Research article

Differences in the prevalence of physical activity and cardiovascular risk factors between people living at low (<1,001 m) compared to moderate (1,001–2,000 m) altitude

  • Living at moderate altitude (up to about 2,000 m) was shown to be associated with distinct health benefits, including lower mortality from cardiovascular diseases and certain cancers. However, it remains unclear, whether those benefits are mainly due to environmental conditions (e.g., hypoxia, temperature, solar ultra-violet radiation) or differences in lifestyle behavior, including regular physical activity levels. This study aims to compare altitude-related differences in levels of physical activity and the prevalence of cardiovascular risk factors such as obesity, hypertension, hypercholesterolemia, and diabetes in an Alpine country. We interrogated the Austrian Health Interview Survey (ATHIS) 2019, a nationally representative study of persons aged over 15 years living in private Austrian households. The results confirm a higher prevalence of hypertension (24.2% vs. 16.8%) in men living at low (<1,001 m) compared to those at moderate (1,001 to 2,000 m) altitude. Women living above 1,000 m tend to have a lower prevalence of hypercholesterolemia (14.8% vs. 18.8%) and diabetes (3.2% vs. 5.6%) than their lower living peers. Both sexes have lower average body mass index (BMI) when residing at moderate altitude (men: 25.7, women: 23.9) compared to those living lower (26.6 and 25.2). Severe obesity (BMI > 40) is almost exclusively restricted to low altitude dwellers. Only men report to be more physically active on average when living higher (1,453 vs. 1,113 weekly MET minutes). These novel findings confirm some distinct benefits of moderate altitude residence on heath. Beside climate conditions, differences in lifestyle behavior, i.e., physical activity, have to be considered when interpreting those health-related divergences, and consequently also mortality data, between people residing at low and moderate altitudes.

    Citation: Martin Burtscher, Grégoire P Millet, Jeannette Klimont, Johannes Burtscher. Differences in the prevalence of physical activity and cardiovascular risk factors between people living at low (<1,001 m) compared to moderate (1,001–2,000 m) altitude[J]. AIMS Public Health, 2021, 8(4): 624-635. doi: 10.3934/publichealth.2021050

    Related Papers:

    [1] Sarafa A. Iyaniwura, Musa Rabiu, Jummy F. David, Jude D. Kong . Assessing the impact of adherence to Non-pharmaceutical interventions and indirect transmission on the dynamics of COVID-19: a mathematical modelling study. Mathematical Biosciences and Engineering, 2021, 18(6): 8905-8932. doi: 10.3934/mbe.2021439
    [2] Gabriel McCarthy, Hana M. Dobrovolny . Determining the best mathematical model for implementation of non-pharmaceutical interventions. Mathematical Biosciences and Engineering, 2025, 22(3): 700-724. doi: 10.3934/mbe.2025026
    [3] Wenhan Guo, Yixin Xie, Alan E Lopez-Hernandez, Shengjie Sun, Lin Li . Electrostatic features for nucleocapsid proteins of SARS-CoV and SARS-CoV-2. Mathematical Biosciences and Engineering, 2021, 18(3): 2372-2383. doi: 10.3934/mbe.2021120
    [4] Roman Zúñiga Macías, Humberto Gutiérrez-Pulido, Edgar Alejandro Guerrero Arroyo, Abel Palafox González . Geographical network model for COVID-19 spread among dynamic epidemic regions. Mathematical Biosciences and Engineering, 2022, 19(4): 4237-4259. doi: 10.3934/mbe.2022196
    [5] Beatriz Machado, Liliana Antunes, Constantino Caetano, João F. Pereira, Baltazar Nunes, Paula Patrício, M. Luísa Morgado . The impact of vaccination on the evolution of COVID-19 in Portugal. Mathematical Biosciences and Engineering, 2022, 19(1): 936-952. doi: 10.3934/mbe.2022043
    [6] Salma M. Al-Tuwairqi, Sara K. Al-Harbi . Modeling the effect of random diagnoses on the spread of COVID-19 in Saudi Arabia. Mathematical Biosciences and Engineering, 2022, 19(10): 9792-9824. doi: 10.3934/mbe.2022456
    [7] Anichur Rahman, Muaz Rahman, Dipanjali Kundu, Md Razaul Karim, Shahab S. Band, Mehdi Sookhak . Study on IoT for SARS-CoV-2 with healthcare: present and future perspective. Mathematical Biosciences and Engineering, 2021, 18(6): 9697-9726. doi: 10.3934/mbe.2021475
    [8] Avinash Shankaranarayanan, Hsiu-Chuan Wei . Mathematical modeling of SARS-nCoV-2 virus in Tamil Nadu, South India. Mathematical Biosciences and Engineering, 2022, 19(11): 11324-11344. doi: 10.3934/mbe.2022527
    [9] Yangyang Yu, Yuan Liu, Shi Zhao, Daihai He . A simple model to estimate the transmissibility of the Beta, Delta, and Omicron variants of SARS-COV-2 in South Africa. Mathematical Biosciences and Engineering, 2022, 19(10): 10361-10373. doi: 10.3934/mbe.2022485
    [10] Fang Wang, Lianying Cao, Xiaoji Song . Mathematical modeling of mutated COVID-19 transmission with quarantine, isolation and vaccination. Mathematical Biosciences and Engineering, 2022, 19(8): 8035-8056. doi: 10.3934/mbe.2022376
  • Living at moderate altitude (up to about 2,000 m) was shown to be associated with distinct health benefits, including lower mortality from cardiovascular diseases and certain cancers. However, it remains unclear, whether those benefits are mainly due to environmental conditions (e.g., hypoxia, temperature, solar ultra-violet radiation) or differences in lifestyle behavior, including regular physical activity levels. This study aims to compare altitude-related differences in levels of physical activity and the prevalence of cardiovascular risk factors such as obesity, hypertension, hypercholesterolemia, and diabetes in an Alpine country. We interrogated the Austrian Health Interview Survey (ATHIS) 2019, a nationally representative study of persons aged over 15 years living in private Austrian households. The results confirm a higher prevalence of hypertension (24.2% vs. 16.8%) in men living at low (<1,001 m) compared to those at moderate (1,001 to 2,000 m) altitude. Women living above 1,000 m tend to have a lower prevalence of hypercholesterolemia (14.8% vs. 18.8%) and diabetes (3.2% vs. 5.6%) than their lower living peers. Both sexes have lower average body mass index (BMI) when residing at moderate altitude (men: 25.7, women: 23.9) compared to those living lower (26.6 and 25.2). Severe obesity (BMI > 40) is almost exclusively restricted to low altitude dwellers. Only men report to be more physically active on average when living higher (1,453 vs. 1,113 weekly MET minutes). These novel findings confirm some distinct benefits of moderate altitude residence on heath. Beside climate conditions, differences in lifestyle behavior, i.e., physical activity, have to be considered when interpreting those health-related divergences, and consequently also mortality data, between people residing at low and moderate altitudes.




    Acknowledgments



    We would like to thank Statistics Austria for providing the data.

    Conflict of interest



    The authors declare no conflict of interest.

    [1] Faeh D, Gutzwiller F, Bopp M, et al. (2099) Lower mortality from coronary heart disease and stroke at higher altitudes in Switzerland. Circulation 120: 495-501. doi: 10.1161/CIRCULATIONAHA.108.819250
    [2] Burtscher M (2016) Lower mortality rates in those living at moderate altitude. Aging (Albany NY) 8: 2603-2604. doi: 10.18632/aging.101057
    [3] Burtscher J, Millet GP, Burtscher M (2021) Does living at moderate altitudes in Austria affect mortality rates of various causes? An ecological study. BMJ Open 11: e048520. doi: 10.1136/bmjopen-2020-048520
    [4] Ekelund U, Tarp J, Steene-Johannessen J, et al. (2019) Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis. BMJ 366: l4570. doi: 10.1136/bmj.l4570
    [5] Burtscher J, Ruedl G, Posch M, et al. (2019) The upper limit of cardiorespiratory fitness associated with longevity: an update. AIMS Public Health 6: 225-228. doi: 10.3934/publichealth.2019.3.225
    [6] Millet GP, Debevec T, Brocherie F, et al. (2021) Altitude and COVID-19: Friend or foe? A narrative review. Physiol Rep 8: e14615. doi: 10.14814/phy2.14615
    [7] Klimont J (2020)  Österreichische Gesundheitsbefragung 2019 Vienna: Bundesministerium für Soziales, Gesundheit, Pflege und Konsumentenschutz (BMSGPK), Available from: https://www.sozialministerium.at/Themen/Gesundheit/Gesundheitssystem/Gesundheitsberichte/%C3%96sterreichische-Gesundheitsbefragung-2014-(ATHIS).html.
    [8] Piercy KL, Troiano RP, Ballard RM, et al. (2018) The Physical Activity Guidelines for Americans. JAMA 320: 2020-2028. doi: 10.1001/jama.2018.14854
    [9] Myers J, Prakash M, Froelicher V, et al. (2002) Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 346: 793-801. doi: 10.1056/NEJMoa011858
    [10] Arem H, Moore SC, Patel A, et al. (2015) Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA Intern Med 175: 959-967. doi: 10.1001/jamainternmed.2015.0533
    [11] Santos-Lozano A, Barrán AT, Fernández-Navarro P, et al. (2021) Association between physical activity and cardiovascular risk factors: Dose and sex matter. J Sport Health Sci .
    [12] Voss JD, Allison DB, Webber BJ, et al. (2014) Lower obesity rate during residence at high altitude among a military population with frequent migration: a quasi experimental model for investigating spatial causation. PLoS One 9: e93493. doi: 10.1371/journal.pone.0093493
    [13] Kayser B, Verges S (2013) Hypoxia, energy balance and obesity: from pathophysiological mechanisms to new treatment strategies. Obes Rev 14: 579-592. doi: 10.1111/obr.12034
    [14] Kayser B, Verges S (2021) Hypoxia, energy balance, and obesity: An update. Obes Rev 22: e13192.
    [15] Dwivedi AK, Dubey P, Cistola DP, et al. (2020) Association Between Obesity and Cardiovascular Outcomes: Updated Evidence from Meta-analysis Studies. Curr Cardiol Rep 22: 25. doi: 10.1007/s11886-020-1273-y
    [16] Barone I, Giordano C, Bonofiglio D, et al. (2020) The weight of obesity in breast cancer progression and metastasis: Clinical and molecular perspectives. Semin Cancer Biol 60: 274-284. doi: 10.1016/j.semcancer.2019.09.001
    [17] Aghili SMM, Ebrahimpur M, Arjmand B, et al. (2021) Obesity in COVID-19 era, implications for mechanisms, comorbidities, and prognosis: a review and meta-analysis. Int J Obes (Lond) 45: 998-1016. doi: 10.1038/s41366-021-00776-8
    [18] Seclén SN, Nunez-Robles E, Yovera-Aldana M, et al. (2020) Incidence of COVID-19 infection and prevalence of diabetes, obesity and hypertension according to altitude in Peruvian population. Diabetes Res Clin Pract 169: 108463. doi: 10.1016/j.diabres.2020.108463
    [19] Pietiläinen KH, Kaprio J, Borg P, et al. (2008) Physical inactivity and obesity: a vicious circle. Obesity (Silver Spring) 16: 409-414. doi: 10.1038/oby.2007.72
    [20] Wander K, Su M, Mattison PM, et al. (2020) High-altitude adaptations mitigate risk for hypertension and diabetes-associated anemia. Am J Phys Anthropol 172: 156-164. doi: 10.1002/ajpa.24032
    [21] Burtscher M (2014) Effects of living at higher altitudes on mortality: a narrative review. Aging Dis 5: 274-280.
    [22] Mortimer EA, Monson RR, MacMahon B (1977) Reduction in mortality from coronary heart disease in men residing at high altitude. N Eng J Med 296: 581-585. doi: 10.1056/NEJM197703172961101
    [23] Faeh D, Moser A, Panczak R, et al. (2016) Independent at heart: persistent association of altitude with ischaemic heart disease mortality after consideration of climate, topography and built environment. J Epidemiol Community Health 70: 798-806. doi: 10.1136/jech-2015-206210
    [24] Ezzati M, Horwitz ME, Thomas DS, et al. (2012) Altitude, life expectancy and mortality from ischaemic heart disease, stroke, COPD and cancers: national population-based analysis of US counties. J Epidemiol Community Health 66: e17. doi: 10.1136/jech.2010.112938
    [25] Thiersch M, Swenson ER (2018) High Altitude and Cancer Mortality. High Alt Med Biol 19: 116-123. doi: 10.1089/ham.2017.0061
    [26] Woolcott OO, Castillo OA, Gutierrez C, et al. (2014) Inverse association between diabetes and altitude: a cross-sectional study in the adult population of the United States. Obesity (Silver Spring) 22: 2080-2090. doi: 10.1002/oby.20800
    [27] Woolcott OO, Castillo OA, Torres J, et al. (2002) Serum leptin levels in dwellers from high altitude lands. High Alt Med Biol 3: 245-246. doi: 10.1089/15270290260131975
    [28] Lopez-Pascual A, Arévalo J, Martínez JA, et al. (2018) Inverse Association Between Metabolic Syndrome and Altitude: A Cross-Sectional Study in an Adult Population of Ecuador. Front Endocrinol (Lausanne) 9: 658. doi: 10.3389/fendo.2018.00658
    [29] Lopez-Pascual A, Bes-Rastrollo M, Sayón-Orea C, et al. (2017) Living at a geographically higher elevation is associated with lower risk of metabolic syndrome: prospective analysis of the SUN cohort. Front Physiol 7: 658. doi: 10.3389/fphys.2016.00658
    [30] Lo MY, Daniels JD, Levine BD, et al. (2013) Sleeping altitude and sudden cardiac death. Am Heart J 166: 71-75. doi: 10.1016/j.ahj.2013.04.003
    [31] Burtscher M, Faulhaber M, Flatz M, et al. (2006) Effects of short-term acclimatization to altitude (3200 m) on aerobic and anaerobic exercise performance. Int J Sports Med 27: 629-635. doi: 10.1055/s-2005-872823
    [32] Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148: 399-408. doi: 10.1016/j.cell.2012.01.021
    [33] Ban HS, Uno M, Nakamura H (2010) Suppression of hypoxia-induced HIF-1alpha accumulation by VEGFR inhibitors: Different profiles of AAL993 versus SU5416 and KRN633. Cancer Lett 296: 17-26. doi: 10.1016/j.canlet.2010.03.010
    [34] Ambrosini G, Nath AK, Sierra-Honigmann MR, et al. (2002) Transcriptional activation of the human leptin gene in response to hypoxia. Involvement of hypoxia-inducible factor 1. J Biol Chem 277: 34601-34609. doi: 10.1074/jbc.M205172200
    [35] Palmer BF, Clegg DJ (2014) Ascent to altitude as a weight loss method: the good and bad of hypoxia inducible factor activation. Obesity (Silver Spring) 22: 311-317. doi: 10.1002/oby.20499
    [36] Park S, Kario K, Chia YC, et al. (2020) The influence of the ambient temperature on blood pressure and how it will affect the epidemiology of hypertension in Asia. J Clin Hypertens (Greenwich) 22: 438-444. doi: 10.1111/jch.13762
    [37] Hirschler V, Gonzalez C, Molinari C, et al. (2019) Blood pressure level increase with altitude in three argentinean indigenous communities. AIMS Public Health 6: 370-379. doi: 10.3934/publichealth.2019.4.370
    [38] Mäkinen TM, Mäntysaari M, Pääkkönen T, et al. (2008) Autonomic nervous function during whole-body cold exposure before and after cold acclimation. Aviat Space Environ Med 79: 875-882. doi: 10.3357/ASEM.2235.2008
    [39] van der Lans AA, Hoeks J, Brans B, et al. (2013) Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest 123: 3395-3403. doi: 10.1172/JCI68993
    [40] Weller RB (2017) The health benefits of UV radiation exposure through vitamin D production or non-vitamin D pathways. Blood pressure and cardiovascular disease. Photochem Photobiol Sci 16: 374-380. doi: 10.1039/C6PP00336B
    [41] Najafi E, Khanjani N, Ghotbi MR, et al. (2019) The association of gastrointestinal cancers (esophagus, stomach, and colon) with solar ultraviolet radiation in Iran-an ecological study. Environ Monit Assess 191: 152. doi: 10.1007/s10661-019-7263-0
  • This article has been cited by:

    1. S. Olaniyi, O. S. Obabiyi, K. O. Okosun, A. T. Oladipo, S. O. Adewale, Mathematical modelling and optimal cost-effective control of COVID-19 transmission dynamics, 2020, 135, 2190-5444, 10.1140/epjp/s13360-020-00954-z
    2. Ricardo A. G. Unglaub, Kathrin Spendier, A Model for the Spread of Infectious Diseases with Application to COVID-19, 2021, 12, 2078-1547, 3, 10.3390/challe12010003
    3. Akhil Kumar Srivastav, Pankaj Kumar Tiwari, Prashant K Srivastava, Mini Ghosh, Yun Kang, A mathematical model for the impacts of face mask, hospitalization and quarantine on the dynamics of COVID-19 in India: deterministic vs. stochastic, 2021, 18, 1551-0018, 182, 10.3934/mbe.2021010
    4. Pakwan Riyapan, Sherif Eneye Shuaib, Arthit Intarasit, Kazuhisa Nishizawa, A Mathematical Model of COVID-19 Pandemic: A Case Study of Bangkok, Thailand, 2021, 2021, 1748-6718, 1, 10.1155/2021/6664483
    5. Akhil Kumar Srivastav, Mini Ghosh, Shraddha Ramdas Bandekar, Modeling of COVID-19 with limited public health resources: a comparative study of three most affected countries, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-01333-y
    6. Matthew O. Adewole, Akindele A. Onifade, Farah A. Abdullah, Funmilayo Kasali, Ahmad I. M. Ismail, Modeling the Dynamics of COVID-19 in Nigeria, 2021, 7, 2349-5103, 10.1007/s40819-021-01014-5
    7. P. K. Santra, D. Ghosh, G. S. Mahapatra, Ebenezer Bonyah, Chung-Min Liao, Mathematical Analysis of Two Waves of COVID-19 Disease with Impact of Vaccination as Optimal Control, 2022, 2022, 1748-6718, 1, 10.1155/2022/2684055
    8. Xinyu Bai, Shaojuan Ma, Stochastic dynamical behavior of COVID-19 model based on secondary vaccination, 2022, 20, 1551-0018, 2980, 10.3934/mbe.2023141
    9. Asghar Atifa, Muhammad Altaf Khan, Kulpash Iskakova, Fuad S. Al-Duais, Irshad Ahmad, Mathematical modeling and analysis of the SARS-Cov-2 disease with reinfection, 2022, 98, 14769271, 107678, 10.1016/j.compbiolchem.2022.107678
    10. Isa Abdullahi Baba, Musbahu Aminu Sani, Bashir Ahmad Nasidi, Fractional dynamical model to assess the efficacy of facemask to the community transmission of COVID-19, 2022, 25, 1025-5842, 1588, 10.1080/10255842.2021.2024170
    11. Newton I. Okposo, Matthew O. Adewole, Emamuzo N. Okposo, Herietta I. Ojarikre, Farah A. Abdullah, A mathematical study on a fractional COVID-19 transmission model within the framework of nonsingular and nonlocal kernel, 2021, 152, 09600779, 111427, 10.1016/j.chaos.2021.111427
    12. Akin Abayomi, Mobolanle R. Balogun, Munir Bankole, Aduragbemi Banke-Thomas, Bamidele Mutiu, John Olawepo, Morakinyo Senjobi, Oluwakemi Odukoya, Lanre Aladetuyi, Chioma Ejekam, Akinsanya Folarin, Madonna Emmanuel, Funke Amodu, Adesoji Ologun, Abosede Olusanya, Moses Bakare, Abiodun Alabi, Ismail Abdus-Salam, Eniola Erinosho, Abimbola Bowale, Sunday Omilabu, Babatunde Saka, Akin Osibogun, Ololade Wright, Jide Idris, Folasade Ogunsola, From Ebola to COVID-19: emergency preparedness and response plans and actions in Lagos, Nigeria, 2021, 17, 1744-8603, 10.1186/s12992-021-00728-x
    13. Salihu Sabiu Musa, Xueying Wang, Shi Zhao, Shudong Li, Nafiu Hussaini, Weiming Wang, Daihai He, The Heterogeneous Severity of COVID-19 in African Countries: A Modeling Approach, 2022, 84, 0092-8240, 10.1007/s11538-022-00992-x
    14. Guangxuan Yan, Jincai Yang, Shibing Qin, Peng Yin, Aixing Pan, Yong Hai, Rahim Khan, Mathematical Modeling and Nail Placement Accuracy Analysis of NF-1 Neurofibromatosis Scoliosis, 2022, 2022, 2040-2309, 1, 10.1155/2022/4229377
    15. Bassey Echeng Bassey, Jeremiah U. Atsu, Global stability analysis of the role of multi-therapies and non-pharmaceutical treatment protocols for COVID-19 pandemic, 2021, 143, 09600779, 110574, 10.1016/j.chaos.2020.110574
    16. Oluwatayo Michael Ogunmiloro, On the mathematical modeling of COVID-19 pandemic disease with some non-pharmaceutical interventions: Nigerian case study, 2022, 25, 0972-0502, 1071, 10.1080/09720502.2021.1930659
    17. Mustafa Kamal, Mintodê Nicodème Atchadé, Yves Morel Sokadjo, Sabir Ali Siddiqui, Fathy H. Riad, M. M. Abd El-Raouf, Ramy Aldallal, Eslam Hussam, Huda M. Alshanbari, Hassan Alsuhabi, Ahmed M. Gemeay, Influence of COVID-19 vaccination on the dynamics of new infected cases in the world, 2022, 20, 1551-0018, 3324, 10.3934/mbe.2023156
    18. Alexander Domoshnitsky, Alexander Sitkin, Lea Zuckerman, Mathematical Modeling of COVID-19 Transmission in the Form of System of Integro-Differential Equations, 2022, 10, 2227-7390, 4500, 10.3390/math10234500
    19. David O. Akeju, Samuel O. Adejoh, Ayoola J. Fakunmoju, Matthew J. Allsop, Bassey Ebenso, Titilayo Tade, Babasola O. Okusanya, The COVID‐19 pandemic: Stay Home policy and exposure to risks of infection among Nigerians, 2021, 1948-4682, 10.1002/wmh3.445
    20. Saratu Yusuf Ilu, Prasad Rajesh, Hassan Mohammed, Prediction of COVID-19 using long short-term memory by integrating principal component analysis and clustering techniques, 2022, 31, 23529148, 100990, 10.1016/j.imu.2022.100990
    21. Taye Samuel Faniran, Aatif Ali, Nawal E. Al-Hazmi, Joshua Kiddy K. Asamoah, Taher A. Nofal, Matthew O. Adewole, Dan Selişteanu, New Variant of SARS-CoV-2 Dynamics with Imperfect Vaccine, 2022, 2022, 1099-0526, 1, 10.1155/2022/1062180
    22. Taye Samuel Faniran, Leontine Nkague Nkamba, Thomas Timothee Manga, Qualitative and Quantitative Analyses of COVID-19 Dynamics, 2021, 10, 2075-1680, 210, 10.3390/axioms10030210
    23. B. I. Omede, U. B. Odionyenma, A. A. Ibrahim, Bolarinwa Bolaji, Third wave of COVID-19: mathematical model with optimal control strategy for reducing the disease burden in Nigeria, 2023, 11, 2195-268X, 411, 10.1007/s40435-022-00982-w
    24. Jiraporn Lamwong, Puntani Pongsumpun, I-Ming Tang, Napasool Wongvanich, Vaccination’s Role in Combating the Omicron Variant Outbreak in Thailand: An Optimal Control Approach, 2022, 10, 2227-7390, 3899, 10.3390/math10203899
    25. Abadi Abay Gebremeskel, Hailay Weldegiorgis Berhe, Adugna Temesgen Abay, Kamal Shah, A Mathematical Modelling and Analysis of COVID-19 Transmission Dynamics with Optimal Control Strategy, 2022, 2022, 1748-6718, 1, 10.1155/2022/8636530
    26. Samantha J. Brozak, Binod Pant, Salman Safdar, Abba B. Gumel, Dynamics of COVID-19 pandemic in India and Pakistan: A metapopulation modelling approach, 2021, 6, 24680427, 1173, 10.1016/j.idm.2021.10.001
    27. Matthew O. Adewole, Taye Samuel Faniran, Farah A. Abdullah, Majid K.M. Ali, COVID-19 dynamics and immune response: Linking within-host and between-host dynamics, 2023, 173, 09600779, 113722, 10.1016/j.chaos.2023.113722
    28. Konstantin Kogan, Fouad El Ouardighi, Avi Herbon, The economic impact of lockdown and bounded treatment capability for an epidemic without vaccine, 2024, 77, 0938-2259, 283, 10.1007/s00199-023-01531-y
    29. Wandera Ogana, Victor Ogesa Juma, Wallace D. Bulimo, Mathematical modelling of non-pharmaceutical interventions to control infectious diseases: application to COVID-19 in Kenya, 2024, 10, 2297-4687, 10.3389/fams.2024.1365184
    30. Charu Krishna, Dinesh Kumar, Dharmender Singh Kushwaha, A Comprehensive Survey on Pandemic Patient Monitoring System: Enabling Technologies, Opportunities, and Research Challenges, 2023, 131, 0929-6212, 2125, 10.1007/s11277-023-10535-9
    31. Tan Su, Xinhong Zhang, Daqing Jiang, Dynamic analysis of generalized epidemic models with latent period, quarantine, governmental intervention and Ornstein–Uhlenbeck process, 2024, 112, 0924-090X, 7749, 10.1007/s11071-024-09458-2
    32. Yvette Montcho, Sidoine Dako, Valère Kolawole Salako, Chénangnon Frédéric Tovissodé, Martin Wolkewitz, Romain Glèlè Kakaï, Assessing marginal effects of non-pharmaceutical interventions on the transmission of SARS-CoV-2 across Africa: a hybrid modeling study, 2024, 41, 1477-8599, 225, 10.1093/imammb/dqae013
    33. Israel Huaman, Vasiliy Leonenko, 2023, Chapter 21, 978-3-031-36023-7, 270, 10.1007/978-3-031-36024-4_21
    34. Mohammed M. Al-Shamiri, N. Avinash, P. Chellamani, Manal Z. M. Abdallah, G. Britto Antony Xavier, V. Rexma Sherine, M. Abisha, Sergey Dashkovskiy, Stability Analysis and Simulation of Diffusive Vaccinated Models, 2024, 2024, 1076-2787, 10.1155/2024/5595996
    35. Matthew O. Adewole, Farah A. Abdullah, Majid K. M. Ali, 2024, 3203, 0094-243X, 030007, 10.1063/5.0225272
    36. José Geiser Villavicencio-Pulido, Ignacio Barradas, Claudia Nila-Luévano, Additive multiple contacts and saturation phenomena in epidemiological models are not detected by R0, 2024, 19, 0973-5348, 8, 10.1051/mmnp/2024006
    37. Trisha Greenhalgh, C. Raina MacIntyre, Michael G. Baker, Shovon Bhattacharjee, Abrar A. Chughtai, David Fisman, Mohana Kunasekaran, Amanda Kvalsvig, Deborah Lupton, Matt Oliver, Essa Tawfiq, Mark Ungrin, Joe Vipond, Ferric C. Fang, Linsey Marr, Masks and respirators for prevention of respiratory infections: a state of the science review, 2024, 37, 0893-8512, 10.1128/cmr.00124-23
    38. Khalaf M. Alanazi, The asymptotic spreading speeds of COVID-19 with the effect of delay and quarantine, 2024, 9, 2473-6988, 19397, 10.3934/math.2024945
    39. C. K. Mahadhika, Dipo Aldila, A deterministic transmission model for analytics-driven optimization of COVID-19 post-pandemic vaccination and quarantine strategies, 2024, 21, 1551-0018, 4956, 10.3934/mbe.2024219
    40. Sarita Bugalia, Jai Prakash Tripathi, Hao Wang, Mutations make pandemics worse or better: modeling SARS-CoV-2 variants and imperfect vaccination, 2024, 88, 0303-6812, 10.1007/s00285-024-02068-x
    41. Jonner Nainggolan, Moch. Fandi Ansori, Hengki Tasman, An optimal control model with sensitivity analysis for COVID-19 transmission using logistic recruitment rate, 2025, 27724425, 100375, 10.1016/j.health.2024.100375
    42. Nikola Geciová, Lukáš Tomaščík, Marek Horváth, 2025, Development of a MATLAB Application for Simulating the SEIQRD Pandemic Spread Model, 979-8-3503-7936-5, 000215, 10.1109/SAMI63904.2025.10883239
    43. Tuğba Akman, Emek Köse, Necibe Tuncer, Assessment of vaccination and underreporting on COVID-19 infections in Turkey based on effective reproduction number, 2025, 18, 1793-5245, 10.1142/S1793524523501024
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3912) PDF downloads(122) Cited by(9)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog