Citation: Onur AlpI LHAN, Shakirbay G. KASIMOV. On the property of bases of multiple systems in Sobolev-Liouville classes[J]. AIMS Mathematics, 2017, 2(2): 305-314. doi: 10.3934/Math.2017.2.305
[1] | Cure Arenas Jaffeth, Ferrer Sotelo Kandy, Ferrer Villar Osmin . Functions of bounded (2,k)-variation in 2-normed spaces. AIMS Mathematics, 2024, 9(9): 24166-24183. doi: 10.3934/math.20241175 |
[2] | Ugur G. Abdulla . Generalized Newton-Leibniz formula and the embedding of the Sobolev functions with dominating mixed smoothness into Hölder spaces. AIMS Mathematics, 2023, 8(9): 20700-20717. doi: 10.3934/math.20231055 |
[3] | Hsien-Chung Wu . Near fixed point theorems in near Banach spaces. AIMS Mathematics, 2023, 8(1): 1269-1303. doi: 10.3934/math.2023064 |
[4] | Li He . Composition operators on Hardy-Sobolev spaces with bounded reproducing kernels. AIMS Mathematics, 2023, 8(2): 2708-2719. doi: 10.3934/math.2023142 |
[5] | Khadija Gherairi, Zayd Hajjej, Haiyan Li, Hedi Regeiba . n-quasi-A-(m,q)-isometry on a Banach space. AIMS Mathematics, 2023, 8(12): 28308-28321. doi: 10.3934/math.20231448 |
[6] | Khadija Gherairi, Zayd Hajjej, Haiyan Li, Hedi Regeiba . Some properties of n-quasi-(m,q)-isometric operators on a Banach space. AIMS Mathematics, 2023, 8(12): 31246-31257. doi: 10.3934/math.20231599 |
[7] | Mahmut Karakuş . Spaces of multiplier σ-convergent vector valued sequences and uniform σ-summability. AIMS Mathematics, 2025, 10(3): 5095-5109. doi: 10.3934/math.2025233 |
[8] | Ali Akgül, Esra Karatas Akgül, Sahin Korhan . New reproducing kernel functions in the reproducing kernel Sobolev spaces. AIMS Mathematics, 2020, 5(1): 482-496. doi: 10.3934/math.2020032 |
[9] | Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100 |
[10] | Junaid Ahmad, Kifayat Ullah, Reny George . Numerical algorithms for solutions of nonlinear problems in some distance spaces. AIMS Mathematics, 2023, 8(4): 8460-8477. doi: 10.3934/math.2023426 |
We say that a series ∑n∈ZNcnφn converges on rectangulars if there exists the limit of the partial sums Sm=∑|n1|≤m1∑|n2|≤m2...∑|nN|≤mNcnφn as min1≤j≤Nmj→∞.
Let us remind that a system of elements φ={φn}n∈ZN is called a basis of the Banach space E at summation on rectangulars if any vector x∈E decomposes uniquely in the series
x=∑n∈ZNcnφn | (1.1) |
which is convergent with respect to the norm of the space E at summation by rectangulars. Hence we exclude from consideration Banach spaces which do not possess the property of approximation (see [1] and [2]).
Factors cn in (1.1) are linear functionals:
cn=fn(x),n∈ZN |
and, according to the well known Banach theorem (see, for example, [3], [4]), there is a constant Cφ such that
‖φn‖−1≤‖fn‖≤Cφ‖_φn‖−1. |
A system of elements ψ={ψn}n∈ZN from the Banach space is said to be ω-linear independent at summation by rectangulars if the equality ∑n∈ZNcnψn=0 at summation on rectangulars is impossible at
∞∑n=1|cn|2⋅‖ψn‖2>0. |
Theorem 2.1. Let {φn}n∈ZN be a normed basis in the Banach space E at summation by rectangulars. Further, let the system {ψn}n∈ZN be ω-linear independent at summation by rectangulars and ∑n∈ZN‖φn−ψn‖<∞. Then {ψn}n∈ZN is also a basis in E at summation by rectangulars.
Proof. Fix an N-dimensional vector β=(β1,β2,...,βN) with nonnegative integer components β1,β2,...,βN and define as,
˜ψn={φnas|n1|≤β1,|n2|≤β2,...,|nN|≤βN,ψnasor|n1|>β1,or|n2|>β2,...,or|nN|>βN,heren∈ZN. |
Let us introduce the operator S:E→E which compares to each element
x=∑n∈ZNfn(x)φn=limmin1≤j≤Nmj→∞∑|n1|≤m1∑|n2|≤m2...∑|nN|≤mNfn(x)φn |
to the element
Sx=∑n∈ZNfn(x)(φn−˜ψn). |
Obviously, for sufficiently large μ=min1≤j≤Nβ, we have
‖Sx‖≤Cφ‖x‖∑or|n1|>β1∑or|n2|>β2...∑or|nN|>βN‖φn−ψn‖<ε‖x‖. |
Hence, for the operator U defined by equality
Ux=x−Sx=∑n∈ZNfn(x)˜ψn, |
there is an inverse linear operator U−1. Acting on both parts of the equality
U−1x=∑n∈ZNfn(U−1x)φn |
with the operator U, we obtain
x=∑n∈ZNfn(U−1x)˜ψn, |
which implies that the system {˜ψn}n∈ZN forms a basis in E at summation on rectangulars, i.e. each vector x∈E is decomposed uniquely in the series
x=∑n∈ZNfn(U−1x)˜ψn=limmin1≤j≤Nmj→∞∑|n1|≤m1∑|n2|≤m2...∑|nN|≤mNfn(U−1x)˜ψn |
which is convergent with respect to the norm of the space E at summation on rectangulars.
Since the system {˜ψn}n∈ZNforms a basis in E at summation on rectangulars, then
ψk=∑|n1|≤β1∑|n2|≤β2...∑|nN|≤βNfn(U−1ψk)φn+∑or|n1|>β1∑or|n2|>β2...∑or|nN|>βNfn(U−1ψk)ψn=x1k+x2k, |
here k=(k1,k2,...,kN) is a multi-index with components |k1|≤β1, |k2|≤β2, ...,|kN|≤βN, and
x1k=∑|n1|≤β1∑|n2|≤β2...∑|nN|≤βNfn(U−1ψk)φn,x2k=∑or|n1|>β1∑or|n2|>β2...∑or|nN|>βNfn(U−1ψk)ψn |
ω-linear independence of {ψn}n∈ZN at summation on rectangulars implies linear independence of {x1k}. As concepts of linear independence and baseness are equivalent in finite dimensional space,
φn=∑|k1|≤β1∑|k2|≤β2...∑|kN|≤βNαnkx1k |
is a multi-index with components |n1|≤β1,|n2|≤β2,...,|nN|≤βN for n=(n1,n2,...,nN)∈ZN.
Hence we have
x=∑|n1|≤β1∑|n2|≤β2...∑|nN|≤βNfn(U−1x)φn+∑or|n1|>β1∑or|n2|>β2...∑or|nN|>βNfn(U−1x)ψn==∑|k1|≤β1∑|k2|≤β2...∑|kN|≤βN(T)ψk+∑or|n1|>β1∑or|n2|>β2...∑or|nN|>βNfn(U−1x)ψn==∑|k1|≤β1∑|k2|≤β2...∑|kN|≤βN(T)ψk+∑or|s1|>β1∑or|s2|>β2...∑or|sN|>βN(∑|k1|≤β1∑|k2|≤β2...∑|kN|≤βN(T)fs(U−1ψk))ψs+∑or|n1|>β1∑or|n2|>β2...∑or|nN|>βNfn(U−1x)ψn |
Here,
T=∑|n1|≤β1∑|n2|≤β2...∑|nN|≤βNfn(U−1x)ank |
It means that the system {ψn}n∈ZN is a basis in the Banach space E at summation on rectangulars. Hence, Theorem (2.1) is proved.
When N=1 Theorem (2.1) was proved in [6]
Remark 1. At absence of ω-linear independence of the system {ψn}n∈ZN at summation on rectangulars, one states that the system {ψn}n∈ZN is a basis (probably, overfilling) with the finite defect in the Banch space E.
A function f(x)∈Lp(TN) belongs to the space , if all its partial derivatives Dαf (in the sense of the theory of distributions) of the order |α|=s belong to Lp(TN), i.e. the norm
‖f‖Wsp(TN)=‖f‖Lp(TN)+∑|α|=s‖Dαf‖Lp(TN), |
where 1≤p<∞, s=0,1,2,..., is finite.
In the case of N=1 belonging of a function f(x) to the class Wsp(TN) it means that f(x) has s−1 continuous derivatives, is absolutely continuous, and f(s)(x) belongs to Lp(T).
Corollary 1. Let ψn(x)=(2π)−Np⋅(1+∑|α|=s|nα|)−1⋅exp(iλnx)+αn(x), where λn≠λm as n≠m, be an ω-linear independent system of functions satisfying the following conditions:
1. ∑n∈ZN|λn−n|<∞;
2. ∑n∈ZN‖αn(x)‖Wsp(TN)<∞.
Then the system of functions {ψn}n∈ZN forms at summation on rectangulars a basis in Wsp(TN), , s=0,1,2,....
Theorem 2.2. Let
ψn(x)=(2π)−N2⋅(1+∑|α|=s|nα|2)−12⋅exp(iλnx)+αn(x), |
where λn≠λm as n≠m, be an ω-linear independent system of functions satisfying the following conditions:
1. k=√supnθ2+∑|α|=s(θ2|λαn|2+|λαn−nα|2)1+∑|α|=s|nα|2<1, here θ=exp(MNπ)−1,
2. ∑n∈ZN‖αn(x)‖2Ws2(TN)<∞.
M=supjsupnj|λnj−nj|; |
Then the system of functions {ψn(x)}n∈ZN forms the Riesz basis in the space Ws2(TN).
Proof. It is known that the system of functions φn(x)=(2π)−N2⋅(1+∑|α|=s|nα|2)−12⋅exp(inx) forms an orthonormal basis in the space Ws2(TN). The norm in this space is introduced in such a way at following:
‖f‖2Ws2(TN)=‖f‖2L2(TN)+∑|α|=s‖Dαf‖2L2(TN). |
Let
˜ψn(x)=(2π)−N2⋅(1+∑|α|=s|nα|2)−12⋅exp(iλnx), |
where λn≠λm as n≠m, be an ω-linear independent system of functions satisfying the condition:
k=√supnθ2+∑|α|=s(θ2|λαn|2+|λαn−nα|2)1+∑|α|=s|nα|2<1, |
here θ=exp(MNπ)−1, M=supjsupnj|λnj−nj|.
Further, let {an} be a finite system of complex numbers. Then
‖∑nan(˜ψn−φn)‖2Ws2(TN)=‖∑nan(˜ψn−φn)‖2L2(TN)+∑|α|=s‖Dα(∑nan(˜ψn−φn))‖2L2(TN)==(2π)−N[‖∑nan⋅((1+∑|α|=s|nα|2)−12(exp(iλnx)−exp(inx)))‖2L2(TN)++∑|α|=s‖Dα(∑nan⋅(1+∑|α|=s|nα|2)−12⋅(exp(iλnx)−exp(inx)))‖2L2(TN)] |
As we have,
‖∑nan⋅(1+∑|α|=s|nα|2)−12⋅(exp(iλnx)−exp(inx))‖L2(TN)≤≤∞∑k=11k!‖∑nan⋅(1+∑|α|=s|nα|2)−12⋅[i(λn−n)x]k⋅exp(inx)‖L2(TN). |
Further,
‖∑nan⋅(1+∑|α|=s|nα|2)−12⋅[i(λn−n)x]k⋅exp(inx)‖L2(TN)==‖∑nan⋅(1+∑|α|=s|nα|2)−12(∑β1+β2+...+βN=kk!β1!β2!...βN!⋅⋅N∏j=1(λnj−nj)βj⋅xβjj)⋅exp(inx)‖L2(TN)==‖∑β1+β2+...+βN=kk!β1!β2!...βN!⋅N∏j=1xβjj⋅(∑nan⋅(1+∑|α|=s|nα|2)−12⋅ |
⋅N∏j=1(λnj−nj)βj⋅exp(inx))‖L2(TN)≤∑β1+β2+...+βN=kk!β1!β2!...βN!⋅πk⋅⋅‖∑nan⋅(1+∑|α|=s|nα|2)−12⋅N∏j=1(λnj−nj)βj⋅exp(inx)‖L2(TN)≤∑β1+β2+...+βN=kk!β1!β2!...βN!⋅πk⋅(∑n|an|2⋅(1+∑|α|=s|nα|2)−1⋅N∏j=1|λnj−nj|2βj⋅(2π)N)12≤ |
≤(2π)N2∑β1+β2+...+βN=kk!β1!β2!...βN!⋅πk⋅Mk⋅(∑n|an|2⋅(1+∑|α|=s|nα|2)−1)12==(2π)N2⋅πk⋅Mk⋅(∑n|an|2⋅(1+∑|α|=s|nα|2)−1)12⋅∑β1+β2+...+βN=kk!β1!β2!...βN!==(2π)N2⋅πk⋅Mk⋅Nk⋅(∑n|an|2⋅(1+∑|α|=s|nα|2)−1)12, |
where summation is carried out on all integer nonnegative β1,β2,...,βN such that β1+β2+...+βN=k,
‖∑nan⋅(1+∑|α|=s|nα|2)−12⋅(exp(iλnx)−exp(inx))‖L2(TN)≤≤(2π)N2⋅∞∑k=11k!⋅πk⋅Mk⋅Nk⋅(∑n|an|2⋅(1+∑|α|=s|nα|2)−1)12==(2π)N2(exp(MNπ)−1)⋅(∑n|an|2⋅(1+∑|α|=s|nα|2)−1)12. |
Further,
∑|α|=s‖Dα(∑nan⋅(1+∑|α|=s|nα|2)−12⋅(exp(iλnx)−exp(inx)))‖L2(TN)==∑|α|=s‖∑nan⋅(1+∑|α|=s|nα|2)−12⋅Dα(exp(iλnx)−exp(inx))‖L2(TN). |
Therefore,
‖∑nan(˜ψn−φn)‖Ws2(TN)≤(exp(MNπ)−1)2⋅(∑n|an|2⋅(1+∑|α|=s|nα|2)−1)++∑|α|=s((exp(MNπ)−1)2⋅(∑n|an|2⋅|λαn|2⋅(1+∑|α|=s|nα|2)−1)++∑n|an|2⋅|λαn−nα|2⋅(1+∑|α|=s|nα|2)−1). |
Hence, we have
‖∑nan(˜ψn−φn)‖Ws2(TN)≤k⋅(∑n|an|2)12. |
Since k<1, then by theorem by R. Paly and N. Winner ([5], p.224) the system of functions {˜ψn(x)}n∈ZN forms a basis in the space Ws2(TN). On the other hand, the theorem by N.K. Bary (see [3], p. 382) implies that the ω-linear system of functions {ψn(x)}n∈ZN, quadratically close to the Riesz basis {˜ψn(x)}n∈ZN in Ws2(TN), is a Riesz basis in Ws2(TN). Hence, Theorem (2.2) is proved.
Theorem 2.3. Let ψn(x)=(2π)−Np⋅(1+|n|2)−s2⋅exp(iλnx)+αn(x), n∈ZN, where λn≠λm, as n≠m, ω be an linear independent system of functions at summation on rectangles that satisfies the following conditions:
1. ∑n∈ZN‖∑k∈ZN(1+|k|21+|n|2)s2(∏Nj=1sin(λnj−kj)π(λnj−kj)π−δnk)⋅exp(ikx)‖Lp(TN)<∞;
2. ∑n∈ZN‖αn(x)‖Lsp(TN)<∞.
Then, the summation on rectangles system functions {ψn}n∈ZN forms a basis Lsp(TN), 1<p<∞.
Proof. By Theorem Sokol-Sokolowski, the system functions φn(x)=(2π)−Npexp(inx) forms a normalized basis in Lp(TN) at summation on rectangles, i.e, for every f∈Lp(TN), there is a single row ∑n∈ZNfnexp(inx) such that
Sm(x)=∑|n1|≤m1∑|n2|≤m2...∑|nN|≤mNfnexp(inx) |
which partial sums converges (on rectangles) to function f(x) in Lp(TN) with respect to norm topology, while min1≤j≤Nmj→∞.
Similarly, the system functions
φn(x)=(2π)−Np⋅(1+|n|2)−s2⋅exp(inx) |
forms a normalized basis in Lsp(TN) at summation on rectangles, ie, for every f∈Lsp(TN), there is a single row
∑n∈ZN˜fn⋅φn(x) |
such that
Sm(x)=∑|n1|≤m1∑|n2|≤m2...∑|nN|≤mN˜fn⋅φn(x) |
which partial sums converges (on rectangles) to function f(x) in Lsp(TN) with respect to norm topology, while min1≤j≤Nmj→∞.
Consequently,
‖f(x)−Sm(x)‖Lsp(TN)=∑n∈ZN(2π)−Np⋅nfn⋅exp(inx)−∑|n1|≤m1∑|n2|≤m2...∑|nN|≤mN(2π)−Np⋅fn⋅exp(inx)‖Lp(TN)→0 |
while min1≤j≤Nmj→∞ where p≥1,s≥0, ˜fn=(2π)−Nq⋅(1+|n|2)s2⋅∫TNf(x)⋅exp(−inx)dx, 1p+1q=1. We have
˜ψn(x)=(2π)−Np⋅(1+|n|2)−s2⋅exp(iλnx) |
where λn≠λm, while n≠m, be an ω-linear independent system of functions that satisfies the following conditions:
∑n∈ZN‖∑k∈ZN(1+|k|21+|n|2)s2(N∏j=1sin(λnj−kj)π(λnj−kj)π−δnk)⋅exp(ikx)‖Lp(TN)<∞. |
as
‖φn−˜ψn‖Lsp(TN)=‖∑k∈ZN(1+|k|2)s2(φn−˜ψn)k⋅exp(ikx)‖Lp(TN) |
where
(φn−˜ψn)k=(2π)−N∫TN[φn(x)−˜ψn(x)]⋅exp(−ikx)dx |
are Fourier coefficients. Hence we get
(φn−˜ψn)k=(2π)−N∫TN[φn(x)−˜ψn(x)]⋅exp(−ikx)dx=(2π)−N−Np(1+|n|2)−s2∫TN[exp(inx)−exp(iλnx)]⋅exp(−ikx)dx=(2π)−N−Np(1+|n|2)−s2[∫TNexp(i(n−k)x)dx−∫TNexp(i(λn−k)x)dx]==(2π)−Np(1+|n|2)−s2[δnk−(2π)−N∫TNexp(i(λn−k)x)dx]==(2π)−Np(1+|n|2)−s2[δnk−(2π)−NN∏j=1∫π−πexp(i(λnj−kj)xj)dxj]==(2π)−Np(1+|n|2)−s2[δnk−(2π)−NN∏j=11i(λnj−kj)exp(i(λnj−kj)xj)|π−π]==(2π)−Np(1+|n|2)−s2[δnk−N∏j=1sin(λnj−kj)π(λnj−kj)π] |
in this way,
(φn−˜ψn)k=(2π)−Np(1+|n|2)−s2[δnk−N∏j=1sin(λnj−kj)π(λnj−kj)π] |
hence
∑n∈ZN‖φn−ψn‖Lsp(TN)=∑n∈ZN‖φn−˜ψn−αn(x)‖Lsp(TN)≤∑n∈ZN‖φn−˜ψn‖Lsp(TN)+∑n∈ZN‖αn(x)‖Lsp(TN)==∑n∈ZN‖∑k∈ZN(1+|k|21+|n|2)s2⋅(2π)−Np[δnk−N∏j=1sin(λnj−kj)π(λnj−kj)π]⋅exp(ikx)‖Lp(TN)+∑n∈ZN‖αn(x)‖Lsp(TN)<∞. |
By Theorem (2.2) we have the proof of the Theorem (2.3).
[1] | Grothendieck A., Produits tensoriels topologiques et espaces nucleaires, Mem. Amer. Math. Soc., 16 (1955). |
[2] | Enflo P., A counterexample to the approximation problem in Banach spaces, Acta Math., 130(1973), 309-317. |
[3] | Gokhberg I. C. , Kreyn M. G. , Introduction to the Theory of Linear non Self-adjoint Operators in the Hilbert Space, Moscow: Nauka, 1969. |
[4] | Gokhberg I.C., Markus A.S., Stability for bases of Banach and Hilbert spaces, Izvestiya AN MSSR., 5 (1962), 17-35. |
[5] | Riesz F. , Sekyofalvi-Nad B. , Lectures on Functional Analysis, Moscow, "Mir", 1979. |
[6] | Shakirbay G. Kasimov., On a Property of Bases in Banach and Hilbert Spaces, Malaysian Journal of Mathematical Sciences, 5 (2011), 229-240. |