δr = (0.5(L − 2x)λr), (4.28)

λm =
mπ
L
, λr =

rπ
L
. (4.29)

And so on, in the same manner the rest of approximations can be obtained using the Mathematica
package.

4.1. H-curves

To observe the intervals of convergence of the HAM solutions, we plot the h-curves of 4, 5, 6 terms
of HAM solutions in Figure 1(a)-(d). In Figure 1, we plot α1t(x, 0), β1t(x, 0), α2t(x, 0) and β2t(x, 0)
against h respectively at k = 0.1, γ = 0.2, L = 100, x = 3, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 =

0.002. From these figures, we note that the straight line that parallels the h-axis gives the valid region
of the convergence [14].
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Figure 1. The h-curve of the HAM solutions at k = 0.1, γ = 0.2, L = 100, x = 3, an1 =

0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002. Red colour = 4 terms of HAM; blue colour = 5
terms of HAM; black colour=6 terms of HAM.
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4.2. Average residual errors

We notice that h-curve does not give the best value for the h. Therefore, we evaluate its optimal
values by the min of the averaged residual errors [1, 3, 5, 12, 15, 16, 26].

Eαi(h) =
1

NM

N∑
s=0

M∑
j=0

N  m∑
k=0

αik

(
100s

N
,

30 j
M

)2

, (4.30)

Eβi(h) =
1

NM

N∑
s=0

M∑
j=0

M  m∑
k=0

βik

(
100s

N
,

30 j
M

)2

, (4.31)

corresponding to a nonlinear algebraic equations

dEαi(h)
dh

= 0, (4.32)

dEβi(h)
dh

= 0. (4.33)

We represent Eαi(h) and Eβi(h) in Figure 2(a)-(d) and in Tables 1–4. Figure 2 and Tables 1–4 show
that the Eαi(h) and Eβi(h) for 2,3,4,5,6 terms HAM solutions. We set into (4.32)–(4.33) N = 100 and
M = 30 with k = 0.1, γ = 0.2, L = 100, x = 3, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002. We
use the command FinMinimum of Mathematica to get the optimal values h.
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Figure 2. The averaged residual errors at the 2-terms of the HAM solutions for k = 0.01, γ =

0.2, L = 10, an1 = 0.1, an2 = 0.2, bn1 = 0.001, bn2 = 0.002.
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Table 1. Optimal values of h for HAM solutions of α1(x, t) at k = 0.1, γ = 0.2, L = 100, x =

3, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002.

n: order of approximation Optimal value of h Minimum of Eh

2 −0.399724 6.23104 × 10−12

3 −0.378156 6.02476 × 10−12

4 −0.320798 3.82622 × 10−12

5 −0.32709 1.2731 × 10−12

6 −0.32709 4.78525 × 10−13

Table 2. Optimal values of h for HAM solutions of β1(x, t) at k = 0.1, γ = 0.2, L = 100, x =

3, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002.

n Order of approximation optimal value of h Minimum of Eh

2 −0.0646909 2.12988 × 10−9

3 −0.20011 7.83913 × 10−9

4 −0.0260946 1.87616 × 10−9

5 −0.17643 2.75854 × 109

6 −0.214688 1.01712 × 10−9

Table 3. Optimal values of h for HAM solutions of α2(x, t) at k = 0.1, γ = 0.2, L = 100, x =

3, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002.

n Order of approximation Optimal value of h Minimum of Eh

2 −0.800101 1.88411 × 10−11

3 −0.379343 1.30557 × 10−11

4 −0.334314 1.09502 × 10−11

5 −0.308251 5.49629 × 10−12

6 −0.308251 2.38494 × 10−12

Table 4. Optimal values of h for HAM solutions of β2(x, t) at k = 0.1, γ = 0.2, L = 100, x =

3, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002.

n: order of approximation Optimal value of h Minimum of Eh

2 −0.148972 7.96584 × 10−9

3 −0.217548 2.29262 × 10−9

4 −0.183626 1.92719 × 10−9

5 −0.214688 1.90675 × 10−9

6 −0.201338 8.18422 × 10−10
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Figure 3. The comparison of the 5-terms of the HAM solutions with numerical method in
Mathematica for hα1 = −0.30, hβ1 = −0.18, hα2 = −0.30, hβ2 = −0.21, k = 0.1, γ = 0.2, L =

100, x = 3, an1 = 0.001, an2 = 0.002, bn1 = 0.001, bn2 = 0.002.

Figure 4. The 3-terms of the HAM solutions for k = 0.1, γ = 0.2, L = 100, an1 = 0.1, an2 =

0.2, bn1 = 0.1, bn2 = 0.2.

AIMS Mathematics Volume 3, Issue 1, 183–194



192

4.3. Comparison analysis

Now, we compare 5-terms of HAM solutions obtained with a numerical method using the com-
mands with Mathematica 9 for solving the system of partial differential equations numerically. We plot
the 5-terms of HAM solutions in Figure 3. Figure 3 shows the comparison of HAM solutions HAM
solutions with numerical method for k = 0.1, γ = 0.2, L = 100, x = 3, an1 = 0.001, an2 = 0.002, bn1 =

0.001, bn2 = 0.002. We noted from this figure that the HAM solutions have a good agreement with the
numerical method. Figure 4 shows the 3-terms HAM solutions obtained.

5. Conclusion

In the present research, the HAM was employed to analytically compute approximate solutions of
CIACS. By comparing these approximate solutions with numerical solutions and the averaged residual
error were found. We show the convergence region by h-curves. The agreement with the numerical
solutions are very good. The results show that HAM accurate for solving CIACS. By increasing the
number of iterations one can reach any desired accuracy. In this paper, we used Mathematica 9 in all
calculations.
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