
Citation: Ling Wang, Shunbin Ning. “Toll-free” pathways for production of type I interferons[J]. AIMS Allergy and Immunology, 2017, 1(3): 143-163. doi: 10.3934/Allergy.2017.3.143
[1] | Ryuta Muromoto, Kenji Oritani, Tadashi Matsuda . Tyk2-mediated homeostatic control by regulating the PGE2-PKA-IL-10 axis. AIMS Allergy and Immunology, 2021, 5(3): 175-183. doi: 10.3934/Allergy.2021013 |
[2] | Declan P. McKernan . Toll-like receptors and immune cell crosstalk in the intestinal epithelium. AIMS Allergy and Immunology, 2019, 3(1): 13-31. doi: 10.3934/Allergy.2019.1.13 |
[3] | Stephen C Allen . Cytokine signaling in the modulation of post-acute and chronic systemic inflammation: a review of the influence of exercise and certain drugs. AIMS Allergy and Immunology, 2020, 4(4): 100-116. doi: 10.3934/Allergy.2020009 |
[4] | Waleed M. Hussein, Phil M. Choi, Cheng Zhang, Emma Sierecki, Wayne Johnston, Zhongfan Jia, Michael J. Monteiro, Mariusz Skwarczynski, Yann Gambin, Istvan Toth . Investigating the affinity of poly tert-butyl acrylate toward Toll-Like Receptor 2. AIMS Allergy and Immunology, 2018, 2(3): 141-147. doi: 10.3934/Allergy.2018.3.141 |
[5] | Mansur Aliyu, Fatema Zohora, Ali Akbar Saboor-Yaraghi . Spleen in innate and adaptive immunity regulation. AIMS Allergy and Immunology, 2021, 5(1): 1-17. doi: 10.3934/Allergy.2021001 |
[6] | Michael D. Caponegro, Jeremy Tetsuo Miyauchi, Stella E. Tsirka . Contributions of immune cell populations in the maintenance, progression, and therapeutic modalities of glioma. AIMS Allergy and Immunology, 2018, 2(1): 24-44. doi: 10.3934/Allergy.2018.1.24 |
[7] | Ken S. Rosenthal, Jordan B. Baker . The immune system through the ages. AIMS Allergy and Immunology, 2022, 6(3): 170-187. doi: 10.3934/Allergy.2022013 |
[8] | Andrey Mamontov, Alexander Polevshchikov, Yulia Desheva . Mast cells in severe respiratory virus infections: insights for treatment and vaccine administration. AIMS Allergy and Immunology, 2023, 7(1): 1-23. doi: 10.3934/Allergy.2023001 |
[9] | James Peterson . Affinity and avidity models in autoimmune disease. AIMS Allergy and Immunology, 2018, 2(1): 45-81. doi: 10.3934/Allergy.2018.1.45 |
[10] | Katarzyna Nazimek . The complex functions of microRNA-150 in allergy, autoimmunity and immune tolerance. AIMS Allergy and Immunology, 2021, 5(4): 195-221. doi: 10.3934/Allergy.2021016 |
Economic dispatch (ED) [1] in power systems is an important issue for obtaining the steady-state and economic operations of systems that is a typical constrained optimization problem with multiple variables. The optimization goal of the ED problem is to determine the most economic power outputs of generators while satisfying multiple constraints, such as the generation capacity limits, power demand balance, network transmission losses, ramp rate limits and prohibited operating zones. Considering the valve-point effects (VPE) of multivalve steam turbines for the ED problem, the objective cost function is a nonlinear and nonconvex function, which is hard to solve [2]. Especially in large-scale power systems with multiple generators, the ED problem is a complex optimization problem with several local optimal solutions, and thus the global optimal solution is hard to find.
In recent years, several optimization algorithms, including conventional algorithms and meta-heuristic algorithms, have been proposed to solve the ED problems. Some conventional algorithms, such as linear programming (LP) [3], self-adaptive dynamic programming (SADP) [4], iterative dynamic programming (IDP) [1] and evolutionary programming (EP) [5], have been applied to solve the ED problems. These methods solve the ED problems using the simplified optimization model in which the valve-point effects, ramp rate limits, prohibited operating zones and transmission losses are not considered. Moreover, the optimal results obtained by these methods may be the local optima and have lower computational accuracy. The drawbacks of conventional algorithms prompt researchers to study meta-heuristic algorithms for solving ED problems.
Recently, many meta-heuristic algorithms have been proposed to solve the various optimization problems, such as flow shop scheduling [6,7,8], steelmaking scheduling [9], job shop scheduling [10,11,12,13], flexible task scheduling [14] and chiller loading optimization [15,16,17]. Due to the better optimization performance, many meta-heuristic algorithms have also been applied to solve the complex ED problems, and these algorithms include the genetic algorithm (GA) [18,19,20,21], particle swarm optimization (PSO) and its variants [22,23,24,25,26], firefly algorithm (FA) [27], oppositional real coded chemical reaction optimization (ORCCRO) [28], differential evolution (DE) [29,30], chaotic bat algorithm (CBA) [31], oppositional invasive weed optimization (OIWO) [32], teaching learning based optimization (TLBO) [33], tournament-based harmony search (THS) [34], grey wolf optimization (GWO) [35,36], hybrid artificial algae algorithm (HAAA) [37], orthogonal learning competitive swarm optimizer (OLCSO) [2], backtracking search algorithm (BSA) [38], social spider algorithm (SSA) [39], civilized swarm optimization (CSO) [40], kinetic gas molecule optimization (KGMO) [41] and hybrid methods [42,43,44,45]. Although the above meta-heuristic algorithms have been shown to be efficient in solving ED problems, the optimal results obtained by these algorithms are not the most economical.
By mimicking the colonization behavior of weeds in nature, the invasive weed optimization (IWO) algorithm was proposed by Mehrabian and Lucas [46] to optimize multidimensional functions. The experimental results demonstrated that IWO can obtain superior optimization results compared to other evolutionary-based algorithms. Due to its robustness, convergence, high accuracy and searching ability, the IWO algorithm has been applied to solve many engineering optimization problems. However, when IWO is used to solve the ED problem in large-scale power systems, the optimization power outputs of generators obtained by IWO consumes more generation costs compared to the reported methods in literature. To further improve the optimization performance of IWO in solving ED problems, especially ED problems in the large-scale power systems, inspired by the effective application of hybrid methods in solving ED problems [37,42,43,44,45], a hybrid invasive weed optimization (HIWO) algorithm that hybridizes IWO with GA is developed in this study. The motivation behind choosing GA integrated with IWO is to get a better dispatch solution using the crossover operation between offspring weed and its parent weed to improve the local search ability of IWO, and executing the mutation operation on offspring weeds to increase the diversity of the population. The main contributions of this study are as follows: (1) the economic dispatch problem with various practical constraints is investigated by minimizing the total power generation cost; (2) the crossover and mutation operations of GA are proposed to improve the optimization performance of IWO; and (3) an effective repair method of handing constraints is investigated to repair the infeasible dispatch solutions.
The rest of this paper is organized as follows. Section 2 gives the mathematical formulation of the ED problem. Section 3 introduces a hybrid invasive weed optimization (HIWO) algorithm. Section 4 presents the application method of HIWO on ED problems. Section 5 shows the experimental results and analysis on six power systems with different scales. The conclusion is finally given in Section 6.
The ED problem in power systems is to find the optimal dispatch solution of the power outputs of generators, while the total power generation cost of the system is minimized and all the constraints are satisfied.
The optimization objective of the ED problem is to minimize the power generation cost (SC) consumed by N number of generators in the power system, as shown in Eq 1.
Min.SC=N∑i=1Ci(Pi) | (1) |
where Pi and Ci are the power output and generation cost of the ith generator, respectively.
For the ED problem neglecting valve-point effects, Ci is calculated by Eq 2. For the ED problem considering valve-point effects, Eq 3 is used to calculate Ci [2,32].
Ci(Pi)=ai⋅Pi2+bi⋅Pi+ci | (2) |
Ci(Pi)=ai⋅Pi2+bi⋅Pi+ci+|ei⋅sin(fi⋅(Pmini−Pi))| | (3) |
where ai, bi and ci are the cost coefficients of the ith generator; ei and fi are valve-point coefficients of the ith generator;
The feasible dispatch solutions of the ED problem should satisfy the following constraints.
The power output of each generator must be in the range specified by the minimum (
Pmini≤Pi≤Pmaxi | (4) |
The power outputs of generators should satisfy the system power demand (PD). For the ED problem neglecting network transmission losses (PL), the power demand balance is expressed as Eq 5 [30]. For the ED problem considering PL, the power demand balance is expressed as Eq 6.
N∑i=1Pi=PD | (5) |
N∑i=1Pi=PD+PL | (6) |
PL can be calculated using the power flow analysis method [47] or the B-coefficients method [48]. This study adopts the following B-coefficients method to calculate PL.
L=N∑i=1N∑j=1PiBijPj+N∑i=1B0iPi+B00 | (7) |
where Bij, B0i and B00 represent the loss coefficients.
In the actual operation of the power system, to avoid the excessive stress on the boiler and combustion equipment, the change rate of the power output of each generating unit should be within the ramp rate limit, as shown in Eq 8.
{Pi−P0i≤URiP0i−Pi≤DRi | (8) |
where
When taking into account both the generation capacity limits and ramp rate limits, the value range of Pi can be rewritten as Eq 9.
max{Pmini,P0i−DRi}≤Pi≤min{Pmaxi,P0i+URi} | (9) |
Considering the operation limitations of machine components, the power outputs of some generators cannot lie in the prohibited zones, as shown in Eq 10.
Pi∈{Pmini≤Pi≤Pli,1Pui,k−1≤Pi≤Pli,kPui,npi≤Pi≤Pmaxik=2,3,⋯,npi | (10) |
where
IWO is a novel evolutionary computation algorithm based on weed swarm intelligence. By simulating the propagation and growth behaviors of weeds in nature, IWO searches for the optimal solution of the problem in the solution space. The calculation steps of IWO include initialization, reproduction, spatial dispersal and selection. The initial population with Nwo weed individuals is randomly generated in the feasible solution space, in which each weed consisting of variables represents a feasible solution. Then, each weed Wj in the population reproduces seeds, and the seeds grow into offspring weeds through spatial dispersal. The amount (Nsj) of seeds reproduced by Wj is calculated by using Eq 11.
Nsj=Fitj−FitminFitmax−Fitmin⋅(Nsmax−Nsmin)+Nsmin | (11) |
where Fitj is the fitness value of Wj; Fitmin and Fitmax are the minimum and maximum fitness values in the weed population, respectively; Nsmin and Nsmax are the minimum and maximum of the number of seeds, respectively.
The parent weeds with higher fitness values can reproduce more seeds, and they have more offspring weeds in the population. This reproduction strategy means that IWO can converge rapidly and reliably to the approximate optimal solution. Offspring weeds are randomly distributed around their parent weed according to a normal distribution with a standard deviation (σit). The calculation formula of σit is shown in Eq 12. Along with the increase of the iteration times, σit is gradually reduced from an initial value (σiv) to a final value (σfv), which makes the search range of IWO be gradually reduced. This strategy makes IWO have the whole space search capability in early iterations and high local convergence in later iterations. After all the seeds grow into weeds, the Nwmax weeds with higher fitness values are selected from all the weeds as the parent weeds of the next iteration. Through Itermax times iterations, the weed with the highest fitness value is the optimal solution of the problem.
σit=(Itermax−Iter)mItermaxm⋅(σiv−σfv)+σfv | (12) |
where m is the nonlinear modulation index, and Iter and Itermax are the current number and maximum of iterations, respectively.
In the proposed HIWO algorithm, IWO is used to explore the solution space around parent weeds. After the seeds reproduced by parent weeds have grown into offspring weeds, the crossover and mutation operations of GA are performed on offspring weeds for improving the quality and diversity of solutions, which can improve the convergence speed and avoid the premature convergence of the algorithm.
The execution flow of HIWO is represented by the pseudo code shown in Figure 1.
Each offspring weed (OW(j, q)) (q = 1, 2, …, Nsj ) crosses with its parent weed (Wj) to generate a new weed (
(a) If
(b) If
After the new offspring weed (
For each offspring weed (OW(j, q)) (q = 1, 2, …, Nsj ), randomly select X mutation points from N variables
σm=(Pmaxi−Pmini)⋅rand(0,1) | (13) |
where rand (0, 1) is a random number between 0 and 1.
In the proposed HIWO algorithm, the first task is the encoding to represent each solution considering all of the constraints. Each weed (Wj) is represented as a row vector consisting of power outputs of generators, as shown in Eq 14. The weed population is initialized by randomly generating the power outputs of generators by using Eq 15. Then, infeasible weeds are repaired into feasible solutions by using the repair method in Section 4.2. Weeds in the initial population are used as the parent weeds to reproduce seeds, which grows into offspring weeds through spatial dispersal. The weeds with higher fitness value can reproduce more seeds. The fitness function used in this study is shown in Eq 16. Each offspring weed will perform the crossover and mutation procedures, like in the canonical GA, and thus can increase the diversity of the population. Then, the repair procedure is applied on the infeasible offspring weeds to make them satisfy with all of the constraints. If the total quantity of parent weeds and offspring weeds is larger than the specified population size, select the weeds with higher fitness values as the parent weeds of the next iteration. Otherwise, all the weeds are used as parent weeds. After multiple times iterations, the best weed with the highest fitness value is selected as the optimal dispatch solution of the ED problem.
Wj=(P1,P2,⋯,PN) | (14) |
Pi=(Pmaxi−Pmini)⋅rand(0,1)+Pminii=1,2,⋯,N | (15) |
Fitj=1SCj | (16) |
where SCj and Fitj represent the power generation cost and fitness value of the jth weed, respectively.
An effective repair method of handing constraints is proposed in this study to repair infeasible weeds into feasible solutions. The detail repair steps are stated in the following.
Step 1: Modify the
Pi={max{Pmini,P0i−DRi}if Pi<max{Pmini,P0i−DRi}min{Pmaxi,P0i+URi}if Pi>min{Pmaxi,P0i+URi} | (17) |
Step 2: Calculate the constraint violation (V) of the power demand balance. For the ED problem considering transmission losses, V is calculated by using Eq 18. For the ED problem neglecting transmission losses, V is calculated by using Eq 19. If
V=|N∑i=1Pi−PD−N∑i=1N∑j=1PiBijPj−N∑i=1B0iPi−B00| | (18) |
V=|N∑i=1Pi−PD| | (19) |
Step 3: Determine the modification sequence of N generators. For each generator i (i = 1, 2, …, N), calculate the modification value
P′i=PD−∑r∈RPr | (20) |
Bii(P′i)2+(2∑r∈RPrBir+B0i−1)P′i+(PD+∑r∈R∑t∈RPrBrtPt+∑r∈RB0rPr−∑r∈RPr+B00)=0 | (21) |
P′i=−(2∑r∈RPrBir+B0i−1)−√(2∑r∈RPrBir+B0i−1)2−4Bii(PD+∑r∈R∑t∈RPrBrtPt+∑r∈RB0rPr−∑r∈RPr+B00)2Bii | (22) |
For each generator i (i = 1, 2, …, N), assume that the ith generator is selected as the revised generator, and Pi is replaced by
CXi=Ci(P′i)−Ci(Pi) | (23) |
PCVi=CXi−min(CX)max(CX)−min(CX)+PVi−min(PV)max(PV)−min(PV) | (24) |
Step 4: Modify the power output of each generator in turn according to the modification sequence stored in S until the power demand balance constraint is satisfied. When the ith (
Step 5: Output the modified weed (Wj).
To validate the optimization ability of HIWO on ED problems with various practical constraints, six classical ED problems in the small, medium, large and very large-scale power systems were selected as the studied test cases. For each test case, the optimal dispatch results obtained by HIWO in 50 independent runs, including the minimum cost (SCmin), average cost (SCavg), maximum cost (SCmax) and standard deviation of the costs (SCstd), are compared to those of algorithms reported in the literature. The best optimization performance among these algorithms is shown in boldface. The parameters of HIWO on six test systems are set as follows: the initial population size Nwo = 30, maximum population size Nwmax = 50, minimum number of seeds Nsmin = 1, maximum number of seeds Nsmax = 5, nonlinear modulation index m = 5, initial standard deviation
The 15-generator power system [2,24] considering transmission losses, ramp rate limits and prohibited operating zones is selected as the small-scale test system. The power load demand of the system is 2630 MW. In this test system study, the optimal power outputs of generators obtained by HIWO are shown in Table 1.The optimal dispatch results of HIWO are compared to those of OLCSO [2], WCA [49], ICS [50], FA [27], RTO [51], EMA [52] and IWO, as shown in Tables 2. Compared to other algorithms in terms of minimum, average, maximum and standard deviation of costs in 50 runs, the dispatch solution obtained by HIWO consumes the least cost.
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 455.0000 | 4 | 130.0000 | 7 | 430.0000 | 10 | 159.7871 | 13 | 25.0000 |
2 | 380.0000 | 5 | 170.0000 | 8 | 71.2594 | 11 | 80.0000 | 14 | 15.0000 |
3 | 130.0000 | 6 | 460.0000 | 9 | 58.4944 | 12 | 80.0000 | 15 | 15.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
EMA [52] | 32704.4503 | 32704.4504 | 32704.4506 | NA |
FA [27] | 32704.5000 | 32856.1000 | 33175.0000 | 147.17022 |
ICS [50] | 32706.7358 | 32714.4669 | 32752.5183 | NA |
WCA [49] | 32704.4492 | 32704.5096 | 32704.5196 | 4.513e-05 |
RTO [51] | 32701.8145 | 32704.5300 | 32715.1800 | 5.07 |
OLCSO [2] | 32692.3961 | 32692.3981 | 32692.4033 | 0.0022 |
IWO | 32691.8615 | 32691.9392 | 32692.1421 | 0.0927 |
HIWO | 32691.5614 | 32691.8615 | 32691.8616 | 0.0001 |
The 40-generator power system [32] considering valve-point effects and transmission losses is selected as the medium-scale test system. The power load demand of the system is 10500 MW. The optimal power outputs obtained by HIWO are shown in Table 3. The optimal dispatch results of HIWO are compared to those of ORCCRO [28], BBO [28], DE/BBO [28], SDE [29], OIWO [32], HAAA [37] and IWO, as shown in Tables 4. Compared to other algorithms in the literature, the proposed HIWO algorithm can obtain the cheapest dispatch solution in terms of minimum, average and maximum of costs in 50 runs.
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 113.9993 | 9 | 289.4281 | 17 | 489.2798 | 25 | 523.2794 | 33 | 190.0000 |
2 | 113.9993 | 10 | 279.5996 | 18 | 489.2793 | 26 | 523.2794 | 34 | 200.0000 |
3 | 120.0000 | 11 | 243.5995 | 19 | 511.2795 | 27 | 10.0000 | 35 | 199.9999 |
4 | 179.7330 | 12 | 94.0000 | 20 | 511.2793 | 28 | 10.0000 | 36 | 164.7999 |
5 | 87.7999 | 13 | 484.0391 | 21 | 523.2794 | 29 | 10.0000 | 37 | 109.9998 |
6 | 139.9998 | 14 | 484.0390 | 22 | 523.2794 | 30 | 87.7999 | 38 | 110.0000 |
7 | 300.0000 | 15 | 484.0393 | 23 | 523.2794 | 31 | 190.0000 | 39 | 109.9999 |
8 | 299.9997 | 16 | 484.0391 | 24 | 523.2794 | 32 | 190.0000 | 40 | 549.9999 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 136855.19 | 136855.19 | 136855.19 | NA |
BBO [28] | 137026.82 | 137116.58 | 137587.82 | NA |
DE/BBO [28] | 136950.77 | 136966.77 | 137150.77 | NA |
SDE [29] | 138157.46 | NA | NA | NA |
OIWO [32] | 136452.68 | 136452.68 | 136452.68 | NA |
HAAA [37] | 136433.5 | 136436.6 | NA | 3.341896 |
IWO | 136543.8580 | 137009.5641 | 137679.1073 | 292.9686 |
HIWO | 136430.9504 | 136435.2127 | 136441.1059 | 4.3238 |
To verify the dispatch performance of HIWO on large-scale power systems with multiple local optimal solutions, two cases studies are performed to compare the optimization results of HIWO and other algorithms. The detail information of these two cases is shown as follows.
Case Ⅰ: The 80-generator power system [37] considering valve-point effects. The power load demand is 21000 MW.
Case Ⅱ: The 110-generator power system [20,32] neglecting valve-point effects and transmission losses. The power load demand is 15000 MW.
In the case Ⅰ study, the optimal dispatch solution obtained by HIWO is shown in Table 5. The comparison results of generation costs generated by HIWO, THS [34], CSO [40], HAAA [37], GWO [35] and IWO are summarized in Table 6. It can be found from Table 6 that HIWO can obtain the cheapest dispatch solution compared to other algorithms.
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 110.8335 | 17 | 489.3362 | 33 | 189.9994 | 49 | 284.6071 | 65 | 523.2794 |
2 | 111.5439 | 18 | 489.2794 | 34 | 165.1983 | 50 | 130.0000 | 66 | 523.2835 |
3 | 97.3834 | 19 | 511.2731 | 35 | 199.9997 | 51 | 94.0040 | 67 | 10.0000 |
4 | 179.7603 | 20 | 511.2666 | 36 | 199.9998 | 52 | 94.0000 | 68 | 10.0000 |
5 | 87.9806 | 21 | 523.2525 | 37 | 109.9999 | 53 | 214.7298 | 69 | 10.0000 |
6 | 139.9997 | 22 | 523.2805 | 38 | 110.0000 | 54 | 394.2675 | 70 | 87.8052 |
7 | 259.5584 | 23 | 523.2794 | 39 | 109.9987 | 55 | 394.2967 | 71 | 190.0000 |
8 | 284.7677 | 24 | 523.2794 | 40 | 511.2603 | 56 | 304.4839 | 72 | 189.9997 |
9 | 284.6331 | 25 | 523.2794 | 41 | 110.9296 | 57 | 489.3082 | 73 | 189.9991 |
10 | 130.0000 | 26 | 523.2958 | 42 | 110.8195 | 58 | 489.2773 | 74 | 164.7786 |
11 | 169.0220 | 27 | 10.0000 | 43 | 97.3706 | 59 | 511.2121 | 75 | 199.9994 |
12 | 94.0000 | 28 | 10.0000 | 44 | 179.7187 | 60 | 511.2992 | 76 | 200.0000 |
13 | 214.7422 | 29 | 10.0000 | 45 | 87.8560 | 61 | 523.2830 | 77 | 109.9990 |
14 | 394.1929 | 30 | 89.6856 | 46 | 139.9995 | 62 | 523.3201 | 78 | 110.0000 |
15 | 394.2794 | 31 | 189.9993 | 47 | 259.6320 | 63 | 523.2794 | 79 | 109.9996 |
16 | 394.3050 | 32 | 189.9992 | 48 | 284.6702 | 64 | 523.2794 | 80 | 511.2482 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
THS [34] | 243192.6899 | 243457.36 | NA | 120.9889 |
CSO [40] | 243195.3781 | 243546.6283 | 244038.7352 | NA |
HAAA [37] | 242815.9 | 242883 | 242944.5 | 29.2849 |
GWO [35] | 242825.4799 | 242829.8192 | 242837.1303 | 0.093 |
IWO | 246386.4038 | 248088.2077 | 249888.0623 | 844.0919 |
HIWO | 242815.2096 | 242836.1110 | 242872.4662 | 10.3458 |
In the case Ⅱ study, the optimal dispatch solution obtained by HIWO is shown in Table 7. The generation cost generated by HIWO are compared to those of ORCCRO [28], BBO [28], DE/BBO [28], OIWO [32], OLCSO [2] and IWO, which are summarized in Table 8. Compared to other algorithms in terms of minimum, average, maximum and standard deviation of costs in 50 runs, the optimal dispatch solution obtained by HIWO generates the least generation cost.
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 2.4000 | 23 | 68.9000 | 45 | 659.9999 | 67 | 70.0000 | 89 | 82.4977 |
2 | 2.4000 | 24 | 350.0000 | 46 | 616.2499 | 68 | 70.0000 | 90 | 89.2333 |
3 | 2.4000 | 25 | 400.0000 | 47 | 5.4000 | 69 | 70.0000 | 91 | 57.5687 |
4 | 2.4000 | 26 | 400.0000 | 48 | 5.4000 | 70 | 359.9999 | 92 | 99.9986 |
5 | 2.4000 | 27 | 499.9992 | 49 | 8.4000 | 71 | 399.9999 | 93 | 439.9998 |
6 | 4.0000 | 28 | 500.0000 | 50 | 8.4000 | 72 | 399.9998 | 94 | 499.9999 |
7 | 4.0000 | 29 | 199.9997 | 51 | 8.4000 | 73 | 105.2864 | 95 | 600.0000 |
8 | 4.0000 | 30 | 99.9998 | 52 | 12.0000 | 74 | 191.4091 | 96 | 471.5717 |
9 | 4.0000 | 31 | 10.0000 | 53 | 12.0000 | 75 | 89.9996 | 97 | 3.6000 |
10 | 64.5432 | 32 | 19.9993 | 54 | 12.0000 | 76 | 49.9999 | 98 | 3.6000 |
11 | 62.2465 | 33 | 79.9950 | 55 | 12.0000 | 77 | 160.0000 | 99 | 4.4000 |
12 | 36.2739 | 34 | 249.9998 | 56 | 25.2000 | 78 | 295.4962 | 100 | 4.4000 |
13 | 56.6406 | 35 | 359.9999 | 57 | 25.2000 | 79 | 175.0102 | 101 | 10.0000 |
14 | 25.0000 | 36 | 399.9997 | 58 | 35.0000 | 80 | 98.2829 | 102 | 10.0000 |
15 | 25.0000 | 37 | 39.9998 | 59 | 35.0000 | 81 | 10.0000 | 103 | 20.0000 |
16 | 25.0000 | 38 | 69.9996 | 60 | 45.0000 | 82 | 12.0000 | 104 | 20.0000 |
17 | 154.9999 | 39 | 99.9998 | 61 | 45.0000 | 83 | 20.0000 | 105 | 40.0000 |
18 | 154.9993 | 40 | 119.9984 | 62 | 45.0000 | 84 | 199.9999 | 106 | 40.0000 |
19 | 155.0000 | 41 | 157.4299 | 63 | 184.9996 | 85 | 324.9972 | 107 | 50.0000 |
20 | 155.0000 | 42 | 219.9999 | 64 | 184.9996 | 86 | 440.0000 | 108 | 30.0000 |
21 | 68.9000 | 43 | 439.9999 | 65 | 184.9984 | 87 | 14.0886 | 109 | 40.0000 |
22 | 68.9000 | 44 | 559.9998 | 66 | 184.9997 | 88 | 24.0910 | 110 | 20.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 198016.29 | 198016.32 | 198016.89 | NA |
BBO [28] | 198241.166 | 198413.45 | 199102.59 | NA |
DE/BBO [28] | 198231.06 | 198326.66 | 198828.57 | NA |
OIWO [32] | 197989.14 | 197989.41 | 197989.93 | NA |
OLCSO [2] | 197988.8576 | 197989.5832 | 197990.4551 | 0.3699 |
IWO | 198252.3594 | 198621.3233 | 198902.7697 | 138.4714 |
HIWO | 197988.1927 | 197988.1969 | 197988.2045 | 0.0025 |
To investigate the dispatch performance of HIWO on very large-scale power systems, the following two cases studies are performed for comparing the optimization results of HIWO and other algorithms.
Case Ⅰ: The 140-generator Korea power system [23,32] neglecting transmission losses. The 12 generators consider the valve point effects. The power load demand is 49342 MW.
Case Ⅱ: The 160-generator power system [32] considering valve-point effects. The power load demand is 43200 MW.
In the case Ⅰ study, the optimal dispatch solution obtained by HIWO is shown in Table 9. The optimal results of HIWO are compared to those of SDE [29], OIWO [32], HAAA [37], GWO [35], KGMO [41] and IWO, as shown in Table 10. The corrected optimal result of OIWO is shown in italics. Compared to other algorithms in terms of minimum, average, maximum and standard deviation of costs in 50 runs, HIWO can obtain the cheapest dispatch solution.
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 115.2442 | 29 | 500.9998 | 57 | 103.0000 | 85 | 115.0000 | 113 | 94.0000 |
2 | 189.0000 | 30 | 500.9994 | 58 | 198.0000 | 86 | 207.0000 | 114 | 94.0000 |
3 | 190.0000 | 31 | 505.9993 | 59 | 311.9941 | 87 | 207.0000 | 115 | 244.0000 |
4 | 190.0000 | 32 | 505.9997 | 60 | 281.1604 | 88 | 175.0000 | 116 | 244.0000 |
5 | 168.5393 | 33 | 506.0000 | 61 | 163.0000 | 89 | 175.0000 | 117 | 244.0000 |
6 | 189.9932 | 34 | 505.9998 | 62 | 95.0000 | 90 | 175.0000 | 118 | 95.0000 |
7 | 489.9992 | 35 | 499.9996 | 63 | 160.0000 | 91 | 175.0000 | 119 | 95.0000 |
8 | 489.9996 | 36 | 500.0000 | 64 | 160.0000 | 92 | 579.9998 | 120 | 116.0000 |
9 | 495.9997 | 37 | 240.9993 | 65 | 489.9465 | 93 | 645.0000 | 121 | 175.0000 |
10 | 495.9994 | 38 | 240.9999 | 66 | 196.0000 | 94 | 983.9998 | 122 | 2.0000 |
11 | 495.9997 | 39 | 773.9996 | 67 | 489.9717 | 95 | 977.9993 | 123 | 4.0000 |
12 | 496.0000 | 40 | 769.0000 | 68 | 489.9908 | 96 | 681.9997 | 124 | 15.0000 |
13 | 506.0000 | 41 | 3.0000 | 69 | 130.0000 | 97 | 719.9998 | 125 | 9.0000 |
14 | 509.0000 | 42 | 3.0000 | 70 | 234.7202 | 98 | 717.9993 | 126 | 12.0000 |
15 | 506.0000 | 43 | 249.2474 | 71 | 137.0000 | 99 | 719.9997 | 127 | 10.0000 |
16 | 504.9997 | 44 | 246.0287 | 72 | 325.4950 | 100 | 963.9998 | 128 | 112.0000 |
17 | 505.9997 | 45 | 249.9973 | 73 | 195.0000 | 101 | 958.0000 | 129 | 4.0000 |
18 | 505.9997 | 46 | 249.9863 | 74 | 175.0000 | 102 | 1006.9992 | 130 | 5.0000 |
19 | 504.9994 | 47 | 241.0622 | 75 | 175.0000 | 103 | 1006.0000 | 131 | 5.0000 |
20 | 505.0000 | 48 | 249.9950 | 76 | 175.0000 | 104 | 1012.9999 | 132 | 50.0000 |
21 | 504.9998 | 49 | 249.9916 | 77 | 175.0000 | 105 | 1019.9996 | 133 | 5.0000 |
22 | 505.0000 | 50 | 249.9995 | 78 | 330.0000 | 106 | 953.9999 | 134 | 42.0000 |
23 | 504.9998 | 51 | 165.0000 | 79 | 531.0000 | 107 | 951.9998 | 135 | 42.0000 |
24 | 504.9996 | 52 | 165.0000 | 80 | 530.9995 | 108 | 1005.9996 | 136 | 41.0000 |
25 | 536.9997 | 53 | 165.0000 | 81 | 398.6524 | 109 | 1013.0000 | 137 | 17.0000 |
26 | 536.9995 | 54 | 165.0000 | 82 | 56.0000 | 110 | 1020.9998 | 138 | 7.0000 |
27 | 548.9998 | 55 | 180.0000 | 83 | 115.0000 | 111 | 1014.9996 | 139 | 7.0000 |
28 | 548.9993 | 56 | 180.0000 | 84 | 115.0000 | 112 | 94.0000 | 140 | 26.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
SDE [29] | 1560236.85 | NA | NA | NA |
OIWO [32] | 1559712.2604 | NA | NA | NA |
HAAA [37] | 1559710.00 | 1559712.87 | 1559731.00 | 4.1371 |
GWO [35] | 1559953.18 | 1560132.93 | 1560228.40 | 1.024 |
KGMO [41] | 1583944.60 | 1583952.14 | 1583963.52 | NA |
IWO | 1564050.0027 | 1567185.2227 | 1571056.6280 | 1678.8488 |
HIWO | 1559709.5266 | 1559709.6956 | 1559709.8959 | 0.0856 |
In the case Ⅱ study, the optimal dispatch solution obtained by HIWO is shown in Table 11. The optimal results of HIWO are compared to those of ORCCRO [28], BBO [28], DE/BBO [28], CBA [31], OIWO [32] and IWO, as shown in Table 12. Compared to other algorithms, HIWO can also obtain the cheapest dispatch solution in terms of minimum, average, maximum and standard deviation of costs.
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 218.6095 | 33 | 280.6560 | 65 | 279.6118 | 97 | 287.7203 | 129 | 431.0758 |
2 | 209.2361 | 34 | 238.9676 | 66 | 238.5645 | 98 | 238.6988 | 130 | 275.8790 |
3 | 279.6486 | 35 | 279.9554 | 67 | 287.7296 | 99 | 426.2750 | 131 | 219.6189 |
4 | 240.3113 | 36 | 240.9831 | 68 | 241.2519 | 100 | 272.6741 | 132 | 210.4739 |
5 | 280.0206 | 37 | 290.1069 | 69 | 427.7708 | 101 | 217.5647 | 133 | 281.6640 |
6 | 238.4301 | 38 | 240.0425 | 70 | 272.9907 | 102 | 211.9593 | 134 | 238.9676 |
7 | 288.2326 | 39 | 426.3102 | 71 | 218.5918 | 103 | 280.6578 | 135 | 276.5752 |
8 | 239.5051 | 40 | 275.6392 | 72 | 212.7020 | 104 | 239.2363 | 136 | 239.3707 |
9 | 425.6549 | 41 | 219.6195 | 73 | 281.6629 | 105 | 276.3263 | 137 | 287.7806 |
10 | 275.6903 | 42 | 210.9690 | 74 | 238.9676 | 106 | 240.7144 | 138 | 238.5645 |
11 | 217.5646 | 43 | 282.6711 | 75 | 279.3688 | 107 | 290.0715 | 139 | 430.7874 |
12 | 212.4544 | 44 | 240.3113 | 76 | 237.6239 | 108 | 238.8332 | 140 | 275.8606 |
13 | 280.6558 | 45 | 279.7868 | 77 | 289.9995 | 109 | 425.7918 | 141 | 218.6539 |
14 | 238.6988 | 46 | 237.4895 | 78 | 239.9082 | 110 | 275.2705 | 142 | 210.7215 |
15 | 279.9370 | 47 | 287.7274 | 79 | 425.2406 | 111 | 217.5671 | 143 | 281.6640 |
16 | 240.7144 | 48 | 240.0425 | 80 | 276.0112 | 112 | 212.2069 | 144 | 239.3707 |
17 | 287.6968 | 49 | 427.4497 | 81 | 218.5923 | 113 | 281.6664 | 145 | 276.3578 |
18 | 239.7738 | 50 | 275.6817 | 82 | 212.2069 | 114 | 239.6394 | 146 | 239.6394 |
19 | 427.4049 | 51 | 219.6197 | 83 | 282.7049 | 115 | 276.0940 | 147 | 287.7565 |
20 | 275.6990 | 52 | 213.4447 | 84 | 237.7582 | 116 | 240.3113 | 148 | 239.3707 |
21 | 217.5665 | 53 | 282.6717 | 85 | 279.7940 | 117 | 290.0972 | 149 | 426.3023 |
22 | 212.2069 | 54 | 237.8926 | 86 | 239.3707 | 118 | 239.5051 | 150 | 275.6371 |
23 | 283.6805 | 55 | 276.2856 | 87 | 290.0916 | 119 | 429.4367 | 151 | 217.5647 |
24 | 239.7738 | 56 | 239.5051 | 88 | 239.2363 | 120 | 275.6690 | 152 | 212.2069 |
25 | 279.9011 | 57 | 287.6883 | 89 | 427.0504 | 121 | 217.5656 | 153 | 279.6493 |
26 | 240.9831 | 58 | 238.5645 | 90 | 275.7937 | 122 | 210.2264 | 154 | 238.4301 |
27 | 290.0737 | 59 | 429.9489 | 91 | 217.5643 | 123 | 280.6617 | 155 | 279.9078 |
28 | 240.8488 | 60 | 275.5096 | 92 | 212.9496 | 124 | 239.7738 | 156 | 240.4457 |
29 | 427.1007 | 61 | 218.5915 | 93 | 282.6732 | 125 | 275.9409 | 157 | 287.7385 |
30 | 276.2995 | 62 | 212.9496 | 94 | 240.4457 | 126 | 240.1769 | 158 | 238.5645 |
31 | 219.6189 | 63 | 282.6705 | 95 | 279.4854 | 127 | 287.6965 | 159 | 426.9110 |
32 | 211.7117 | 64 | 239.9082 | 96 | 240.1769 | 128 | 238.4301 | 160 | 272.7775 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 10004.20 | 10004.21 | 10004.45 | NA |
OIWO [32] | 9981.9834 | 9982.991 | 9983.998 | NA |
BBO [28] | 10008.71 | 10009.16 | 10010.59 | NA |
DE/BBO [28] | 10007.05 | 10007.56 | 10010.26 | NA |
CBA [31] | 10002.8596 | 10006.3251 | 10045.2265 | 9.5811 |
IWO | 9984.8409 | 9985.5127 | 9986.1947 | 0.3252 |
HIWO | 9981.7867 | 9982.0010 | 9982.1922 | 0.0934 |
To illustrate the convergence ability of HIWO for solving different-scale ED problems with various constraints, the convergence curves of HIWO and IWO on six test systems are drawn, as shown in Figure 2. It can be found from Figure 2 that HIWO can converge to the optimal areas in the six test systems, and the convergence speed of HIWO on the 15, 40, 80, 110 and 140-generator power systems, is faster than that of IWO. Although the convergence speed of HIWO on the 160-generator power system is slower than that of IWO in the early evolutionary stage, it is faster than that of IWO in the later evolutionary stage. The reason is that the crossover and mutation decrease the fitness value of offspring weeds in 160-generator power system having lots of constraints, and then reduce the convergence speed in the early evolutionary stage, but increase the diversity of the population to jump out local optimization in the later stage.
In this paper, a hybrid HIWO algorithm combining IWO with GA is proposed to solve ED problems in power systems. The HIWO adopts IWO to explore the various regions in the solution space, while the crossover and mutation operations of GA are applied to improve the quality and diversity of solutions, thereby preventing the optimization from prematurity and enhancing the search capability. Moreover, an effective repair method is proposed to repair infeasible solutions to feasible solutions. The experimental results of the six test systems studies show that HIWO can obtain the cheapest dispatch solutions compared to other algorithms in the literature, and have a better optimization ability and faster convergence speed compared to the classical IWO. In summary, the proposed HIWO algorithm is an effective and promising approach for solving ED problems in different-scale power systems.
This research is partially supported by the National Science Foundation of China under grant numbers 61773192 and 61773246, the Key Laboratory of Computer Network and Information Integration (Southeast University), the Ministry of Education (K93-9-2017-02), and the State Key Laboratory of Synthetical Automation for Process Industries (PAL-N201602).
The authors declare no conflict of interest.
[1] |
Takaoka A, Wang Z, Choi MK, et al. (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448: 501–505. doi: 10.1038/nature06013
![]() |
[2] |
Kim T, Pazhoor S, Bao M, et al. (2010) Aspartate-glutamate-alanine-histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc Natl Acad Sci USA 107: 15181–15186. doi: 10.1073/pnas.1006539107
![]() |
[3] |
Parvatiyar K, Zhang Z, Teles RM, et al. (2012) The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol 13: 1155–1161. doi: 10.1038/ni.2460
![]() |
[4] |
Zhang Z, Yuan B, Bao M, et al. (2011) The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 12: 959–965. doi: 10.1038/ni.2091
![]() |
[5] |
Chiu YH, MacMillan JB, Chen ZJ (2009) RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138: 576–591. doi: 10.1016/j.cell.2009.06.015
![]() |
[6] |
Zhang X, Brann TW, Zhou M, et al. (2011) Ku70 is a novel cytosolic DNA sensor that induces type-III rather than type-I IFN. J Immunol 186: 4541–4545. doi: 10.4049/jimmunol.1003389
![]() |
[7] |
Kondo T, Kobayashi J, Saitoh T, et al. (2013) DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc Natl Acad Sci USA 110: 2969–2974. doi: 10.1073/pnas.1222694110
![]() |
[8] |
Xia P, Wang S, Ye B, et al. (2015) Sox2 functions as a sequence-specific DNA sensor in neutrophils to initiate innate immunity against microbial infection. Nat Immunol 16: 366–375. doi: 10.1038/ni.3117
![]() |
[9] |
Yang P, An H, Liu X, et al. (2010) The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat Immunol 11: 487–494. doi: 10.1038/ni.1876
![]() |
[10] | Pichlmair A, Lassnig C, Eberle CA, et al. (2011) IFIT1 is an antiviral protein that recognizes 5'-triphosphate RNA. Nat Immunol 12: 624–630. |
[11] |
Hornung V, Hartmann R, Ablasser A, et al. (2014) OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nat Rev Immunol 14: 521–528. doi: 10.1038/nri3719
![]() |
[12] |
Ori D, Murase M, Kawai T (2017) Cytosolic nucleic acid sensors and innate immune regulation. Int Rev Immunol 36: 74–88. doi: 10.1080/08830185.2017.1298749
![]() |
[13] |
Xia P, Wang S, Gao P, et al. (2016) DNA sensor cGAS-mediated immune recognition. Protein Cell 7: 777–791. doi: 10.1007/s13238-016-0320-3
![]() |
[14] |
Schlee M, Hartmann G (2016) Discriminating self from non-self in nucleic acid sensing. Nat Rev Immunol 16: 566–580. doi: 10.1038/nri.2016.78
![]() |
[15] |
Ning S, Pagano J, Barber G (2011) IRF7: activation, regulation, modification, and function. Genes Immun 12: 399–414. doi: 10.1038/gene.2011.21
![]() |
[16] |
Chen Q, Sun L, Chen ZJ (2016) Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol 17: 1142–1149. doi: 10.1038/ni.3558
![]() |
[17] |
Wilson EB, Yamada DH, Elsaesser H, et al. (2013) Blockade of chronic type I interferon signaling to control persistent LCMV infection. Science 340: 202–207. doi: 10.1126/science.1235208
![]() |
[18] |
Teijaro JR, Ng C, Lee AM, et al. (2013) Persistent LCMV infection is controlled by blockade of type I interferon signaling. Science 340: 207–211. doi: 10.1126/science.1235214
![]() |
[19] |
Cha L, Berry CM, Nolan D, et al. (2014) Interferon-alpha, immune activation and immune dysfunction in treated HIV infection. Clin Trans Immunol 3: e10. doi: 10.1038/cti.2014.1
![]() |
[20] |
Catalfamo M, Wilhelm C, Tcheung L, et al. (2011) CD4 and CD8 T cell immune activation during chronic HIV infection: roles of homeostasis, HIV, type I IFN, and IL-7. J Immunol 186: 2106–2116. doi: 10.4049/jimmunol.1002000
![]() |
[21] |
Crouse J, Kalinke U, Oxenius A (2015) Regulation of antiviral T cell responses by type I interferons. Nat Rev Immunol 15: 231–242. doi: 10.1038/nri3806
![]() |
[22] |
Bosque A, Planelles V (2009) Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. Blood 113: 58–65. doi: 10.1182/blood-2008-07-168393
![]() |
[23] |
Härtlova A, Erttmann SF, Raffi FAM, et al. (2015) DNA damage primes the type i interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 42: 332–343. doi: 10.1016/j.immuni.2015.01.012
![]() |
[24] |
White MJ, McArthur K, Metcalf D, et al. (2014) Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159: 1549–1562. doi: 10.1016/j.cell.2014.11.036
![]() |
[25] |
Vilenchik MM, Knudson AG (2003) Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci USA 100: 12871–12876. doi: 10.1073/pnas.2135498100
![]() |
[26] |
de Galarreta MR, Lujambio A (2017) DNA sensing in senescence. Nat Cell Biol 19: 1008–1009. doi: 10.1038/ncb3603
![]() |
[27] | Gluck S, Guey B, Gulen MF, et al. (2017) Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol 19: In press. |
[28] | Ng KW, Marshall EA, Bell JC, et al. (2017) cGAS-STING and cancer: dichotomous roles in tumor immunity and development. Trends Immunol: In press. |
[29] |
Yang H, Wang H, Ren J, et al. (2017) cGAS is essential for cellular senescence. Proc Natl Acad Sci USA 114: E4612–E4620. doi: 10.1073/pnas.1705499114
![]() |
[30] |
Baccala R, Hoebe K, Kono DH, et al. (2007) TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat Med 13: 543–551. doi: 10.1038/nm1590
![]() |
[31] |
Shibutani ST, Saitoh T, Nowag H, et al. (2015) Autophagy and autophagy-related proteins in the immune system. Nat Immunol 16: 1014–1024. doi: 10.1038/ni.3273
![]() |
[32] |
Agod Z, Fekete T, Budai MM, et al. (2017) Regulation of type I interferon responses by mitochondria-derived reactive oxygen species in plasmacytoid dendritic cells. Redox Biol 13: 633–645. doi: 10.1016/j.redox.2017.07.016
![]() |
[33] |
McNab F, Mayer-Barber K, Sher A, et al. (2015) Type I interferons in infectious disease. Nat Rev Immunol 15: 87–103. doi: 10.1038/nri3787
![]() |
[34] |
Forster S (2012) Interferon signatures in immune disorders and disease. Immunol Cell Biol 90: 520–527. doi: 10.1038/icb.2012.12
![]() |
[35] |
Elkon KB, Wiedeman A (2012) Type I IFN system in the development and manifestations of SLE. Curr Opin Rheumatol 24: 499–505. doi: 10.1097/BOR.0b013e3283562c3e
![]() |
[36] |
Sandler NG, Bosinger SE, Estes JD, et al. (2014) Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature 511: 601–605. doi: 10.1038/nature13554
![]() |
[37] |
Mogensen T, Melchjorsen J, Larsen C, et al. (2010) Innate immune recognition and activation during HIV infection. Retrovirology 7: 54. doi: 10.1186/1742-4690-7-54
![]() |
[38] |
Tough DF (2012) Modulation of T-cell function by type I interferon. Immunol Cell Biol 90: 492–497. doi: 10.1038/icb.2012.7
![]() |
[39] |
Zitvogel L, Galluzzi L, Kepp O, et al. (2015) Type I interferons in anticancer immunity. Nat Rev Immunol 15: 405–414. doi: 10.1038/nri3845
![]() |
[40] |
Gajewski TF, Corrales L (2015) New perspectives on type I IFNs in cancer. Cytokine Growth F R 26: 175–178. doi: 10.1016/j.cytogfr.2015.01.001
![]() |
[41] | Dominguez-Villar M, Gautron AS, de Marcken M, et al. (2015) TLR7 induces anergy in human CD4+ T cells. Nat Immunol 16: 118–128. |
[42] | Andreeva L, Hiller B, Kostrewa D, et al. (2017) cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. Nature: In press. |
[43] |
Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10: 691–703. doi: 10.1038/nrg2640
![]() |
[44] | Liu S, Cai X, Wu J, et al. (2015) Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347. |
[45] |
Wang Q, Liu X, Cui Y, et al. (2014) The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. Immunity 41: 919–933. doi: 10.1016/j.immuni.2014.11.011
![]() |
[46] |
Man SM, Karki R, Kanneganti TD (2016) AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity. Eur J Immunol 46: 269–280. doi: 10.1002/eji.201545839
![]() |
[47] |
Diner BA, Lum KK, Cristea IM (2015) The emerging role of nuclear viral DNA sensors. J Biol Chem 290: 26412–26421. doi: 10.1074/jbc.R115.652289
![]() |
[48] |
West AP, Khoury-Hanold W, Staron M, et al. (2015) Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520: 553–557. doi: 10.1038/nature14156
![]() |
[49] |
Ansari MA, Singh VV, Dutta S, et al. (2013) Constitutive interferon-inducible protein 16-inflammasome activation during Epstein-Barr virus latency I, II, and III in B and epithelial cells. J Virol 87: 8606–8623. doi: 10.1128/JVI.00805-13
![]() |
[50] |
Christensen MH, Paludan SR (2017) Viral evasion of DNA-stimulated innate immune responses. Cell Mol Immunol 14: 4–13. doi: 10.1038/cmi.2016.06
![]() |
[51] |
Zevini A, Olagnier D, Hiscott J (2017) Crosstalk between cytoplasmic RIG-I and STING sensing pathways. Trends Immunol 38: 194–205. doi: 10.1016/j.it.2016.12.004
![]() |
[52] |
Satoh T, Kato H, Kumagai Y, et al. (2010) LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci USA 107: 1512–1517. doi: 10.1073/pnas.0912986107
![]() |
[53] |
Kato K, Omura H, Ishitani R, et al. (2017) Cyclic GMP-AMP as an endogenous second messenger in innate immune signaling by cytosolic DNA. Annu Rev Biochem 86: 541–566. doi: 10.1146/annurev-biochem-061516-044813
![]() |
[54] |
Wu JJ, Li W, Shao Y, et al. (2015) Inhibition of cGAS DNA sensing by a herpesvirus virion protein. Cell Host Microbe 18: 333–344. doi: 10.1016/j.chom.2015.07.015
![]() |
[55] |
Li W, Avey D, Fu B, et al. (2016) Kaposi's sarcoma-associated herpesvirus inhibitor of cGAS (KicGAS), encoded by orf52, is an abundant tegument protein and is required for production of infectious progeny viruses. J Virol 90: 5329–5342. doi: 10.1128/JVI.02675-15
![]() |
[56] |
Ma Z, Jacobs SR, West JA, et al. (2015) Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses. Proc Natl Acad Sci USA 112: E4306–E4315. doi: 10.1073/pnas.1503831112
![]() |
[57] |
Hwang SW, Kim D, Jung JU, et al. (2017) KSHV-encoded viral interferon regulatory factor 4 (vIRF4) interacts with IRF7 and inhibits interferon alpha production. Biochem Bioph Res Co 486: 700–705. doi: 10.1016/j.bbrc.2017.03.101
![]() |
[58] |
Lau L, Gray EE, Brunette RL, et al. (2015) DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science 350: 568–571. doi: 10.1126/science.aab3291
![]() |
[59] | de Souza RF, Iyer LM, Aravind L (2010) Diversity and evolution of chromatin proteins encoded by DNA viruses. BBA-Gene Regul Mech 1799: 302–318. |
[60] |
Towers GJ, Noursadeghi M (2014) Interactions between HIV-1 and the cell-autonomous innate immune system. Cell Host Microbe 16: 10–18. doi: 10.1016/j.chom.2014.06.009
![]() |
[61] | Sandstrom TS, Ranganath N, Angel JB (2017) Impairment of the type I interferon response by HIV-1: potential targets for HIV eradication. Cytokine Growth F R: In press. |
[62] |
Rongvaux A, Jackson R, Harman CCD, et al. (2014) Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159: 1563–1577. doi: 10.1016/j.cell.2014.11.037
![]() |
[63] |
Zheng Q, Hou J, Zhou Y, et al. (2017) The RNA helicase DDX46 inhibits innate immunity by entrapping m6A-demethylated antiviral transcripts in the nucleus. Nat Immunol 18: 1094–1103. doi: 10.1038/ni.3830
![]() |
[64] | Boss IW, Renne R (2011) Viral miRNAs and immune evasion. BBA-Gene Regul Mech 1809: 708–714. |
[65] |
Cullen BR (2013) MicroRNAs as mediators of viral evasion of the immune system. Nat Immunol 14: 205–210. doi: 10.1038/ni.2537
![]() |
[66] |
Wang L, Li G, Yao ZQ, et al. (2015) MicroRNA regulation of viral immunity, latency, and carcinogenesis of selected tumor viruses and HIV. Rev Med Virol 25: 320–341. doi: 10.1002/rmv.1850
![]() |
[67] |
Ding L, Huang XF, Dong GJ, et al. (2015) Activated STING enhances Tregs infiltration in the HPV-related carcinogenesis of tongue squamous cells via the c-jun/CCL22 signal. BBA-Mol Basis Dis 1852: 2494–2503. doi: 10.1016/j.bbadis.2015.08.011
![]() |
[68] |
Yarbrough ML, Zhang K, Sakthivel R, et al. (2014) Primate-specific miR-576-3p sets host defense signaling threshold. Nat Commun 5: 4963–4963. doi: 10.1038/ncomms5963
![]() |
[69] |
Wu MZ, Cheng WC, Chen SF, et al. (2017) miR-25/93 mediates hypoxia-induced immunosuppression by repressing cGAS. Nat Cell Biol 19: 1286–1296. doi: 10.1038/ncb3615
![]() |
[70] |
Yuan F, Dutta T, Wang L, et al. (2015) Human DNA exonuclease TREX1 is also an exoribonuclease that acts on single-stranded RNA. J Biol Chem 290: 13344–13353. doi: 10.1074/jbc.M115.653915
![]() |
[71] |
Samuel CE (2011) Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral dependent upon the virus. Virology 411: 180–193. doi: 10.1016/j.virol.2010.12.004
![]() |
[72] |
Liddicoat BJ, Piskol R, Chalk AM, et al. (2015) RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349: 1115–1120. doi: 10.1126/science.aac7049
![]() |
[73] |
Yang S, Deng P, Zhu Z, et al. (2014) ADAR1 Limits RIG-I RNA detection and suppresses IFN production responding to viral and endogenous RNAs. J Immunol 193: 3436–3445. doi: 10.4049/jimmunol.1401136
![]() |
[74] |
Wang Q, Li X, Qi R, et al. (2017) RNA Editing, ADAR1, and the innate immune response. Genes 8: 41. doi: 10.3390/genes8010041
![]() |
[75] |
Gandy SZ, Linnstaedt SD, Muralidhar S, et al. (2007) RNA editing of the human herpesvirus 8 kaposin transcript eliminates its transforming activity and is induced during lytic replication. J Virol 81: 13544–13551. doi: 10.1128/JVI.01521-07
![]() |
[76] |
Iizasa H, Wulff BE, Alla NR, et al. (2010) Editing of Epstein-Barr virus-encoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency. J Biol Chem 285: 33358–33370. doi: 10.1074/jbc.M110.138362
![]() |
[77] |
Rebhandl S, Huemer M, Greil R, et al. (2015) AID/APOBEC deaminases and cancer. Oncoscience 2: 320–333. doi: 10.18632/oncoscience.155
![]() |
[78] |
Konno H, Konno K, Barber GN (2013) Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155: 688–698. doi: 10.1016/j.cell.2013.09.049
![]() |
[79] |
Seo GJ, Yang A, Tan B, et al. (2015) Akt kinase-mediated checkpoint of cGAS DNA sensing pathway. Cell Rep 13: 440–449. doi: 10.1016/j.celrep.2015.09.007
![]() |
[80] | Li S, Zhu M, Pan R, et al. (2016) The tumor suppressor PTEN has a critical role in antiviral innate immunity. Nat Immunol 17: 241–249. |
[81] | Nekhai S, Jerebtsova M, Jackson A, et al. (2007) Regulation of HIV-1 transcription by protein phosphatase 1. Curr Hiv Res 5: 3–9. |
[82] |
Wies E, Wang MK, Maharaj NP, et al. (2013) Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling. Immunity 38: 437–449. doi: 10.1016/j.immuni.2012.11.018
![]() |
[83] |
Davis ME, Wang MK, Rennick LJ, et al. (2014) Antagonism of the phosphatase PP1 by the measles virus V protein is required for innate immune escape of MDA5. Cell Host Microbe 16: 19–30. doi: 10.1016/j.chom.2014.06.007
![]() |
[84] |
Opaluch AM, Schneider M, Chiang CY, et al. (2014) Positive regulation of TRAF6-dependent innate immune responses by protein phosphatase PP1-gamma. Plos One 9: e89284. doi: 10.1371/journal.pone.0089284
![]() |
[85] |
Ilinykh PA, Tigabu B, Ivanov A, et al. (2014) Role of protein phosphatase 1 in dephosphorylation of Ebola virus VP30 protein and its targeting for the inhibition of viral transcription. J Biol Chem 289: 22723–22738. doi: 10.1074/jbc.M114.575050
![]() |
[86] | Cougot D, Allemand E, Rivière L, et al. (2012) Inhibition of PP1 phosphatase activity by HBx: a mechanism for the activation of hepatitis B virus transcription. Sci Signal 5: ra1. |
[87] | Gu M, Zhang T, Lin W, et al. (2014) Protein phosphatase PP1 negatively regulates the Toll-like receptor- and RIG-I-like receptor-triggered production of type I interferon by inhibiting IRF3 phosphorylation at serines 396 and 385 in macrophage. Sci Signal: In press. |
[88] |
Gu M, Ouyang C, Lin W, et al. (2014) Phosphatase holoenzyme PP1/GADD34 negatively regulates TLR response by inhibiting TAK1 serine 412 phosphorylation. J Immunol 192: 2846–2856. doi: 10.4049/jimmunol.1302537
![]() |
[89] | Clavarino G, Claudio N, Dalet A, et al. (2012) Protein phosphatase 1 subunit Ppp1r15a/GADD34 regulates cytokine production in polyinosinic: polycytidylic acid-stimulated dendritic cells. Proc Natl Acad Sci USA: In press. |
[90] |
Peng D, Wang Z, Huang A, et al. (2017) A novel function of F-Box protein FBXO17 in negative regulation of type I IFN signaling by recruiting PP2A for IFN regulatory factor 3 deactivation. J Immunol 198: 808–819. doi: 10.4049/jimmunol.1601009
![]() |
[91] |
Shanker V, Trincucci G, Heim HM, et al. (2013) Protein phosphatase 2A impairs IFNα-induced antiviral activity against the hepatitis C virus through the inhibition of STAT1 tyrosine phosphorylation. J Viral Hepatitis 20: 612–621. doi: 10.1111/jvh.12083
![]() |
[92] |
Wang L, Zhao J, Ren J, et al. (2016) Protein phosphatase 1 abrogates IRF7-mediated type I IFN response in antiviral immunity. Eur J Immunol 46: 2409–2419. doi: 10.1002/eji.201646491
![]() |
[93] | Davis ME, Gack MU (2015) Ubiquitination in the antiviral immune response. Virology 479–480: 52–65. |
[94] |
Lin D, Zhong B (2015) Regulation of cellular innate antiviral signaling by ubiquitin modification. Acta Biochim Biophys Sin (Shanghai) 47: 149–155. doi: 10.1093/abbs/gmu133
![]() |
[95] |
Heaton SM, Borg NA, Dixit VM (2016) Ubiquitin in the activation and attenuation of innate antiviral immunity. J Exp Med 213: 1–13. doi: 10.1084/jem.20151531
![]() |
[96] |
Zhou Y, He C, Lin W, et al. (2017) Post-translational regulation of antiviral innate signaling. Eur J Immunol 47: 1414–1426. doi: 10.1002/eji.201746959
![]() |
[97] |
van Tol S, Hage A, Giraldo M, et al. (2017) The TRIMendous role of TRIMs in virus-host interactions. Vaccines 5: 23. doi: 10.3390/vaccines5030023
![]() |
[98] |
Damgaard RB, Nachbur U, Yabal M, et al. (2012) The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Mol Cell 46: 746–758. doi: 10.1016/j.molcel.2012.04.014
![]() |
[99] |
Keusekotten K, Elliott PR, Glockner L, et al. (2013) OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153: 1312–1326. doi: 10.1016/j.cell.2013.05.014
![]() |
[100] |
Rivkin E, Almeida SM, Ceccarelli DF, et al. (2013) The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 498: 318–324. doi: 10.1038/nature12296
![]() |
[101] |
Takiuchi T, Nakagawa T, Tamiya H, et al. (2014) Suppression of LUBAC-mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN. Genes Cells 19: 254–272. doi: 10.1111/gtc.12128
![]() |
[102] |
Tokunaga F, Nishimasu H, Ishitani R, et al. (2012) Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NFκB regulation. Embo J 31: 3856–3870. doi: 10.1038/emboj.2012.241
![]() |
[103] |
Hrdinka M, Fiil BK, Zucca M, et al. (2016) CYLD Limits Lys63- and Met1-Linked Ubiquitin at receptor complexes to regulate innate immune signaling. Cell Rep 14: 2846–2858. doi: 10.1016/j.celrep.2016.02.062
![]() |
[104] |
Damgaard RB, Walker JA, Marco-Casanova P, et al. (2016) The deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. Cell 166: 1215–1230. doi: 10.1016/j.cell.2016.07.019
![]() |
[105] |
Wang Q, Huang L, Hong Z, et al. (2017) The E3 ubiquitin ligase RNF185 facilitates the cGAS-mediated innate immune response. Plos Pathog 13: e1006264. doi: 10.1371/journal.ppat.1006264
![]() |
[106] | Ni G, Konno H, Barber GN (2017) Ubiquitination of STING at lysine 224 controls IRF3 activation. Sci Immunol 2: In Press. |
[107] |
Zhang J, Hu MM, Wang YY, et al. (2012) TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J Biol Chem 287: 28646–28655. doi: 10.1074/jbc.M112.362608
![]() |
[108] |
Tsuchida T, Zou J, Saitoh T, et al. (2010) The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 33: 765–776. doi: 10.1016/j.immuni.2010.10.013
![]() |
[109] |
Wang J, Yang S, Liu L, et al. (2017) HTLV-1 Tax impairs K63-linked ubiquitination of STING to evade host innate immunity. Virus Res 232: 13–21. doi: 10.1016/j.virusres.2017.01.016
![]() |
[110] |
Liu Y, Li J, Chen J, et al. (2015) Hepatitis B virus polymerase disrupts K63-linked ubiquitination of STING to block innate cytosolic DNA-sensing pathways. J Virol 89: 2287–2300. doi: 10.1128/JVI.02760-14
![]() |
[111] |
Zhong B, Zhang L, Lei C, et al. (2009) The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30: 397–407. doi: 10.1016/j.immuni.2009.01.008
![]() |
[112] |
Wang Y, Lian Q, Yang B, et al. (2015) TRIM30α is a negative-feedback regulator of the intracellular DNA and DNA virus-triggered response by targeting STING. Plos Pathog 11: e1005012. doi: 10.1371/journal.ppat.1005012
![]() |
[113] |
Qin Y, Zhou MT, Hu MM, et al. (2014) RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms. Plos Pathog 10: e1004358. doi: 10.1371/journal.ppat.1004358
![]() |
[114] |
Chen Y, Wang L, Jin J, et al. (2017) p38 inhibition provides anti-DNA virus immunity by regulation of USP21 phosphorylation and STING activation. J Exp Med 214: 991–1010. doi: 10.1084/jem.20161387
![]() |
[115] |
Lang X, Tang T, Jin T, et al. (2017) TRIM65-catalized ubiquitination is essential for MDA5-mediated antiviral innate immunity. J Exp Med 214: 459–473. doi: 10.1084/jem.20160592
![]() |
[116] | Liu B, Zhang M, Chu H, et al. (2017) The ubiquitin E3 ligase TRIM31 promotes aggregation and activation of the signaling adaptor MAVS through Lys63-linked polyubiquitination. Nat Immunol 18: 214–224. |
[117] |
Narayan K, Waggoner L, Pham ST, et al. (2014) TRIM13 is a negative regulator of MDA5-mediated type I interferon production. J Virol 88: 10748–10757. doi: 10.1128/JVI.02593-13
![]() |
[118] |
Gao D, Yang YK, Wang RP, et al. (2009) REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I. Plos One 4: e5760. doi: 10.1371/journal.pone.0005760
![]() |
[119] |
Oshiumi H, Matsumoto M, Hatakeyama S, et al. (2009) Riplet/RNF135, a RING-finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem 284: 807–817. doi: 10.1074/jbc.M804259200
![]() |
[120] |
Gack MU, Shin YC, Joo CH, et al. (2007) TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446: 916–920. doi: 10.1038/nature05732
![]() |
[121] |
Jiang J, Li J, Fan W, et al. (2016) Robust Lys63-linked ubiquitination of RIG-I promotes cytokine eruption in early influenza B virus infection. J Virol 90: 6263–6275. doi: 10.1128/JVI.00549-16
![]() |
[122] |
Yan J, Li Q, Mao AP, et al. (2014) TRIM4 modulates type I interferon induction and cellular antiviral response by targeting RIG-I for K63-linked ubiquitination. J Mol Cell Biol 6: 154–163. doi: 10.1093/jmcb/mju005
![]() |
[123] |
Wang W, Jiang M, Liu S, et al. (2016) RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation. Proc Natl Acad Sci USA 113: 9581–9586. doi: 10.1073/pnas.1604277113
![]() |
[124] |
Arimoto K, Takahashi H, Hishiki T, et al. (2007) Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Natl Acad Sci USA 104: 7500–7505. doi: 10.1073/pnas.0611551104
![]() |
[125] |
Ning S, Campos AD, Darnay B, et al. (2008) TRAF6 and the three C-terminal lysine sites on IRF7 are required for its ubiquitination-mediated activation by the tumor necrosis factor receptor family member latent membrane protein 1. Mol Cell Biol 28: 6536–6546. doi: 10.1128/MCB.00785-08
![]() |
[126] |
Ning S, Pagano J (2010) The A20 deubiquitinase activity negatively regulates LMP1 activation of IRF7. J Virol 84: 6130–6138. doi: 10.1128/JVI.00364-10
![]() |
[127] |
Iwai K, Fujita H, Sasaki Y (2014) Linear ubiquitin chains: NF-kappaB signalling, cell death and beyond. Nat Rev Mol Cell Bio 15: 503–508. doi: 10.1038/nrm3836
![]() |
[128] |
Rieser E, Cordier SM, Walczak H (2013) Linear ubiquitination: a newly discovered regulator of cell signalling. Trends Biochem Sci 38: 94–102. doi: 10.1016/j.tibs.2012.11.007
![]() |
[129] |
Tokunaga F (2013) Linear ubiquitination-mediated NF-kappaB regulation and its related disorders. J Biochem 154: 313–323. doi: 10.1093/jb/mvt079
![]() |
[130] |
Tokunaga F, Iwai K (2012) Linear ubiquitination: a novel NF-kappaB regulatory mechanism for inflammatory and immune responses by the LUBAC ubiquitin ligase complex. Endocr J 59: 641–652. doi: 10.1507/endocrj.EJ12-0148
![]() |
[131] |
Shimizu Y, Taraborrelli L, Walczak H (2015) Linear ubiquitination in immunity. Immunol Rev 266: 190–207. doi: 10.1111/imr.12309
![]() |
[132] |
Ikeda F (2015) Linear ubiquitination signals in adaptive immune responses. Immunol Rev 266: 222–236. doi: 10.1111/imr.12300
![]() |
[133] |
Ikeda F, Deribe YL, Skanland SS, et al. (2011) SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis. Nature 471: 637–641. doi: 10.1038/nature09814
![]() |
[134] |
Tokunaga F, Nakagawa T, Nakahara M, et al. (2011) SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex. Nature 471: 633–636. doi: 10.1038/nature09815
![]() |
[135] |
Tian Y, Zhang Y, Zhong B, et al. (2007) RBCK1 negatively regulates tumor necrosis factor- and interleukin-1-triggered NF-kappaB activation by targeting TAB2/3 for degradation. J Biol Chem 282: 16776–16782. doi: 10.1074/jbc.M701913200
![]() |
[136] |
Niu J, Shi Y, Iwai K, et al. (2011) LUBAC regulates NF-kappaB activation upon genotoxic stress by promoting linear ubiquitination of NEMO. EMBO J 30: 3741–3753. doi: 10.1038/emboj.2011.264
![]() |
[137] |
Hostager BS, Kashiwada M, Colgan JD, et al. (2011) HOIL-1L interacting protein (HOIP) is essential for CD40 signaling. Plos One 6: e23061. doi: 10.1371/journal.pone.0023061
![]() |
[138] |
Zak DE, Schmitz F, Gold ES, et al. (2011) Systems analysis identifies an essential role for SHANK-associated RH domain-interacting protein (SHARPIN) in macrophage Toll-like receptor 2 (TLR2) responses. Proc Natl Acad Sci USA 108: 11536–11541. doi: 10.1073/pnas.1107577108
![]() |
[139] |
Rodgers MA, Bowman JW, Fujita H, et al. (2014) The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation. J Exp Med 211: 1333–1347. doi: 10.1084/jem.20132486
![]() |
[140] |
Kirisako T, Kamei K, Murata S, et al. (2006) A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 25: 4877–4887. doi: 10.1038/sj.emboj.7601360
![]() |
[141] |
Emmerich CH, Schmukle AC, Walczak H (2011) The emerging role of linear ubiquitination in cell signaling. Sci Signal 4: re5. doi: 10.1126/scisignal.2001798
![]() |
[142] |
Tokunaga F, Sakata Si, Saeki Y, et al. (2009) Involvement of linear polyubiquitylation of NEMO in NF-kappa B activation. Nat Cell Biol 11: 123–132. doi: 10.1038/ncb1821
![]() |
[143] |
Inn KS, Gack MU, Tokunaga F, et al. (2011) Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction. Mol Cell 41: 354–365. doi: 10.1016/j.molcel.2010.12.029
![]() |
[144] |
Zhang M, Tian Y, Wang RP, et al. (2008) Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3. Cell Res 18: 1096–1104. doi: 10.1038/cr.2008.277
![]() |
[145] |
Belgnaoui SM, Paz S, Samuel S, et al. (2012) Linear ubiquitination of NEMO negatively regulates the interferon antiviral response through disruption of the MAVS-TRAF3 complex. Cell Host Microbe 12: 211–222. doi: 10.1016/j.chom.2012.06.009
![]() |
[146] | Wang L, Wang Y, Zhao J, et al. (2017) LUBAC modulates LMP1 activation of NFκB and IRF7. J Virol 91: e1138–e1116. |
[147] |
Orzalli MH, DeLuca NA, Knipe DM (2012) Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc Natl Acad Sci USA 109: E3008–E3017. doi: 10.1073/pnas.1211302109
![]() |
[148] |
Li T, Chen J, Cristea IM (2013) Human cytomegalovirus tegument protein pUL83 inhibits IFI16-mediated DNA sensing for immune evasion. Cell Host Microbe 14: 591–599. doi: 10.1016/j.chom.2013.10.007
![]() |
[149] |
Yu Y, Wang SE, Hayward GS (2005) The KSHV immediate-early transcription factor RTA encodes ubiquitin E3 ligase activity that targets IRF7 for proteosome-mediated degradation. Immunity 22: 59–70. doi: 10.1016/j.immuni.2004.11.011
![]() |
[150] |
van Gent M, Braem SGE, de Jong A, et al. (2014) Epstein-Barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with Toll-like receptor signaling. Plos Pathog 10: e1003960. doi: 10.1371/journal.ppat.1003960
![]() |
[151] |
Hu MM, Yang Q, Xie XQ, et al. (2016) Sumoylation promotes the stability of the DNA sensor cGAS and the adaptor STING to regulate the kinetics of response to DNA virus. Immunity 45: 555–569. doi: 10.1016/j.immuni.2016.08.014
![]() |
[152] |
Liang Q, Deng H, Li X, et al. (2011) Tripartite motif-containing protein 28 is a small ubiquitin-related modifier E3 ligase and negative regulator of IFN Regulatory Factor 7. J Immunol 187: 4754–4763. doi: 10.4049/jimmunol.1101704
![]() |
[153] |
Yang WL, Zhang X, Lin HK (2010) Emerging role of Lys-63 ubiquitination in protein kinase and phosphatase activation and cancer development. Oncogene 29: 4493–4503. doi: 10.1038/onc.2010.190
![]() |
[154] |
Yang Y, Kelly P, Schmitz R, et al. (2016) Targeting non-proteolytic protein ubiquitination for the treatment of diffuse large B cell lymphoma. Cancer Cell 29: 494–507. doi: 10.1016/j.ccell.2016.03.006
![]() |
1. | Ling Wang, Shunbin Ning, TRIMming Type I Interferon-Mediated Innate Immune Response in Antiviral and Antitumor Defense, 2021, 13, 1999-4915, 279, 10.3390/v13020279 | |
2. | Shunbin Ning, Ling Wang, The Multifunctional Protein p62 and Its Mechanistic Roles in Cancers, 2019, 19, 15680096, 468, 10.2174/1568009618666181016164920 | |
3. | Olga V. Matveeva, Peter M. Chumakov, Defects in interferon pathways as potential biomarkers of sensitivity to oncolytic viruses, 2018, 28, 1052-9276, 10.1002/rmv.2008 | |
4. | Cheryl M.T. Dvorak, Sumathy Puvanendiran, Michael P. Murtaugh, Porcine circovirus 2 infection induces IFNβ expression through increased expression of genes involved in RIG-I and IRF7 signaling pathways, 2018, 253, 01681702, 38, 10.1016/j.virusres.2018.05.027 | |
5. | Vijay Kumar, A STING to inflammation and autoimmunity, 2019, 106, 07415400, 171, 10.1002/JLB.4MIR1018-397RR | |
6. | Sherri Newmyer, Marvin A. Ssemadaali, Harikrishnan Radhakrishnan, Harold S. Javitz, Parijat Bhatnagar, Electrically regulated cell‐based intervention for viral infections, 2022, 2380-6761, 10.1002/btm2.10434 | |
7. | Anil Kumar, Adeleh Taghi Khani, Srividya Swaminathan, Type I interferons: One stone to concurrently kill two birds, viral infections and cancers, 2021, 2, 2666478X, 100014, 10.1016/j.crviro.2021.100014 | |
8. | Ahmad Zaid, Amiram Ariel, Harnessing anti-inflammatory pathways and macrophage nano delivery to treat inflammatory and fibrotic disorders, 2024, 0169409X, 115204, 10.1016/j.addr.2024.115204 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 455.0000 | 4 | 130.0000 | 7 | 430.0000 | 10 | 159.7871 | 13 | 25.0000 |
2 | 380.0000 | 5 | 170.0000 | 8 | 71.2594 | 11 | 80.0000 | 14 | 15.0000 |
3 | 130.0000 | 6 | 460.0000 | 9 | 58.4944 | 12 | 80.0000 | 15 | 15.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
EMA [52] | 32704.4503 | 32704.4504 | 32704.4506 | NA |
FA [27] | 32704.5000 | 32856.1000 | 33175.0000 | 147.17022 |
ICS [50] | 32706.7358 | 32714.4669 | 32752.5183 | NA |
WCA [49] | 32704.4492 | 32704.5096 | 32704.5196 | 4.513e-05 |
RTO [51] | 32701.8145 | 32704.5300 | 32715.1800 | 5.07 |
OLCSO [2] | 32692.3961 | 32692.3981 | 32692.4033 | 0.0022 |
IWO | 32691.8615 | 32691.9392 | 32692.1421 | 0.0927 |
HIWO | 32691.5614 | 32691.8615 | 32691.8616 | 0.0001 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 113.9993 | 9 | 289.4281 | 17 | 489.2798 | 25 | 523.2794 | 33 | 190.0000 |
2 | 113.9993 | 10 | 279.5996 | 18 | 489.2793 | 26 | 523.2794 | 34 | 200.0000 |
3 | 120.0000 | 11 | 243.5995 | 19 | 511.2795 | 27 | 10.0000 | 35 | 199.9999 |
4 | 179.7330 | 12 | 94.0000 | 20 | 511.2793 | 28 | 10.0000 | 36 | 164.7999 |
5 | 87.7999 | 13 | 484.0391 | 21 | 523.2794 | 29 | 10.0000 | 37 | 109.9998 |
6 | 139.9998 | 14 | 484.0390 | 22 | 523.2794 | 30 | 87.7999 | 38 | 110.0000 |
7 | 300.0000 | 15 | 484.0393 | 23 | 523.2794 | 31 | 190.0000 | 39 | 109.9999 |
8 | 299.9997 | 16 | 484.0391 | 24 | 523.2794 | 32 | 190.0000 | 40 | 549.9999 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 136855.19 | 136855.19 | 136855.19 | NA |
BBO [28] | 137026.82 | 137116.58 | 137587.82 | NA |
DE/BBO [28] | 136950.77 | 136966.77 | 137150.77 | NA |
SDE [29] | 138157.46 | NA | NA | NA |
OIWO [32] | 136452.68 | 136452.68 | 136452.68 | NA |
HAAA [37] | 136433.5 | 136436.6 | NA | 3.341896 |
IWO | 136543.8580 | 137009.5641 | 137679.1073 | 292.9686 |
HIWO | 136430.9504 | 136435.2127 | 136441.1059 | 4.3238 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 110.8335 | 17 | 489.3362 | 33 | 189.9994 | 49 | 284.6071 | 65 | 523.2794 |
2 | 111.5439 | 18 | 489.2794 | 34 | 165.1983 | 50 | 130.0000 | 66 | 523.2835 |
3 | 97.3834 | 19 | 511.2731 | 35 | 199.9997 | 51 | 94.0040 | 67 | 10.0000 |
4 | 179.7603 | 20 | 511.2666 | 36 | 199.9998 | 52 | 94.0000 | 68 | 10.0000 |
5 | 87.9806 | 21 | 523.2525 | 37 | 109.9999 | 53 | 214.7298 | 69 | 10.0000 |
6 | 139.9997 | 22 | 523.2805 | 38 | 110.0000 | 54 | 394.2675 | 70 | 87.8052 |
7 | 259.5584 | 23 | 523.2794 | 39 | 109.9987 | 55 | 394.2967 | 71 | 190.0000 |
8 | 284.7677 | 24 | 523.2794 | 40 | 511.2603 | 56 | 304.4839 | 72 | 189.9997 |
9 | 284.6331 | 25 | 523.2794 | 41 | 110.9296 | 57 | 489.3082 | 73 | 189.9991 |
10 | 130.0000 | 26 | 523.2958 | 42 | 110.8195 | 58 | 489.2773 | 74 | 164.7786 |
11 | 169.0220 | 27 | 10.0000 | 43 | 97.3706 | 59 | 511.2121 | 75 | 199.9994 |
12 | 94.0000 | 28 | 10.0000 | 44 | 179.7187 | 60 | 511.2992 | 76 | 200.0000 |
13 | 214.7422 | 29 | 10.0000 | 45 | 87.8560 | 61 | 523.2830 | 77 | 109.9990 |
14 | 394.1929 | 30 | 89.6856 | 46 | 139.9995 | 62 | 523.3201 | 78 | 110.0000 |
15 | 394.2794 | 31 | 189.9993 | 47 | 259.6320 | 63 | 523.2794 | 79 | 109.9996 |
16 | 394.3050 | 32 | 189.9992 | 48 | 284.6702 | 64 | 523.2794 | 80 | 511.2482 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
THS [34] | 243192.6899 | 243457.36 | NA | 120.9889 |
CSO [40] | 243195.3781 | 243546.6283 | 244038.7352 | NA |
HAAA [37] | 242815.9 | 242883 | 242944.5 | 29.2849 |
GWO [35] | 242825.4799 | 242829.8192 | 242837.1303 | 0.093 |
IWO | 246386.4038 | 248088.2077 | 249888.0623 | 844.0919 |
HIWO | 242815.2096 | 242836.1110 | 242872.4662 | 10.3458 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 2.4000 | 23 | 68.9000 | 45 | 659.9999 | 67 | 70.0000 | 89 | 82.4977 |
2 | 2.4000 | 24 | 350.0000 | 46 | 616.2499 | 68 | 70.0000 | 90 | 89.2333 |
3 | 2.4000 | 25 | 400.0000 | 47 | 5.4000 | 69 | 70.0000 | 91 | 57.5687 |
4 | 2.4000 | 26 | 400.0000 | 48 | 5.4000 | 70 | 359.9999 | 92 | 99.9986 |
5 | 2.4000 | 27 | 499.9992 | 49 | 8.4000 | 71 | 399.9999 | 93 | 439.9998 |
6 | 4.0000 | 28 | 500.0000 | 50 | 8.4000 | 72 | 399.9998 | 94 | 499.9999 |
7 | 4.0000 | 29 | 199.9997 | 51 | 8.4000 | 73 | 105.2864 | 95 | 600.0000 |
8 | 4.0000 | 30 | 99.9998 | 52 | 12.0000 | 74 | 191.4091 | 96 | 471.5717 |
9 | 4.0000 | 31 | 10.0000 | 53 | 12.0000 | 75 | 89.9996 | 97 | 3.6000 |
10 | 64.5432 | 32 | 19.9993 | 54 | 12.0000 | 76 | 49.9999 | 98 | 3.6000 |
11 | 62.2465 | 33 | 79.9950 | 55 | 12.0000 | 77 | 160.0000 | 99 | 4.4000 |
12 | 36.2739 | 34 | 249.9998 | 56 | 25.2000 | 78 | 295.4962 | 100 | 4.4000 |
13 | 56.6406 | 35 | 359.9999 | 57 | 25.2000 | 79 | 175.0102 | 101 | 10.0000 |
14 | 25.0000 | 36 | 399.9997 | 58 | 35.0000 | 80 | 98.2829 | 102 | 10.0000 |
15 | 25.0000 | 37 | 39.9998 | 59 | 35.0000 | 81 | 10.0000 | 103 | 20.0000 |
16 | 25.0000 | 38 | 69.9996 | 60 | 45.0000 | 82 | 12.0000 | 104 | 20.0000 |
17 | 154.9999 | 39 | 99.9998 | 61 | 45.0000 | 83 | 20.0000 | 105 | 40.0000 |
18 | 154.9993 | 40 | 119.9984 | 62 | 45.0000 | 84 | 199.9999 | 106 | 40.0000 |
19 | 155.0000 | 41 | 157.4299 | 63 | 184.9996 | 85 | 324.9972 | 107 | 50.0000 |
20 | 155.0000 | 42 | 219.9999 | 64 | 184.9996 | 86 | 440.0000 | 108 | 30.0000 |
21 | 68.9000 | 43 | 439.9999 | 65 | 184.9984 | 87 | 14.0886 | 109 | 40.0000 |
22 | 68.9000 | 44 | 559.9998 | 66 | 184.9997 | 88 | 24.0910 | 110 | 20.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 198016.29 | 198016.32 | 198016.89 | NA |
BBO [28] | 198241.166 | 198413.45 | 199102.59 | NA |
DE/BBO [28] | 198231.06 | 198326.66 | 198828.57 | NA |
OIWO [32] | 197989.14 | 197989.41 | 197989.93 | NA |
OLCSO [2] | 197988.8576 | 197989.5832 | 197990.4551 | 0.3699 |
IWO | 198252.3594 | 198621.3233 | 198902.7697 | 138.4714 |
HIWO | 197988.1927 | 197988.1969 | 197988.2045 | 0.0025 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 115.2442 | 29 | 500.9998 | 57 | 103.0000 | 85 | 115.0000 | 113 | 94.0000 |
2 | 189.0000 | 30 | 500.9994 | 58 | 198.0000 | 86 | 207.0000 | 114 | 94.0000 |
3 | 190.0000 | 31 | 505.9993 | 59 | 311.9941 | 87 | 207.0000 | 115 | 244.0000 |
4 | 190.0000 | 32 | 505.9997 | 60 | 281.1604 | 88 | 175.0000 | 116 | 244.0000 |
5 | 168.5393 | 33 | 506.0000 | 61 | 163.0000 | 89 | 175.0000 | 117 | 244.0000 |
6 | 189.9932 | 34 | 505.9998 | 62 | 95.0000 | 90 | 175.0000 | 118 | 95.0000 |
7 | 489.9992 | 35 | 499.9996 | 63 | 160.0000 | 91 | 175.0000 | 119 | 95.0000 |
8 | 489.9996 | 36 | 500.0000 | 64 | 160.0000 | 92 | 579.9998 | 120 | 116.0000 |
9 | 495.9997 | 37 | 240.9993 | 65 | 489.9465 | 93 | 645.0000 | 121 | 175.0000 |
10 | 495.9994 | 38 | 240.9999 | 66 | 196.0000 | 94 | 983.9998 | 122 | 2.0000 |
11 | 495.9997 | 39 | 773.9996 | 67 | 489.9717 | 95 | 977.9993 | 123 | 4.0000 |
12 | 496.0000 | 40 | 769.0000 | 68 | 489.9908 | 96 | 681.9997 | 124 | 15.0000 |
13 | 506.0000 | 41 | 3.0000 | 69 | 130.0000 | 97 | 719.9998 | 125 | 9.0000 |
14 | 509.0000 | 42 | 3.0000 | 70 | 234.7202 | 98 | 717.9993 | 126 | 12.0000 |
15 | 506.0000 | 43 | 249.2474 | 71 | 137.0000 | 99 | 719.9997 | 127 | 10.0000 |
16 | 504.9997 | 44 | 246.0287 | 72 | 325.4950 | 100 | 963.9998 | 128 | 112.0000 |
17 | 505.9997 | 45 | 249.9973 | 73 | 195.0000 | 101 | 958.0000 | 129 | 4.0000 |
18 | 505.9997 | 46 | 249.9863 | 74 | 175.0000 | 102 | 1006.9992 | 130 | 5.0000 |
19 | 504.9994 | 47 | 241.0622 | 75 | 175.0000 | 103 | 1006.0000 | 131 | 5.0000 |
20 | 505.0000 | 48 | 249.9950 | 76 | 175.0000 | 104 | 1012.9999 | 132 | 50.0000 |
21 | 504.9998 | 49 | 249.9916 | 77 | 175.0000 | 105 | 1019.9996 | 133 | 5.0000 |
22 | 505.0000 | 50 | 249.9995 | 78 | 330.0000 | 106 | 953.9999 | 134 | 42.0000 |
23 | 504.9998 | 51 | 165.0000 | 79 | 531.0000 | 107 | 951.9998 | 135 | 42.0000 |
24 | 504.9996 | 52 | 165.0000 | 80 | 530.9995 | 108 | 1005.9996 | 136 | 41.0000 |
25 | 536.9997 | 53 | 165.0000 | 81 | 398.6524 | 109 | 1013.0000 | 137 | 17.0000 |
26 | 536.9995 | 54 | 165.0000 | 82 | 56.0000 | 110 | 1020.9998 | 138 | 7.0000 |
27 | 548.9998 | 55 | 180.0000 | 83 | 115.0000 | 111 | 1014.9996 | 139 | 7.0000 |
28 | 548.9993 | 56 | 180.0000 | 84 | 115.0000 | 112 | 94.0000 | 140 | 26.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
SDE [29] | 1560236.85 | NA | NA | NA |
OIWO [32] | 1559712.2604 | NA | NA | NA |
HAAA [37] | 1559710.00 | 1559712.87 | 1559731.00 | 4.1371 |
GWO [35] | 1559953.18 | 1560132.93 | 1560228.40 | 1.024 |
KGMO [41] | 1583944.60 | 1583952.14 | 1583963.52 | NA |
IWO | 1564050.0027 | 1567185.2227 | 1571056.6280 | 1678.8488 |
HIWO | 1559709.5266 | 1559709.6956 | 1559709.8959 | 0.0856 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 218.6095 | 33 | 280.6560 | 65 | 279.6118 | 97 | 287.7203 | 129 | 431.0758 |
2 | 209.2361 | 34 | 238.9676 | 66 | 238.5645 | 98 | 238.6988 | 130 | 275.8790 |
3 | 279.6486 | 35 | 279.9554 | 67 | 287.7296 | 99 | 426.2750 | 131 | 219.6189 |
4 | 240.3113 | 36 | 240.9831 | 68 | 241.2519 | 100 | 272.6741 | 132 | 210.4739 |
5 | 280.0206 | 37 | 290.1069 | 69 | 427.7708 | 101 | 217.5647 | 133 | 281.6640 |
6 | 238.4301 | 38 | 240.0425 | 70 | 272.9907 | 102 | 211.9593 | 134 | 238.9676 |
7 | 288.2326 | 39 | 426.3102 | 71 | 218.5918 | 103 | 280.6578 | 135 | 276.5752 |
8 | 239.5051 | 40 | 275.6392 | 72 | 212.7020 | 104 | 239.2363 | 136 | 239.3707 |
9 | 425.6549 | 41 | 219.6195 | 73 | 281.6629 | 105 | 276.3263 | 137 | 287.7806 |
10 | 275.6903 | 42 | 210.9690 | 74 | 238.9676 | 106 | 240.7144 | 138 | 238.5645 |
11 | 217.5646 | 43 | 282.6711 | 75 | 279.3688 | 107 | 290.0715 | 139 | 430.7874 |
12 | 212.4544 | 44 | 240.3113 | 76 | 237.6239 | 108 | 238.8332 | 140 | 275.8606 |
13 | 280.6558 | 45 | 279.7868 | 77 | 289.9995 | 109 | 425.7918 | 141 | 218.6539 |
14 | 238.6988 | 46 | 237.4895 | 78 | 239.9082 | 110 | 275.2705 | 142 | 210.7215 |
15 | 279.9370 | 47 | 287.7274 | 79 | 425.2406 | 111 | 217.5671 | 143 | 281.6640 |
16 | 240.7144 | 48 | 240.0425 | 80 | 276.0112 | 112 | 212.2069 | 144 | 239.3707 |
17 | 287.6968 | 49 | 427.4497 | 81 | 218.5923 | 113 | 281.6664 | 145 | 276.3578 |
18 | 239.7738 | 50 | 275.6817 | 82 | 212.2069 | 114 | 239.6394 | 146 | 239.6394 |
19 | 427.4049 | 51 | 219.6197 | 83 | 282.7049 | 115 | 276.0940 | 147 | 287.7565 |
20 | 275.6990 | 52 | 213.4447 | 84 | 237.7582 | 116 | 240.3113 | 148 | 239.3707 |
21 | 217.5665 | 53 | 282.6717 | 85 | 279.7940 | 117 | 290.0972 | 149 | 426.3023 |
22 | 212.2069 | 54 | 237.8926 | 86 | 239.3707 | 118 | 239.5051 | 150 | 275.6371 |
23 | 283.6805 | 55 | 276.2856 | 87 | 290.0916 | 119 | 429.4367 | 151 | 217.5647 |
24 | 239.7738 | 56 | 239.5051 | 88 | 239.2363 | 120 | 275.6690 | 152 | 212.2069 |
25 | 279.9011 | 57 | 287.6883 | 89 | 427.0504 | 121 | 217.5656 | 153 | 279.6493 |
26 | 240.9831 | 58 | 238.5645 | 90 | 275.7937 | 122 | 210.2264 | 154 | 238.4301 |
27 | 290.0737 | 59 | 429.9489 | 91 | 217.5643 | 123 | 280.6617 | 155 | 279.9078 |
28 | 240.8488 | 60 | 275.5096 | 92 | 212.9496 | 124 | 239.7738 | 156 | 240.4457 |
29 | 427.1007 | 61 | 218.5915 | 93 | 282.6732 | 125 | 275.9409 | 157 | 287.7385 |
30 | 276.2995 | 62 | 212.9496 | 94 | 240.4457 | 126 | 240.1769 | 158 | 238.5645 |
31 | 219.6189 | 63 | 282.6705 | 95 | 279.4854 | 127 | 287.6965 | 159 | 426.9110 |
32 | 211.7117 | 64 | 239.9082 | 96 | 240.1769 | 128 | 238.4301 | 160 | 272.7775 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 10004.20 | 10004.21 | 10004.45 | NA |
OIWO [32] | 9981.9834 | 9982.991 | 9983.998 | NA |
BBO [28] | 10008.71 | 10009.16 | 10010.59 | NA |
DE/BBO [28] | 10007.05 | 10007.56 | 10010.26 | NA |
CBA [31] | 10002.8596 | 10006.3251 | 10045.2265 | 9.5811 |
IWO | 9984.8409 | 9985.5127 | 9986.1947 | 0.3252 |
HIWO | 9981.7867 | 9982.0010 | 9982.1922 | 0.0934 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 455.0000 | 4 | 130.0000 | 7 | 430.0000 | 10 | 159.7871 | 13 | 25.0000 |
2 | 380.0000 | 5 | 170.0000 | 8 | 71.2594 | 11 | 80.0000 | 14 | 15.0000 |
3 | 130.0000 | 6 | 460.0000 | 9 | 58.4944 | 12 | 80.0000 | 15 | 15.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
EMA [52] | 32704.4503 | 32704.4504 | 32704.4506 | NA |
FA [27] | 32704.5000 | 32856.1000 | 33175.0000 | 147.17022 |
ICS [50] | 32706.7358 | 32714.4669 | 32752.5183 | NA |
WCA [49] | 32704.4492 | 32704.5096 | 32704.5196 | 4.513e-05 |
RTO [51] | 32701.8145 | 32704.5300 | 32715.1800 | 5.07 |
OLCSO [2] | 32692.3961 | 32692.3981 | 32692.4033 | 0.0022 |
IWO | 32691.8615 | 32691.9392 | 32692.1421 | 0.0927 |
HIWO | 32691.5614 | 32691.8615 | 32691.8616 | 0.0001 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 113.9993 | 9 | 289.4281 | 17 | 489.2798 | 25 | 523.2794 | 33 | 190.0000 |
2 | 113.9993 | 10 | 279.5996 | 18 | 489.2793 | 26 | 523.2794 | 34 | 200.0000 |
3 | 120.0000 | 11 | 243.5995 | 19 | 511.2795 | 27 | 10.0000 | 35 | 199.9999 |
4 | 179.7330 | 12 | 94.0000 | 20 | 511.2793 | 28 | 10.0000 | 36 | 164.7999 |
5 | 87.7999 | 13 | 484.0391 | 21 | 523.2794 | 29 | 10.0000 | 37 | 109.9998 |
6 | 139.9998 | 14 | 484.0390 | 22 | 523.2794 | 30 | 87.7999 | 38 | 110.0000 |
7 | 300.0000 | 15 | 484.0393 | 23 | 523.2794 | 31 | 190.0000 | 39 | 109.9999 |
8 | 299.9997 | 16 | 484.0391 | 24 | 523.2794 | 32 | 190.0000 | 40 | 549.9999 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 136855.19 | 136855.19 | 136855.19 | NA |
BBO [28] | 137026.82 | 137116.58 | 137587.82 | NA |
DE/BBO [28] | 136950.77 | 136966.77 | 137150.77 | NA |
SDE [29] | 138157.46 | NA | NA | NA |
OIWO [32] | 136452.68 | 136452.68 | 136452.68 | NA |
HAAA [37] | 136433.5 | 136436.6 | NA | 3.341896 |
IWO | 136543.8580 | 137009.5641 | 137679.1073 | 292.9686 |
HIWO | 136430.9504 | 136435.2127 | 136441.1059 | 4.3238 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 110.8335 | 17 | 489.3362 | 33 | 189.9994 | 49 | 284.6071 | 65 | 523.2794 |
2 | 111.5439 | 18 | 489.2794 | 34 | 165.1983 | 50 | 130.0000 | 66 | 523.2835 |
3 | 97.3834 | 19 | 511.2731 | 35 | 199.9997 | 51 | 94.0040 | 67 | 10.0000 |
4 | 179.7603 | 20 | 511.2666 | 36 | 199.9998 | 52 | 94.0000 | 68 | 10.0000 |
5 | 87.9806 | 21 | 523.2525 | 37 | 109.9999 | 53 | 214.7298 | 69 | 10.0000 |
6 | 139.9997 | 22 | 523.2805 | 38 | 110.0000 | 54 | 394.2675 | 70 | 87.8052 |
7 | 259.5584 | 23 | 523.2794 | 39 | 109.9987 | 55 | 394.2967 | 71 | 190.0000 |
8 | 284.7677 | 24 | 523.2794 | 40 | 511.2603 | 56 | 304.4839 | 72 | 189.9997 |
9 | 284.6331 | 25 | 523.2794 | 41 | 110.9296 | 57 | 489.3082 | 73 | 189.9991 |
10 | 130.0000 | 26 | 523.2958 | 42 | 110.8195 | 58 | 489.2773 | 74 | 164.7786 |
11 | 169.0220 | 27 | 10.0000 | 43 | 97.3706 | 59 | 511.2121 | 75 | 199.9994 |
12 | 94.0000 | 28 | 10.0000 | 44 | 179.7187 | 60 | 511.2992 | 76 | 200.0000 |
13 | 214.7422 | 29 | 10.0000 | 45 | 87.8560 | 61 | 523.2830 | 77 | 109.9990 |
14 | 394.1929 | 30 | 89.6856 | 46 | 139.9995 | 62 | 523.3201 | 78 | 110.0000 |
15 | 394.2794 | 31 | 189.9993 | 47 | 259.6320 | 63 | 523.2794 | 79 | 109.9996 |
16 | 394.3050 | 32 | 189.9992 | 48 | 284.6702 | 64 | 523.2794 | 80 | 511.2482 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
THS [34] | 243192.6899 | 243457.36 | NA | 120.9889 |
CSO [40] | 243195.3781 | 243546.6283 | 244038.7352 | NA |
HAAA [37] | 242815.9 | 242883 | 242944.5 | 29.2849 |
GWO [35] | 242825.4799 | 242829.8192 | 242837.1303 | 0.093 |
IWO | 246386.4038 | 248088.2077 | 249888.0623 | 844.0919 |
HIWO | 242815.2096 | 242836.1110 | 242872.4662 | 10.3458 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 2.4000 | 23 | 68.9000 | 45 | 659.9999 | 67 | 70.0000 | 89 | 82.4977 |
2 | 2.4000 | 24 | 350.0000 | 46 | 616.2499 | 68 | 70.0000 | 90 | 89.2333 |
3 | 2.4000 | 25 | 400.0000 | 47 | 5.4000 | 69 | 70.0000 | 91 | 57.5687 |
4 | 2.4000 | 26 | 400.0000 | 48 | 5.4000 | 70 | 359.9999 | 92 | 99.9986 |
5 | 2.4000 | 27 | 499.9992 | 49 | 8.4000 | 71 | 399.9999 | 93 | 439.9998 |
6 | 4.0000 | 28 | 500.0000 | 50 | 8.4000 | 72 | 399.9998 | 94 | 499.9999 |
7 | 4.0000 | 29 | 199.9997 | 51 | 8.4000 | 73 | 105.2864 | 95 | 600.0000 |
8 | 4.0000 | 30 | 99.9998 | 52 | 12.0000 | 74 | 191.4091 | 96 | 471.5717 |
9 | 4.0000 | 31 | 10.0000 | 53 | 12.0000 | 75 | 89.9996 | 97 | 3.6000 |
10 | 64.5432 | 32 | 19.9993 | 54 | 12.0000 | 76 | 49.9999 | 98 | 3.6000 |
11 | 62.2465 | 33 | 79.9950 | 55 | 12.0000 | 77 | 160.0000 | 99 | 4.4000 |
12 | 36.2739 | 34 | 249.9998 | 56 | 25.2000 | 78 | 295.4962 | 100 | 4.4000 |
13 | 56.6406 | 35 | 359.9999 | 57 | 25.2000 | 79 | 175.0102 | 101 | 10.0000 |
14 | 25.0000 | 36 | 399.9997 | 58 | 35.0000 | 80 | 98.2829 | 102 | 10.0000 |
15 | 25.0000 | 37 | 39.9998 | 59 | 35.0000 | 81 | 10.0000 | 103 | 20.0000 |
16 | 25.0000 | 38 | 69.9996 | 60 | 45.0000 | 82 | 12.0000 | 104 | 20.0000 |
17 | 154.9999 | 39 | 99.9998 | 61 | 45.0000 | 83 | 20.0000 | 105 | 40.0000 |
18 | 154.9993 | 40 | 119.9984 | 62 | 45.0000 | 84 | 199.9999 | 106 | 40.0000 |
19 | 155.0000 | 41 | 157.4299 | 63 | 184.9996 | 85 | 324.9972 | 107 | 50.0000 |
20 | 155.0000 | 42 | 219.9999 | 64 | 184.9996 | 86 | 440.0000 | 108 | 30.0000 |
21 | 68.9000 | 43 | 439.9999 | 65 | 184.9984 | 87 | 14.0886 | 109 | 40.0000 |
22 | 68.9000 | 44 | 559.9998 | 66 | 184.9997 | 88 | 24.0910 | 110 | 20.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 198016.29 | 198016.32 | 198016.89 | NA |
BBO [28] | 198241.166 | 198413.45 | 199102.59 | NA |
DE/BBO [28] | 198231.06 | 198326.66 | 198828.57 | NA |
OIWO [32] | 197989.14 | 197989.41 | 197989.93 | NA |
OLCSO [2] | 197988.8576 | 197989.5832 | 197990.4551 | 0.3699 |
IWO | 198252.3594 | 198621.3233 | 198902.7697 | 138.4714 |
HIWO | 197988.1927 | 197988.1969 | 197988.2045 | 0.0025 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 115.2442 | 29 | 500.9998 | 57 | 103.0000 | 85 | 115.0000 | 113 | 94.0000 |
2 | 189.0000 | 30 | 500.9994 | 58 | 198.0000 | 86 | 207.0000 | 114 | 94.0000 |
3 | 190.0000 | 31 | 505.9993 | 59 | 311.9941 | 87 | 207.0000 | 115 | 244.0000 |
4 | 190.0000 | 32 | 505.9997 | 60 | 281.1604 | 88 | 175.0000 | 116 | 244.0000 |
5 | 168.5393 | 33 | 506.0000 | 61 | 163.0000 | 89 | 175.0000 | 117 | 244.0000 |
6 | 189.9932 | 34 | 505.9998 | 62 | 95.0000 | 90 | 175.0000 | 118 | 95.0000 |
7 | 489.9992 | 35 | 499.9996 | 63 | 160.0000 | 91 | 175.0000 | 119 | 95.0000 |
8 | 489.9996 | 36 | 500.0000 | 64 | 160.0000 | 92 | 579.9998 | 120 | 116.0000 |
9 | 495.9997 | 37 | 240.9993 | 65 | 489.9465 | 93 | 645.0000 | 121 | 175.0000 |
10 | 495.9994 | 38 | 240.9999 | 66 | 196.0000 | 94 | 983.9998 | 122 | 2.0000 |
11 | 495.9997 | 39 | 773.9996 | 67 | 489.9717 | 95 | 977.9993 | 123 | 4.0000 |
12 | 496.0000 | 40 | 769.0000 | 68 | 489.9908 | 96 | 681.9997 | 124 | 15.0000 |
13 | 506.0000 | 41 | 3.0000 | 69 | 130.0000 | 97 | 719.9998 | 125 | 9.0000 |
14 | 509.0000 | 42 | 3.0000 | 70 | 234.7202 | 98 | 717.9993 | 126 | 12.0000 |
15 | 506.0000 | 43 | 249.2474 | 71 | 137.0000 | 99 | 719.9997 | 127 | 10.0000 |
16 | 504.9997 | 44 | 246.0287 | 72 | 325.4950 | 100 | 963.9998 | 128 | 112.0000 |
17 | 505.9997 | 45 | 249.9973 | 73 | 195.0000 | 101 | 958.0000 | 129 | 4.0000 |
18 | 505.9997 | 46 | 249.9863 | 74 | 175.0000 | 102 | 1006.9992 | 130 | 5.0000 |
19 | 504.9994 | 47 | 241.0622 | 75 | 175.0000 | 103 | 1006.0000 | 131 | 5.0000 |
20 | 505.0000 | 48 | 249.9950 | 76 | 175.0000 | 104 | 1012.9999 | 132 | 50.0000 |
21 | 504.9998 | 49 | 249.9916 | 77 | 175.0000 | 105 | 1019.9996 | 133 | 5.0000 |
22 | 505.0000 | 50 | 249.9995 | 78 | 330.0000 | 106 | 953.9999 | 134 | 42.0000 |
23 | 504.9998 | 51 | 165.0000 | 79 | 531.0000 | 107 | 951.9998 | 135 | 42.0000 |
24 | 504.9996 | 52 | 165.0000 | 80 | 530.9995 | 108 | 1005.9996 | 136 | 41.0000 |
25 | 536.9997 | 53 | 165.0000 | 81 | 398.6524 | 109 | 1013.0000 | 137 | 17.0000 |
26 | 536.9995 | 54 | 165.0000 | 82 | 56.0000 | 110 | 1020.9998 | 138 | 7.0000 |
27 | 548.9998 | 55 | 180.0000 | 83 | 115.0000 | 111 | 1014.9996 | 139 | 7.0000 |
28 | 548.9993 | 56 | 180.0000 | 84 | 115.0000 | 112 | 94.0000 | 140 | 26.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
SDE [29] | 1560236.85 | NA | NA | NA |
OIWO [32] | 1559712.2604 | NA | NA | NA |
HAAA [37] | 1559710.00 | 1559712.87 | 1559731.00 | 4.1371 |
GWO [35] | 1559953.18 | 1560132.93 | 1560228.40 | 1.024 |
KGMO [41] | 1583944.60 | 1583952.14 | 1583963.52 | NA |
IWO | 1564050.0027 | 1567185.2227 | 1571056.6280 | 1678.8488 |
HIWO | 1559709.5266 | 1559709.6956 | 1559709.8959 | 0.0856 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 218.6095 | 33 | 280.6560 | 65 | 279.6118 | 97 | 287.7203 | 129 | 431.0758 |
2 | 209.2361 | 34 | 238.9676 | 66 | 238.5645 | 98 | 238.6988 | 130 | 275.8790 |
3 | 279.6486 | 35 | 279.9554 | 67 | 287.7296 | 99 | 426.2750 | 131 | 219.6189 |
4 | 240.3113 | 36 | 240.9831 | 68 | 241.2519 | 100 | 272.6741 | 132 | 210.4739 |
5 | 280.0206 | 37 | 290.1069 | 69 | 427.7708 | 101 | 217.5647 | 133 | 281.6640 |
6 | 238.4301 | 38 | 240.0425 | 70 | 272.9907 | 102 | 211.9593 | 134 | 238.9676 |
7 | 288.2326 | 39 | 426.3102 | 71 | 218.5918 | 103 | 280.6578 | 135 | 276.5752 |
8 | 239.5051 | 40 | 275.6392 | 72 | 212.7020 | 104 | 239.2363 | 136 | 239.3707 |
9 | 425.6549 | 41 | 219.6195 | 73 | 281.6629 | 105 | 276.3263 | 137 | 287.7806 |
10 | 275.6903 | 42 | 210.9690 | 74 | 238.9676 | 106 | 240.7144 | 138 | 238.5645 |
11 | 217.5646 | 43 | 282.6711 | 75 | 279.3688 | 107 | 290.0715 | 139 | 430.7874 |
12 | 212.4544 | 44 | 240.3113 | 76 | 237.6239 | 108 | 238.8332 | 140 | 275.8606 |
13 | 280.6558 | 45 | 279.7868 | 77 | 289.9995 | 109 | 425.7918 | 141 | 218.6539 |
14 | 238.6988 | 46 | 237.4895 | 78 | 239.9082 | 110 | 275.2705 | 142 | 210.7215 |
15 | 279.9370 | 47 | 287.7274 | 79 | 425.2406 | 111 | 217.5671 | 143 | 281.6640 |
16 | 240.7144 | 48 | 240.0425 | 80 | 276.0112 | 112 | 212.2069 | 144 | 239.3707 |
17 | 287.6968 | 49 | 427.4497 | 81 | 218.5923 | 113 | 281.6664 | 145 | 276.3578 |
18 | 239.7738 | 50 | 275.6817 | 82 | 212.2069 | 114 | 239.6394 | 146 | 239.6394 |
19 | 427.4049 | 51 | 219.6197 | 83 | 282.7049 | 115 | 276.0940 | 147 | 287.7565 |
20 | 275.6990 | 52 | 213.4447 | 84 | 237.7582 | 116 | 240.3113 | 148 | 239.3707 |
21 | 217.5665 | 53 | 282.6717 | 85 | 279.7940 | 117 | 290.0972 | 149 | 426.3023 |
22 | 212.2069 | 54 | 237.8926 | 86 | 239.3707 | 118 | 239.5051 | 150 | 275.6371 |
23 | 283.6805 | 55 | 276.2856 | 87 | 290.0916 | 119 | 429.4367 | 151 | 217.5647 |
24 | 239.7738 | 56 | 239.5051 | 88 | 239.2363 | 120 | 275.6690 | 152 | 212.2069 |
25 | 279.9011 | 57 | 287.6883 | 89 | 427.0504 | 121 | 217.5656 | 153 | 279.6493 |
26 | 240.9831 | 58 | 238.5645 | 90 | 275.7937 | 122 | 210.2264 | 154 | 238.4301 |
27 | 290.0737 | 59 | 429.9489 | 91 | 217.5643 | 123 | 280.6617 | 155 | 279.9078 |
28 | 240.8488 | 60 | 275.5096 | 92 | 212.9496 | 124 | 239.7738 | 156 | 240.4457 |
29 | 427.1007 | 61 | 218.5915 | 93 | 282.6732 | 125 | 275.9409 | 157 | 287.7385 |
30 | 276.2995 | 62 | 212.9496 | 94 | 240.4457 | 126 | 240.1769 | 158 | 238.5645 |
31 | 219.6189 | 63 | 282.6705 | 95 | 279.4854 | 127 | 287.6965 | 159 | 426.9110 |
32 | 211.7117 | 64 | 239.9082 | 96 | 240.1769 | 128 | 238.4301 | 160 | 272.7775 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 10004.20 | 10004.21 | 10004.45 | NA |
OIWO [32] | 9981.9834 | 9982.991 | 9983.998 | NA |
BBO [28] | 10008.71 | 10009.16 | 10010.59 | NA |
DE/BBO [28] | 10007.05 | 10007.56 | 10010.26 | NA |
CBA [31] | 10002.8596 | 10006.3251 | 10045.2265 | 9.5811 |
IWO | 9984.8409 | 9985.5127 | 9986.1947 | 0.3252 |
HIWO | 9981.7867 | 9982.0010 | 9982.1922 | 0.0934 |