Research article Special Issues

Weighted Morrey space boundedness for Hörmander-type singular integrals

  • Published: 29 December 2025
  • We investigate the boundedness properties of singular integral operators characterized by $ L^{r} $-Hörmander kernel conditions (for $ 1 < r < \infty $) within the framework of weighted Morrey spaces. Additionally, the analysis is extended to commutators generated by these operators and functions in the Bounded Mean Oscillation (BMO) classes, establishing corresponding norm estimates under comparable geometric and weight hypotheses.

    Citation: Kejun Li, Shaoguang Shi, Guanglan Wang. Weighted Morrey space boundedness for Hörmander-type singular integrals[J]. Networks and Heterogeneous Media, 2025, 20(5): 1509-1523. doi: 10.3934/nhm.2025064

    Related Papers:

  • We investigate the boundedness properties of singular integral operators characterized by $ L^{r} $-Hörmander kernel conditions (for $ 1 < r < \infty $) within the framework of weighted Morrey spaces. Additionally, the analysis is extended to commutators generated by these operators and functions in the Bounded Mean Oscillation (BMO) classes, establishing corresponding norm estimates under comparable geometric and weight hypotheses.



    加载中


    [1] J. Garcia-Cuerva, Weighted Norm Inequalities and Related Topics, 116 (1985), Elsevier.
    [2] S. Lu, Y. Ding, D. Yan, Singular Integrals and Related Topics, World Scientific Publishing, Singapore, 2007.
    [3] D. Kurtz, R. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc., 255 (1979), 343–362. https://doi.org/10.2307/1998180 doi: 10.2307/1998180
    [4] D. Watson, Weighted estimates for singular integrals via Fourier transform estimates, Duke. Math. J., 60 (1990), 389–399. https://doi.org/10.1215/S0012-7094-90-06015-6 doi: 10.1215/S0012-7094-90-06015-6
    [5] J. Duoandikoexea, J. Rubia de francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math., 84 (1986), 541–561. https://doi.org/10.1007/BF01388746 doi: 10.1007/BF01388746
    [6] R. Fefferman, A note on singular integral, Proc. Amer. Math. Soc., 74 (1979), 266–270. Available from: https://www.ams.org/journals/proc/1979-074-02/S0002-9939-1979-0524298-3/S0002-9939-1979-0524298-3.pdf.
    [7] A. Nagel, N. Riviers, S. Wainger, On Hilbert transforms along curves, II, Trans. Amer. Math. Soc., 98 (1976), 395–403.
    [8] M. Lee, C. Lin, Y. Lin, D. Yan, Boundedness of singular integral operators with variable kernels, J. Math. Anal. Appl., 348 (2008), 787–796. https://doi.org/10.1016/j.jmaa.2008.07.078 doi: 10.1016/j.jmaa.2008.07.078
    [9] M. Riveros, Weighted inequalities for generalized fractional operators, Rev. Unin Mat. Argent., 49 (2008), 29–38. Available from: https://inmabb.criba.edu.ar/revuma/pdf/v49n2/v49n2a04.pdf.
    [10] A. Bernardis, M. Lorente, M. Riveros, Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions, Math. Inequal. Appl., 14 (2011), 881–895. https://doi.org/10.7153/mia-14-73 doi: 10.7153/mia-14-73
    [11] D. Kurtz, Sharp function estimates for fractional integrals and related operators, J. Austral. Math. Soc. (Series A), 49 (1990), 129–137. https://doi.org/10.1017/S1446788700030287 doi: 10.1017/S1446788700030287
    [12] C. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126–166. https://doi.org/10.1090/S0002-9947-1938-1501936-8 doi: 10.1090/S0002-9947-1938-1501936-8
    [13] J. Ruan, J. Chen, The cauchy integral operator on the predual of a Morrey space, J. Inequal. Appl., 2010 (2010), 729824. https://doi.org/10.1155/2010/729824 doi: 10.1155/2010/729824
    [14] S. Shi, S. Lu, Some norm inequalities for commutators with symbol function in Morrey spaces, J. Math. Inequal., 8 (2014), 889–897. https://doi.org/10.7153/jmi-08-67 doi: 10.7153/jmi-08-67
    [15] J. Wang, Z. Fu, S. Shi, L. Mi, Operator inequalities of Morrey spaces associated with karamata regular variation, J. Funct. Spaces, (2017), 4618197. https://doi.org/10.1155/2017/4618197
    [16] M. Wei, D.Yan, Sharp bounds for Hardy-type operators on mixed radial-angular central Morrey spaces, J. Inequal. Appl., 2023 (2023), 31. https://doi.org/10.1186/s13660-023-02936-y doi: 10.1186/s13660-023-02936-y
    [17] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, 2004.
    [18] B. Muckenhoupt, R. Wheeden, Weighted norm inequalities for singular and fractional integrals, Trans. Amer. Math. Soc., 16 (1971), 249–258. https://doi.org/10.2307/1995940 doi: 10.2307/1995940
    [19] Y. Komori, S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr., 282 (2009), 219–231. https://doi.org/10.1002/mana.200610733 doi: 10.1002/mana.200610733
    [20] J. Duoandikoetxea, M. Rosenthal, Muckenhoupt-Type conditions on weighted Morrey spaces, J. Fourier Anal. Appl., 27 (2021), 32. https://doi.org/10.1007/s00041-021-09839-w doi: 10.1007/s00041-021-09839-w
    [21] J. Duoandikoetxea, M. Rosenthal, Boundedness of operators on certain weighted Morrey spaces beyond the muckenhoupt range, Potential Anal., 53 (2020), 1255–1268. https://doi.org/10.1007/s11118-019-09805-8 doi: 10.1007/s11118-019-09805-8
    [22] S. Shi, Z. Fu, Q. Wu, On average operators, oscillatory integrals, singular integrals and their applications, J. Appl. Anal. Comput., 14 (2024), 334–378. https://doi.org/10.11948/20230225 doi: 10.11948/20230225
    [23] S. Shi, Z. Fu, F. Zhao, Estimates for operators on weighted Morrey spaces and their applications to nondivergence elliptic equations, J. Inequal. Appl., 2013 (2013), 390. https://doi.org/10.1186/1029-242X-2013-390 doi: 10.1186/1029-242X-2013-390
    [24] F. Gürbüz, Some inequalities for the multilinear singular integrals with Lipschitz functions on weighted Morrey spaces, J. Inequal. Appl., 2020 (2020), 134. https://doi.org/10.48550/arXiv.1909.00191 doi: 10.48550/arXiv.1909.00191
    [25] Z. Fu, S. Lu, Y. Pan, S. Shi, Boundedness of one-sided oscillatory integral operators on weighted lebesgue spaces, Abstr. Appl. Anal., 2014 (2014), 291397. https://doi.org/10.1155/2014/291397 doi: 10.1155/2014/291397
    [26] J. Qi, X. Yan, W. Li, Endpoint boundedness for commutators of singular integral operators on weighted generalized Morrey spaces, J. Inequal. Appl., 2020 (2020), 129. https://doi.org/10.1186/s13660-020-02394-w doi: 10.1186/s13660-020-02394-w
    [27] F. John, L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415–426. Available from: https://www.karlin.mff.cuni.cz/kaplicky/pages/pages/2010z/JohnNi1961.pdf.
    [28] C. Perez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal., 128 (1995), 163–185. https://doi.org/10.1006/jfan.1995.1027 doi: 10.1006/jfan.1995.1027
    [29] R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611–635. https://doi.org/10.2307/1970954 doi: 10.2307/1970954
    [30] Z. Fu, S. Lu, S. Shi, Two characterizations of central BMO space via the commutators of Hardy operators, Forum Math., 33 (2021), 505–529. https://doi.org/10.1515/forum-2020-0243 doi: 10.1515/forum-2020-0243
    [31] S. Shi, Z. Fu, S. Lu, On the compactness of commutators of Hardy operators, Pacific J. Math., 1 (2020), 239–256. https://doi.org/10.2140/pjm.2020.307.239 doi: 10.2140/pjm.2020.307.239
    [32] S. Shi, S. Lu, Characterization of the central Campanato space via the commutator operator of Hardy type, J. Math. Anal. Appl., 429 (2015), 713–732. https://doi.org/10.1016/j.jmaa.2015.03.083 doi: 10.1016/j.jmaa.2015.03.083
    [33] Z. W. Fu, S. Z. Lu, Commutators of generalized Hardy operators, J. Math. Nachr. 282 (2009), 832–845. https://doi.org/10.1002/mana.200610775
    [34] M. Bramanti, C. Cerutti, $W^{1, 2}_{p}$ solvability for the cauchy-dirichlet problem for parabolic equations with VMO coefcients, Commun. Partial Differential Equations, 18 (1993), 1735–1763. https://doi.org/10.1080/03605309308820991 doi: 10.1080/03605309308820991
    [35] K. Gao, S. T. Jhang, S. Shi, J. Zheng, Blow-up prevention by subquadratic and quadratic degradations in a three-dimensional Keller–Segel–Stokes system with indirect signal production, J. Differ. Equations, 432 (2025), 324–376. https://doi.org/10.1016/j.jde.2024.12.045 doi: 10.1016/j.jde.2024.12.045
    [36] S. Shi, Z. Zhai, L. Zhang, Characterizations of the viscosity solution of a nonlocal and nonlinear equation induced by the fractional p-Laplace and the fractional p-convexity, Adv. Calc. Var., 17 (2023), 195–207. https://doi.org/10.1515/acv-2021-0110 doi: 10.1515/acv-2021-0110
    [37] L. Q. C. Zhu, Harmonic Analysis, Higher Education Press, 2016.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(161) PDF downloads(16) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog