Research article

An enhanced crossover strategy for the artificial lemming algorithm for engineering design optimization

  • Published: 23 December 2025
  • To address the limitations of the artificial lemming algorithm (ALA) in convergence accuracy and premature convergence, this paper proposes an enhanced variant, the cross-strategy-integrated artificial lemming algorithm (CALA). Specifically, the CALA integrates a linear inertia weight strategy to balance exploration and exploitation, a historical best-guided strategy to enhance local search, and a crossover strategy to maintain population diversity. The proposed algorithm was evaluated on the IEEE CEC2017 and CEC2022 benchmark suites, achieving minimum Friedman mean ranks of 1.37 and 1.5, respectively, and outperforming several state-of-the-art algorithms in terms of accuracy and robustness. Furthermore, the CALA was successfully applied to constrained engineering design problems and a photovoltaic model parameter estimation task, demonstrating its effectiveness and practical applicability.

    Citation: Yan Zhong, Li-Bin Liu, Xiongfa Mai, Haiyan Luo. An enhanced crossover strategy for the artificial lemming algorithm for engineering design optimization[J]. Networks and Heterogeneous Media, 2025, 20(5): 1466-1508. doi: 10.3934/nhm.2025063

    Related Papers:

  • To address the limitations of the artificial lemming algorithm (ALA) in convergence accuracy and premature convergence, this paper proposes an enhanced variant, the cross-strategy-integrated artificial lemming algorithm (CALA). Specifically, the CALA integrates a linear inertia weight strategy to balance exploration and exploitation, a historical best-guided strategy to enhance local search, and a crossover strategy to maintain population diversity. The proposed algorithm was evaluated on the IEEE CEC2017 and CEC2022 benchmark suites, achieving minimum Friedman mean ranks of 1.37 and 1.5, respectively, and outperforming several state-of-the-art algorithms in terms of accuracy and robustness. Furthermore, the CALA was successfully applied to constrained engineering design problems and a photovoltaic model parameter estimation task, demonstrating its effectiveness and practical applicability.



    加载中


    [1] Q. Li, S.Y. Liu, X.S. Yang, Influence of initialization on the performance of metaheuristic optimizers, Appl. Soft Comput., 91 (2020), 106193. https://doi.org/10.1016/j.asoc.2020.106193 doi: 10.1016/j.asoc.2020.106193
    [2] H. Su, D. Zhao, A. A. Heidari, L. Liu, X. Zhang, M. Mafarja, et al., RIME: A physics-based optimization, Neurocomputing, 532 (2023), 183–214. https://doi.org/10.1016/j.neucom.2023.02.010 doi: 10.1016/j.neucom.2023.02.010
    [3] S. Abbasi, A. M. Rahmani, A. Balador, A. Sahafi, A fault-tolerant adaptive genetic algorithm for service scheduling in internet of vehicles, Appl. Soft Comput., 143 (2023), 110413. https://doi.org/10.1016/j.asoc.2023.110413 doi: 10.1016/j.asoc.2023.110413
    [4] B. Zhou, Z. Zhao, An adaptive artificial bee colony algorithm enhanced by Deep Q-Learning for milk-run vehicle scheduling problem based on supply hub, Knowledge Based Syst., 264 (2023), 110367. https://doi.org/10.1016/j.knosys.2023.110367 doi: 10.1016/j.knosys.2023.110367
    [5] Z. Wang, L. Shao, S. Yang, J. Wang, D. Li, CRLM: A cooperative model based on reinforcement learning and metaheuristic algorithms of routing protocols in wireless sensor networks, Comput. Networks, 236 (2023), 110019. https://doi.org/10.1016/j.comnet.2023.110019 doi: 10.1016/j.comnet.2023.110019
    [6] Y. Chen, G. Wang, B. Yin, C. Ma, Z. Wu, M. Gao, Basketball team optimization algorithm (BTOA): a novel sport-inspired meta-heuristic optimizer for engineering applications, Sci. Rep., 15 (2025), 21629. https://doi.org/10.1038/s41598-025-05477-0 doi: 10.1038/s41598-025-05477-0
    [7] Y. Xiao, Y. Guo, H. Cui, Y. Wang, J. Li, Y. Zhang, IHAOAVOA: An improved hybrid aquila optimizer and African vultures optimization algorithm for global optimization problems, Math. Biosci. Eng., 19 (2022), 10963–11017. https://doi.org/10.3934/mbe.2022512 doi: 10.3934/mbe.2022512
    [8] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evolut. Comput., 1 (1997), 67–82. https://doi.org/10.1109/4235.585893 doi: 10.1109/4235.585893
    [9] R. Zheng, H. Jia, L. Abualigah, S. Wang, D. Wu, An improved remora optimization algorithm with autonomous foraging mechanism for global optimization problems, Math. Biosci. Eng., 19 (2022), 3994–4037. https://doi.org/10.3934/mbe.2022184 doi: 10.3934/mbe.2022184
    [10] R. Zheng, H. Jia, L. Abualigah, Q. Liu, S. Wang, Deep ensemble of slime mold algorithm and arithmetic optimization algorithm for global optimization, Processes, 9 (2021), 1774. https://doi.org/10.3390/pr9101774 doi: 10.3390/pr9101774
    [11] H. Liu, R. Zhou, X. Zhong, Y. Yao, W. Shan, J. Yuan, et al., Multi-strategy enhanced crested porcupine optimizer: CAPCPO, Mathematics, 12 (2024), 3080. https://doi.org/10.3390/math12193080 doi: 10.3390/math12193080
    [12] H. Liu, L. Liu, X. Mai, D. Guo, A new hybrid Lévy Quantum-behavior Butterfly Optimization Algorithm and its application in NL5 Muskingum model, Electron. Res. Arch., 32 2024. https://doi.org/10.3934/era.2024109 doi: 10.3934/era.2024109
    [13] Y. Xiao, H. Cui, R. Abu Khurma, P. A. Castillo, Artificial lemming algorithm: a novel bionic meta-heuristic technique for solving real-world engineering optimization problems, Artif. Intell. Rev., 58 (2025), 84. https://doi.org/10.1007/s10462-024-11023-7 doi: 10.1007/s10462-024-11023-7
    [14] M. Abdel-Basset, R. Mohamed, S. A. Abdel Azeem, M. Jameel, M. Abouhawwash, Kepler optimization algorithm: A new metaheuristic algorithm inspired by Kepler's laws of planetary motion, Knowledge Based Syst., 268 (2023), 110454. https://doi.org/10.1016/j.knosys.2023.110454 doi: 10.1016/j.knosys.2023.110454
    [15] M. H. Amiri, N. Mehrabi Hashjin, M. Montazeri, S. Mirjalili, N. Khodadadi, Hippopotamus optimization algorithm: A novel nature-inspired optimization algorithm, Sci. Rep., 14 (2024), 5032. https://doi.org/10.1038/s41598-024-54910-3 doi: 10.1038/s41598-024-54910-3
    [16] L. Deng, S. Liu, Snow ablation optimizer: A novel metaheuristic technique for numerical optimization and engineering design, Expert Syst. Appl., 225 (2023), 120069. https://doi.org/10.1016/j.eswa.2023.120069 doi: 10.1016/j.eswa.2023.120069
    [17] G. Hu, C. Gong, X. Li, Z. Xu, CGKOA: An enhanced Kepler optimization algorithm for multi-domain optimization problems, Comput. Method. Appl. Mech. Eng., 425 (2024), 116964. https://doi.org/10.1016/j.cma.2024.116964 doi: 10.1016/j.cma.2024.116964
    [18] S. Pei, G. Sun, L. Tong, An improved hippopotamus optimization algorithm based on adaptive development and solution diversity enhancement, PeerJ Comput. Sci., 11 (2025), e2901. https://doi.org/10.7717/peerj-cs.2901 doi: 10.7717/peerj-cs.2901
    [19] Y. Xiao, H. Cui, A. G. Hussien, F. A. Hashim, MSAO: A multi-strategy boosted snow ablation optimizer for global optimization and real-world engineering applications, Adv. Eng. Inform., 61 (2024), 102464. https://doi.org/10.1016/j.aei.2024.102464 doi: 10.1016/j.aei.2024.102464
    [20] Y. Han, GALA: group merging artificial lemming algorithm for gene selection, in 2025 International Conference on Computer Science, Technology and Engineering (ICCSTE), 2025,244–247. https://doi.org/10.1109/ICCSTE65902.2025.11138413
    [21] X. Zhu, C. Jia, J. Zhao, C. Xia, W. Peng, J. Huang, et al., An enhanced artificial lemming algorithm and its application in UAV path planning, Biomimetics, 10 (2025), 377. https://doi.org/10.3390/biomimetics10060377 doi: 10.3390/biomimetics10060377
    [22] Y. Xie, Z. Sun, K. Yuan, Z. Sun, 3D UAV route optimization in complex environments using an enhanced artificial lemming algorithm, Symmetry, 17 (2025), 946. https://doi.org/10.3390/sym17060946 doi: 10.3390/sym17060946
    [23] Y. Tan, J. Wang, B. Wang, An improved bionic artificial lemming algorithm for global optimization and cloud task-scheduling problems, Biomimetics, 10 (2025), 572. https://doi.org/10.3390/biomimetics10090572 doi: 10.3390/biomimetics10090572
    [24] J. Zhang, Y. Li, C. Li, X. Mei, J. Zhou, Application of soft computing represented by regression machine learning model and artificial lemming algorithm in predictions for hydrogen storage in metal-organic frameworks, Materials, 18 (2025), 3122. https://doi.org/10.3390/ma18133122 doi: 10.3390/ma18133122
    [25] P. Qu, X. Song, Z. Zhou, Research on path planning for mobile robot using the enhanced artificial lemming algorithm, Mathematics, 13 (2025), 3533. https://doi.org/10.3390/math13213533 doi: 10.3390/math13213533
    [26] Y. Han, Feature selection algorithm based on Q-learning and artificial lemming algorithm for medical data, in 2025 7th International Conference on Electronics and Communication, Network and Computer Technology (ECNCT), 1 (2025), 737–743. https://doi.org/10.1109/ECNCT66493.2025.11172427
    [27] R. C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, in Proceedings of the 2000 Congress on Evolutionary Computation, 1 (2000), 84–88. https://doi.org/10.1109/CEC.2000.870279
    [28] Y. Shi, R. C. Eberhart, Empirical study of particle swarm optimization, in Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, 3 (1999), 1945–1950. https://doi.org/10.1109/CEC.1999.785511
    [29] J. C. Bansal, P. K. Singh, M. Saraswat, A. Verma, S. S. Jadon, A. Abraham, Inertia weight strategies in particle swarm optimization, in 2011 Third World Congress on Nature and Biologically Inspired Computing, 2011,633–640. https://doi.org/10.1109/NaBIC.2011.6089659
    [30] W. Gao, S. Liu, L. Huang, A global best artificial bee colony algorithm for global optimization, J. Comput. Appl. Math., 236 (2012), 2741–2753. https://doi.org/10.1016/j.cam.2012.01.013 doi: 10.1016/j.cam.2012.01.013
    [31] J. Liu, H. Zhu, Q. Ma, L. Zhang, H. Xu, An artificial bee colony algorithm with guide of global & local optima and asynchronous scaling factors for numerical optimization, Appl. Soft Comput., 37 (2015), 608–618. https://doi.org/10.1016/j.asoc.2015.08.021 doi: 10.1016/j.asoc.2015.08.021
    [32] M. K. Naik, R. Panda, A novel adaptive cuckoo search algorithm for intrinsic discriminant analysis based face recognition, Appl. Soft Comput., 38 (2016), 661–675. https://doi.org/10.1016/j.asoc.2015.10.039 doi: 10.1016/j.asoc.2015.10.039
    [33] A. B. Meng, Y. C. Chen, H. Yin, S. Z. Chen, Crisscross optimization algorithm and its application, Knowledge Based Syst., 67 (2014), 218–229. https://doi.org/10.1016/j.knosys.2014.05.004 doi: 10.1016/j.knosys.2014.05.004
    [34] J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95 - International Conference on Neural Networks, 4 (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
    [35] S. Mirjalili, SCA: A Sine Cosine algorithm for solving optimization problems, Knowl-Based Syst., 96 (2016), 120–133. https://doi.org/10.1016/j.knosys.2015.12.022 doi: 10.1016/j.knosys.2015.12.022
    [36] H. Jia, H. Rao, C. Wen, S. Mirjalili, Crayfish optimization algorithm, Artif. Intell. Rev., 56 (2023), 1919–1979. https://doi.org/10.1007/s10462-023-10567-4 doi: 10.1007/s10462-023-10567-4
    [37] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849–872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028
    [38] E. H. Houssein, D. Oliva, N. Abdel Samee, N. F. Mahmoud, M. M. Emam, Liver cancer algorithm: A novel bio-inspired optimizer, Comput. Biol. Med., 165 (2023), 107389. https://doi.org/10.1016/j.compbiomed.2023.107389 doi: 10.1016/j.compbiomed.2023.107389
    [39] R. Tanabe, A. S. Fukunaga, Improving the search performance of SHADE using linear population size reduction, in 2014 IEEE Congress on Evolutionary Computation (CEC), 2014, 1658–1665. https://doi.org/10.1109/CEC.2014.6900380
    [40] K. Hussain, M. N. M. Salleh, S. Cheng, Y. Shi, On the exploration and exploitation in popular swarm-based metaheuristic algorithms, Neural Comput. Appl., 31 (2019), 7665–7683. https://doi.org/10.1007/s00521-018-3592-0 doi: 10.1007/s00521-018-3592-0
    [41] B. Morales-Castañeda, D. Zaldivar, E. Cuevas, F. Fausto, A. Rodríguez, A better balance in metaheuristic algorithms: Does it exist?, Swarm Evol. Comput., 54 (2020), 100671. https://doi.org/10.1016/j.swevo.2020.100671 doi: 10.1016/j.swevo.2020.100671
    [42] G. Wu, R. Mallipeddi, P. N. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization. Available from: https://www.researchgate.net/publication/317228117.
    [43] A. Kumar, K. V. Price, A. W. Mohamed, A. A. Hadi, Problem Definitions and Evaluation Criteria for the CEC 2022 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization.
    [44] P. B. Dao, On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines, Appl. Energy, 318 (2022), 119209. https://doi.org/10.1016/j.apenergy.2022.119209 doi: 10.1016/j.apenergy.2022.119209
    [45] D. Annaratone, Pressure Vessel Design, Springer, Berlin, Heidelberg, 2007. https://doi.org/10.1007/978-3-540-49144-6
    [46] E. Sandgren, Nonlinear integer and discrete programming in mechanical design optimization, J. Mech. Des., 112 (1990), 223–229. https://doi.org/10.1115/1.2912596 doi: 10.1115/1.2912596
    [47] M. Alabdulhafith, H. Batra, N. M. A. Samee, M. A. Al-Betar, A. Almomani, D. Izci, et al., A modified Bonobo optimizer with its application in solving engineering design problems, IEEE Access, 12 (2024), 134948–134984. https://doi.org/10.1109/ACCESS.2024.3455550 doi: 10.1109/ACCESS.2024.3455550
    [48] J. S. Arora, 2-Optimum design problem formulation, Introduction to Optimum Design (Second Edition), Elsevier, 2004, 15–54. https://doi.org/10.1016/B978-012064155-0/50002-1
    [49] A. D. Belegundu, J. S. Arora, A study of mathematical programming methods for structural optimization. Part Ⅰ: Theory, Int. J. Numer. Meth. Eng., 21 (1985), 1583–1599. https://doi.org/10.1002/nme.1620210904 doi: 10.1002/nme.1620210904
    [50] C. A. Coello Coello, E. Mezura Montes, Constraint-handling in genetic algorithms through the use of dominance-based tournament selection, Adv. Eng. Inform., 16 (2002), 193–203. https://doi.org/10.1016/S1474-0346(02)00011-3 doi: 10.1016/S1474-0346(02)00011-3
    [51] A. T. Kamil, H. M. Saleh, I. H. Abd-Alla, A multi-swarm structure for particle swarm optimization: Solving the welded beam design problem, J. Phys.: Conf. Ser., 1804 (2021), 012012. https://doi.org/10.1088/1742-6596/1804/1/012012 doi: 10.1088/1742-6596/1804/1/012012
    [52] T. Easwarakhanthan, J. Bottin, I. Bouhouch, C. Boutrit, Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers, Int. J. Sol. Energy, 4 (1986), 1–12. https://doi.org/10.1080/01425918608909835 doi: 10.1080/01425918608909835
    [53] T. Zhou, C. Shang, Parameter identification of solar photovoltaic models by multi strategy sine–cosine algorithm, Energy Sci. Eng., 12 (2024), 1422–1445. https://doi.org/10.1002/ese3.1673 doi: 10.1002/ese3.1673
    [54] X. Chen, K. Yu, W. Du, W. Zhao, G. Liu, Parameters identification of solar cell models using generalized oppositional teaching learning based optimization, Energy, 99 (2016), 170–180. https://doi.org/10.1016/j.energy.2016.01.052 doi: 10.1016/j.energy.2016.01.052
    [55] X. Yuan, Y. He, L. Liu, Parameter extraction of solar cell models using chaotic asexual reproduction optimization, Neural Comput. Appl., 26 (2015), 1227–1239. https://doi.org/10.1007/s00521-014-1795-6 doi: 10.1007/s00521-014-1795-6
    [56] Z. Feng, D. Zhu, H. Guo, J. Xue, C. Zhou, A Jaya algorithm based on self-adaptive method for parameters identification of photovoltaic cell and module, Clust. Comput., 28 (2025), 145. https://doi.org/10.1007/s10586-024-04877-7 doi: 10.1007/s10586-024-04877-7
    [57] W. Gong, Z. Cai, Parameter extraction of solar cell models using repaired adaptive differential evolution, Sol. Energy, 94 (2013), 209–220. https://doi.org/10.1016/j.solener.2013.05.007 doi: 10.1016/j.solener.2013.05.007
    [58] M. Abdel-Basset, R. Mohamed, M. Abouhawwash, A. M. Alshamrani, A. W. Mohamed, K. Sallam, Binary light spectrum optimizer for knapsack problems: an improved model, Alex. Eng. J., 67 (2023), 609–632. https://doi.org/10.1016/j.aej.2022.12.025 doi: 10.1016/j.aej.2022.12.025
    [59] M. Ellahi, G. Abbas, A Hybrid Metaheuristic Approach for the Solution of Renewables-Incorporated Economic Dispatch Problems, IEEE Access, 8 (2020), 127608–127621. https://doi.org/10.1109/ACCESS.2020.3008570 doi: 10.1109/ACCESS.2020.3008570
    [60] E. Osaba, X. S. Yang, J. Del Ser, Traveling salesman problem: a perspective review of recent research and new results with bio-inspired metaheuristics, Nature-Inspired Computation and Swarm Intelligence, Academic Press, 2020,135–164, https://doi.org/10.1016/B978-0-12-819714-1.00020-8
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(57) PDF downloads(5) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(22)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog