Processing math: 100%
Research article

On the property of bases of multiple systems in Sobolev-Liouville classes

  • Received: 13 November 2016 Accepted: 09 May 2017 Published: 11 May 2017
  • In the present work we consider the question of preservation of the baseness property for the system of vectors φ={φn}nZN in the Sobolev-Liouville and Besov classes at small perturbations with the purpose of the further application of obtained results to study decomposition on root vectors of differential operators.

    Citation: Onur AlpI LHAN, Shakirbay G. KASIMOV. On the property of bases of multiple systems in Sobolev-Liouville classes[J]. AIMS Mathematics, 2017, 2(2): 305-314. doi: 10.3934/Math.2017.2.305

    Related Papers:

    [1] Cure Arenas Jaffeth, Ferrer Sotelo Kandy, Ferrer Villar Osmin . Functions of bounded (2,k)-variation in 2-normed spaces. AIMS Mathematics, 2024, 9(9): 24166-24183. doi: 10.3934/math.20241175
    [2] Ugur G. Abdulla . Generalized Newton-Leibniz formula and the embedding of the Sobolev functions with dominating mixed smoothness into Hölder spaces. AIMS Mathematics, 2023, 8(9): 20700-20717. doi: 10.3934/math.20231055
    [3] Hsien-Chung Wu . Near fixed point theorems in near Banach spaces. AIMS Mathematics, 2023, 8(1): 1269-1303. doi: 10.3934/math.2023064
    [4] Li He . Composition operators on Hardy-Sobolev spaces with bounded reproducing kernels. AIMS Mathematics, 2023, 8(2): 2708-2719. doi: 10.3934/math.2023142
    [5] Khadija Gherairi, Zayd Hajjej, Haiyan Li, Hedi Regeiba . n-quasi-A-(m,q)-isometry on a Banach space. AIMS Mathematics, 2023, 8(12): 28308-28321. doi: 10.3934/math.20231448
    [6] Khadija Gherairi, Zayd Hajjej, Haiyan Li, Hedi Regeiba . Some properties of n-quasi-(m,q)-isometric operators on a Banach space. AIMS Mathematics, 2023, 8(12): 31246-31257. doi: 10.3934/math.20231599
    [7] Mahmut Karakuş . Spaces of multiplier σ-convergent vector valued sequences and uniform σ-summability. AIMS Mathematics, 2025, 10(3): 5095-5109. doi: 10.3934/math.2025233
    [8] Ali Akgül, Esra Karatas Akgül, Sahin Korhan . New reproducing kernel functions in the reproducing kernel Sobolev spaces. AIMS Mathematics, 2020, 5(1): 482-496. doi: 10.3934/math.2020032
    [9] Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100
    [10] Junaid Ahmad, Kifayat Ullah, Reny George . Numerical algorithms for solutions of nonlinear problems in some distance spaces. AIMS Mathematics, 2023, 8(4): 8460-8477. doi: 10.3934/math.2023426
  • In the present work we consider the question of preservation of the baseness property for the system of vectors φ={φn}nZN in the Sobolev-Liouville and Besov classes at small perturbations with the purpose of the further application of obtained results to study decomposition on root vectors of differential operators.


    1. Introduction

    We say that a series nZNcnφn converges on rectangulars if there exists the limit of the partial sums Sm=|n1|m1|n2|m2...|nN|mNcnφn as  min1jNmj.

    Let us remind that a system of elements φ={φn}nZN is called a basis of the Banach space E at summation on rectangulars if any vector xE decomposes uniquely in the series

    x=nZNcnφn (1.1)

    which is convergent with respect to the norm of the space E at summation by rectangulars. Hence we exclude from consideration Banach spaces which do not possess the property of approximation (see [1] and [2]).

    Factors cn in (1.1) are linear functionals:

    cn=fn(x),nZN

    and, according to the well known Banach theorem (see, for example, [3], [4]), there is a constant Cφ such that

    φn1fnCφ_φn1.

    A system of elements ψ={ψn}nZN from the Banach space is said to be ω-linear independent at summation by rectangulars if the equality nZNcnψn=0 at summation on rectangulars is impossible at

    n=1|cn|2ψn2>0.

    2. Main Results

    Theorem 2.1. Let {φn}nZN be a normed basis in the Banach space E at summation by rectangulars. Further, let the system {ψn}nZN be ω-linear independent at summation by rectangulars and nZNφnψn<. Then {ψn}nZN is also a basis in E at summation by rectangulars.

    Proof. Fix an N-dimensional vector β=(β1,β2,...,βN) with nonnegative integer components β1,β2,...,βN and define as,

    ˜ψn={φnas|n1|β1,|n2|β2,...,|nN|βN,ψnasor|n1|>β1,or|n2|>β2,...,or|nN|>βN,herenZN.

    Let us introduce the operator S:EE which compares to each element

    x=nZNfn(x)φn=limmin1jNmj|n1|m1|n2|m2...|nN|mNfn(x)φn

    to the element

    Sx=nZNfn(x)(φn˜ψn).

    Obviously, for sufficiently large μ=min1jNβ, we have

    SxCφxor|n1|>β1or|n2|>β2...or|nN|>βNφnψn<εx.

    Hence, for the operator U defined by equality

    Ux=xSx=nZNfn(x)˜ψn,

    there is an inverse linear operator U1. Acting on both parts of the equality

    U1x=nZNfn(U1x)φn

    with the operator U, we obtain

    x=nZNfn(U1x)˜ψn,

    which implies that the system {˜ψn}nZN forms a basis in E at summation on rectangulars, i.e. each vector xE is decomposed uniquely in the series

    x=nZNfn(U1x)˜ψn=limmin1jNmj|n1|m1|n2|m2...|nN|mNfn(U1x)˜ψn

    which is convergent with respect to the norm of the space E at summation on rectangulars.

    Since the system {˜ψn}nZNforms a basis in E at summation on rectangulars, then

     ψk=|n1|β1|n2|β2...|nN|βNfn(U1ψk)φn+or|n1|>β1or|n2|>β2...or|nN|>βNfn(U1ψk)ψn=x1k+x2k,

    here k=(k1,k2,...,kN) is a multi-index with components |k1|β1, |k2|β2, ...,|kN|βN, and

    x1k=|n1|β1|n2|β2...|nN|βNfn(U1ψk)φn,x2k=or|n1|>β1or|n2|>β2...or|nN|>βNfn(U1ψk)ψn

    ω-linear independence of {ψn}nZN at summation on rectangulars implies linear independence of {x1k}. As concepts of linear independence and baseness are equivalent in finite dimensional space,

    φn=|k1|β1|k2|β2...|kN|βNαnkx1k

    is a multi-index with components |n1|β1,|n2|β2,...,|nN|βN for n=(n1,n2,...,nN)ZN.

    Hence we have

     x=|n1|β1|n2|β2...|nN|βNfn(U1x)φn+or|n1|>β1or|n2|>β2...or|nN|>βNfn(U1x)ψn==|k1|β1|k2|β2...|kN|βN(T)ψk+or|n1|>β1or|n2|>β2...or|nN|>βNfn(U1x)ψn==|k1|β1|k2|β2...|kN|βN(T)ψk+or|s1|>β1or|s2|>β2...or|sN|>βN(|k1|β1|k2|β2...|kN|βN(T)fs(U1ψk))ψs+or|n1|>β1or|n2|>β2...or|nN|>βNfn(U1x)ψn

    Here,

    T=|n1|β1|n2|β2...|nN|βNfn(U1x)ank

    It means that the system {ψn}nZN is a basis in the Banach space E at summation on rectangulars. Hence, Theorem (2.1) is proved.

    When N=1 Theorem (2.1) was proved in [6]

    Remark 1. At absence of ω-linear independence of the system {ψn}nZN at summation on rectangulars, one states that the system {ψn}nZN is a basis (probably, overfilling) with the finite defect in the Banch space E.

    A function f(x)Lp(TN) belongs to the space , if all its partial derivatives Dαf (in the sense of the theory of distributions) of the order |α|=s belong to Lp(TN), i.e. the norm

    fWsp(TN)=fLp(TN)+|α|=sDαfLp(TN),

    where 1p<, s=0,1,2,..., is finite.

    In the case of N=1 belonging of a function f(x) to the class Wsp(TN) it means that f(x) has s1 continuous derivatives, is absolutely continuous, and f(s)(x) belongs to Lp(T).

    Corollary 1. Let ψn(x)=(2π)Np(1+|α|=s|nα|)1exp(iλnx)+αn(x), where λnλm as nm, be an ω-linear independent system of functions satisfying the following conditions:

    1. nZN|λnn|<;

    2. nZNαn(x)Wsp(TN)<.

    Then the system of functions {ψn}nZN forms at summation on rectangulars a basis in Wsp(TN), , s=0,1,2,....

    Theorem 2.2. Let

    ψn(x)=(2π)N2(1+|α|=s|nα|2)12exp(iλnx)+αn(x),

    where λnλm as nm, be an ω-linear independent system of functions satisfying the following conditions:

    1. k=supnθ2+|α|=s(θ2|λαn|2+|λαnnα|2)1+|α|=s|nα|2<1, here θ=exp(MNπ)1,

    2. nZNαn(x)2Ws2(TN)<.

    M=supjsupnj|λnjnj|;

    Then the system of functions {ψn(x)}nZN forms the Riesz basis in the space Ws2(TN).

    Proof. It is known that the system of functions φn(x)=(2π)N2(1+|α|=s|nα|2)12exp(inx) forms an orthonormal basis in the space Ws2(TN). The norm in this space is introduced in such a way at following:

    f2Ws2(TN)=f2L2(TN)+|α|=sDαf2L2(TN).

    Let

    ˜ψn(x)=(2π)N2(1+|α|=s|nα|2)12exp(iλnx),

    where λnλm as nm, be an ω-linear independent system of functions satisfying the condition:

    k=supnθ2+|α|=s(θ2|λαn|2+|λαnnα|2)1+|α|=s|nα|2<1,

    here θ=exp(MNπ)1, M=supjsupnj|λnjnj|.

    Further, let {an} be a finite system of complex numbers. Then

    nan(˜ψnφn)2Ws2(TN)=nan(˜ψnφn)2L2(TN)+|α|=sDα(nan(˜ψnφn))2L2(TN)==(2π)N[nan((1+|α|=s|nα|2)12(exp(iλnx)exp(inx)))2L2(TN)++|α|=sDα(nan(1+|α|=s|nα|2)12(exp(iλnx)exp(inx)))2L2(TN)]

    As we have,

    nan(1+|α|=s|nα|2)12(exp(iλnx)exp(inx))L2(TN)k=11k!nan(1+|α|=s|nα|2)12[i(λnn)x]kexp(inx)L2(TN).

    Further,

    nan(1+|α|=s|nα|2)12[i(λnn)x]kexp(inx)L2(TN)==nan(1+|α|=s|nα|2)12(β1+β2+...+βN=kk!β1!β2!...βN!Nj=1(λnjnj)βjxβjj)exp(inx)L2(TN)==β1+β2+...+βN=kk!β1!β2!...βN!Nj=1xβjj(nan(1+|α|=s|nα|2)12
    Nj=1(λnjnj)βjexp(inx))L2(TN)β1+β2+...+βN=kk!β1!β2!...βN!πknan(1+|α|=s|nα|2)12Nj=1(λnjnj)βjexp(inx)L2(TN)β1+β2+...+βN=kk!β1!β2!...βN!πk(n|an|2(1+|α|=s|nα|2)1Nj=1|λnjnj|2βj(2π)N)12
    (2π)N2β1+β2+...+βN=kk!β1!β2!...βN!πkMk(n|an|2(1+|α|=s|nα|2)1)12==(2π)N2πkMk(n|an|2(1+|α|=s|nα|2)1)12β1+β2+...+βN=kk!β1!β2!...βN!==(2π)N2πkMkNk(n|an|2(1+|α|=s|nα|2)1)12,

    where summation is carried out on all integer nonnegative β1,β2,...,βN such that β1+β2+...+βN=k,

    nan(1+|α|=s|nα|2)12(exp(iλnx)exp(inx))L2(TN)(2π)N2k=11k!πkMkNk(n|an|2(1+|α|=s|nα|2)1)12==(2π)N2(exp(MNπ)1)(n|an|2(1+|α|=s|nα|2)1)12.

    Further,

    |α|=sDα(nan(1+|α|=s|nα|2)12(exp(iλnx)exp(inx)))L2(TN)==|α|=snan(1+|α|=s|nα|2)12Dα(exp(iλnx)exp(inx))L2(TN).

    Therefore,

    nan(˜ψnφn)Ws2(TN)(exp(MNπ)1)2(n|an|2(1+|α|=s|nα|2)1)++|α|=s((exp(MNπ)1)2(n|an|2|λαn|2(1+|α|=s|nα|2)1)++n|an|2|λαnnα|2(1+|α|=s|nα|2)1).

    Hence, we have

    nan(˜ψnφn)Ws2(TN)k(n|an|2)12.

    Since k<1, then by theorem by R. Paly and N. Winner ([5], p.224) the system of functions {˜ψn(x)}nZN forms a basis in the space Ws2(TN). On the other hand, the theorem by N.K. Bary (see [3], p. 382) implies that the ω-linear system of functions {ψn(x)}nZN, quadratically close to the Riesz basis {˜ψn(x)}nZN in Ws2(TN), is a Riesz basis in Ws2(TN). Hence, Theorem (2.2) is proved.

    Theorem 2.3. Let ψn(x)=(2π)Np(1+|n|2)s2exp(iλnx)+αn(x), nZN, where λnλm, as nm, ω be an linear independent system of functions at summation on rectangles that satisfies the following conditions:

    1. nZNkZN(1+|k|21+|n|2)s2(Nj=1sin(λnjkj)π(λnjkj)πδnk)exp(ikx)Lp(TN)<;

    2. nZNαn(x)Lsp(TN)<.

    Then, the summation on rectangles system functions {ψn}nZN forms a basis Lsp(TN), 1<p<.

    Proof. By Theorem Sokol-Sokolowski, the system functions φn(x)=(2π)Npexp(inx) forms a normalized basis in Lp(TN) at summation on rectangles, i.e, for every fLp(TN), there is a single row nZNfnexp(inx) such that

    Sm(x)=|n1|m1|n2|m2...|nN|mNfnexp(inx)

    which partial sums converges (on rectangles) to function f(x) in Lp(TN) with respect to norm topology, while min1jNmj.

    Similarly, the system functions

    φn(x)=(2π)Np(1+|n|2)s2exp(inx)

    forms a normalized basis in Lsp(TN) at summation on rectangles, ie, for every fLsp(TN), there is a single row

    nZN˜fnφn(x)

    such that

    Sm(x)=|n1|m1|n2|m2...|nN|mN˜fnφn(x)

    which partial sums converges (on rectangles) to function f(x) in Lsp(TN) with respect to norm topology, while min1jNmj.

    Consequently,

    f(x)Sm(x)Lsp(TN)=nZN(2π)Npnfnexp(inx)|n1|m1|n2|m2...|nN|mN(2π)Npfnexp(inx)Lp(TN)0

    while min1jNmj where p1,s0, ˜fn=(2π)Nq(1+|n|2)s2TNf(x)exp(inx)dx, 1p+1q=1. We have

    ˜ψn(x)=(2π)Np(1+|n|2)s2exp(iλnx)

    where λnλm, while nm, be an ω-linear independent system of functions that satisfies the following conditions:

    nZNkZN(1+|k|21+|n|2)s2(Nj=1sin(λnjkj)π(λnjkj)πδnk)exp(ikx)Lp(TN)<.

    as

    φn˜ψnLsp(TN)=kZN(1+|k|2)s2(φn˜ψn)kexp(ikx)Lp(TN)

    where

    (φn˜ψn)k=(2π)NTN[φn(x)˜ψn(x)]exp(ikx)dx

    are Fourier coefficients. Hence we get

    (φn˜ψn)k=(2π)NTN[φn(x)˜ψn(x)]exp(ikx)dx=(2π)NNp(1+|n|2)s2TN[exp(inx)exp(iλnx)]exp(ikx)dx=(2π)NNp(1+|n|2)s2[TNexp(i(nk)x)dxTNexp(i(λnk)x)dx]==(2π)Np(1+|n|2)s2[δnk(2π)NTNexp(i(λnk)x)dx]==(2π)Np(1+|n|2)s2[δnk(2π)NNj=1ππexp(i(λnjkj)xj)dxj]==(2π)Np(1+|n|2)s2[δnk(2π)NNj=11i(λnjkj)exp(i(λnjkj)xj)|ππ]==(2π)Np(1+|n|2)s2[δnkNj=1sin(λnjkj)π(λnjkj)π]

    in this way,

    (φn˜ψn)k=(2π)Np(1+|n|2)s2[δnkNj=1sin(λnjkj)π(λnjkj)π]

    hence

    nZNφnψnLsp(TN)=nZNφn˜ψnαn(x)Lsp(TN)nZNφn˜ψnLsp(TN)+nZNαn(x)Lsp(TN)==nZNkZN(1+|k|21+|n|2)s2(2π)Np[δnkNj=1sin(λnjkj)π(λnjkj)π]exp(ikx)Lp(TN)+nZNαn(x)Lsp(TN)<.

    By Theorem (2.2) we have the proof of the Theorem (2.3).


    [1] Grothendieck A., Produits tensoriels topologiques et espaces nucleaires, Mem. Amer. Math. Soc., 16 (1955).
    [2] Enflo P., A counterexample to the approximation problem in Banach spaces, Acta Math., 130(1973), 309-317.
    [3] Gokhberg I. C. , Kreyn M. G. , Introduction to the Theory of Linear non Self-adjoint Operators in the Hilbert Space, Moscow: Nauka, 1969.
    [4] Gokhberg I.C., Markus A.S., Stability for bases of Banach and Hilbert spaces, Izvestiya AN MSSR., 5 (1962), 17-35.
    [5] Riesz F. , Sekyofalvi-Nad B. , Lectures on Functional Analysis, Moscow, "Mir", 1979.
    [6] Shakirbay G. Kasimov., On a Property of Bases in Banach and Hilbert Spaces, Malaysian Journal of Mathematical Sciences, 5 (2011), 229-240.
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4502) PDF downloads(1057) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog