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Abstract: We investigate the boundedness properties of singular integral operators characterized by
Lr-Hörmander kernel conditions (for 1 < r < ∞) within the framework of weighted Morrey spaces.
Additionally, the analysis is extended to commutators generated by these operators and functions
in the Bounded Mean Oscillation (BMO) classes, establishing corresponding norm estimates under
comparable geometric and weight hypotheses.
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1. Introduction and main results

This paper examines the Calderón–Zygmund singular integral operator, a foundational object in
harmonic analysis and partial differential equations. It is defined by integration against a kernel that
exhibits a singularity. Such kernels are classically required to satisfy certain smoothness and decay
properties, which underpin the boundedness and regularity-preserving behavior of the operator in
function space theory. Formally, a classical Calderón–Zygmund singular integral operator T is
defined via a principal value integral.

T f (x) = p.v.
∫
Rn

K(x − y) f (y) dy,

where p.v. denotes the principal value integral and the kernel K is the classical Calderón-Zygmund
kernel which adheres to the following canonical Calderón-Zygmund-type hypotheses:

(a) For all ε and N with 0 < ε < N < ∞,∫
ε<|x|<N

K(x) dx = 0, (1.1)
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(b) There exists a constant C such that

|K (x) | ≤
C
|x|n
, (1.2)

(c) There exists a constant C such that

|K (x − y) − K (x)| ≤
C|y|
|x|n+1 , |x| > 2|y|. (1.3)

Let 1 < r < ∞, 1/r + 1/r′ = 1, a function K ∈ L1
Loc{R

n \ {0}} is called Lr− Hörmander type
Calderón-Zygmund kernel if K satisfies Eqs (1.1) and (1.2)

sup
0<|y|<h

∞∑
k=1

(
2kh

) n
r′

(∫
2kh≤|x|≤2k+1h

|K (x − y) − K (x) |rdx
) 1

r

< ∞. (1.4)

Note that if r = 1, Eq (1.4) agrees with the standard Hörmander condition∫
|x|>2|y|

|K(x − y) − K(x)|dx < ∞. (1.5)

When r = ∞, Eq (1.4) can be understood as

sup
0<|y|<h

∞∑
k=1

(2kh)n sup
2kh≤|x|≤2k+1h

|K(x − y) − K(x)| < ∞.

In this paper, we denote by Hr the class of kernels that satisfy the Lr -Hörmander condition and
H∞,∗ the class of kernels that fulfill the classical Lipschitz condition Eq (1.3). It is evident that these
classes are nested. That is,

H∞,∗ ⊂ H∞ ⊂ H s ⊂ Hr ⊂ H1, 1 < r < s < ∞. (1.6)

The foundational theory of Calderón-Zygmund singular integral operators with
L1-Hörmander-type kernels traces back to the work of Garcı́a-Cuerva and Rubio de Francia [1]. For
homogeneous kernels K, the standard condition Eq (1.5) is strengthened to an L1-Dini requirement, as
detailed in Lu, Ding, and Yang et al. [2]. Subsequent advances by Kurtz and Wheeden [3] established
weighted norm inequalities on Rn for homogeneous singular integrals satisfying Lr-Dini
conditions (1 < r < ∞). A pivotal refinement by Watson [4] demonstrated that the Lr-Dini
smoothness hypothesis could be relaxed, thereby expanding the class of admissible operators through
the substitution of the Lr-Hörmander condition Eq (1.4)—A generalization mirroring the classical
replacement of Dini constraints by Hörmander-type criteria Eq (1.5) in Calderón-Zygmund theory.

Watson’s methodology, inspired by techniques for Hilbert transforms along curves, leveraged
Fourier transform estimates from Duoandikoetxea, Rubio, and Wang [5], Fan [6], and Nagel, Ricci,
and Wainger et al. [7]. Later, Lee, Lin, Lin, and Yan et al. [8] extended Watson’s Theorem 2 [4] to
variable kernel settings. Their work further derived weighted estimates on Hardy spaces by imposing
supplementary Dini-type regularity on K, as articulated in Theorems 4 and 5 of [8].
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In the fractional case, there is fractional Lr-Hörmander condition which can be stated as

sup
0<|y|<h

∞∑
k=1

(
2kh

) n−α
r′

(∫
2kh≤|x|≤2k+1h

|Kα (x − y) − Kα (x) |rdx
) 1

r

< ∞, (1.7)

where 0 < α < n, 1 < r < ∞. We will write Hr,α for the class of kernels satisfying the fractional
Lr-Hörmander condition. When r = ∞, H∞,α can be understood as

sup
0<|y|<h

∞∑
k=1

(2kh)n−α sup
2kh≤|x|≤2k+1h

|Kα(x − y) − Kα(x)| < ∞.

The kernel Kα is deemed to satisfy the H∞,α,∗ regularity if there exist constants c ≥ 1, C > 0
ensuring that

|Kα (x − y) − Kα (x) | ≤
C|y|
|x|n+1−α , |x| > c|y|.

It is easy to see that [9]

H∞,α,∗ ⊂ H∞,α ⊂ Hr,α, 0 < α < n, 1 < r < ∞.

It is noteworthy that, by employing the Mean Value Theorem, we can demonstrate that the kernel
of the fractional integral Iα, represented as Kα (x) = 1

|x|n−α , belongs to the space H∞,α,∗. For further
information regarding the fractional Lr -Hörmander condition, please refer to [9–11].

Morrey space was first introduced by Morrey [12] in his foundational work on characterizing the
local regularity of solutions to second-order elliptic partial differential equations (PDEs). He
established that essential analytical properties of PDE solutions—such as Hölder continuity and
blow-up behavior—are intrinsically linked to the boundedness of singular integral operators acting on
these spaces. This discovery catalyzed sustained interest in norm estimates for operators on
Morrey-type function spaces, as evidenced by subsequent developments in [13–16], where researchers
have systematically employed methodologies structured around the following axiomatic framework:

Mp,q (Rn) =

 f : || f ||Mp,q(Rn) = sup
B⊂Rn

 1

|B|1−
p
q

∫
B
| f (x) |pdx

 1
p

< ∞

 ,
where f ∈ Lp

loc(R
n) and 1 ≤ p ≤ q < ∞. Here and in what follows, we denote by B any balls in Rn,

B(x,R) the ball centered at x ∈ Rn with radius R > 0 and µB(x,R) = B(x, µR) with µ > 0. Mp,q(Rn) is
an expansion of Lp(Rn) in the sense that Mp,p(Rn) = Lp(Rn).

The validity of various operators persists when the Lebesgue measure dx is substituted by a
weighted measure w(x)dx. A significant body of research has focused on weighted inequalities
involving weights w(x) within the Muckenhoupt classes. For further foundational insights, we direct
readers to the seminal works [1] and [17]. The Muckenhoupt classes Ap and A(p,q), introduced in [18],
are defined as collections of non-negative locally integrable functions w satisfying precise integral
conditions that ensure the boundedness of key operators in harmonic analysis.

Ap : sup
B

(
1
|B|

∫
B

w(x)dx
) (

1
|B|

∫
B

w(x)1−p′dx
)p−1

≤ C, 1 < p < ∞
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and

A(p,q) : sup
B

(
1
|B|

∫
B

w (x)q dx
) 1

q
(

1
|B|

∫
B

w (x)−p′ dx
) 1

p′

≤ C, 1 < p, q < ∞,

respectively, where 1/p + 1/p′ = 1. Komori and Shirai pioneered the development of weighted
Morrey space theory in their seminal work [19], offering a natural framework that extends the
classical weighted Lebesgue spaces. Furthermore, they established fundamental boundedness results
for central operators in harmonic analysis within these refined function spaces, most notably for the
Hardy–Littlewood maximal operator

M f (x) = sup
B∋x

1
|B|

∫
B
| f (y)|dy,

the Calderón-Zygmund singular integral operator T and the fractional integral which is defined by

Iα f (x) =
∫
Rn

f (y)
|y − x|n−α

dy, 0 < α < n.

Let f ∈ Lp
loc(R

n) , 1 ≤ p < ∞, 0 < λ < 1 and w be functions, then the weighted Morrey space
Mp,λ(w) in [19] is defined by

Mp,λ (w) =

 f : || f ||Mp,λ(w) = sup
B

(
1

w (B)λ

∫
B
| f (x) |pw (x) dx

) 1
p

< ∞

 ,
where w(B) =

∫
B

w(x)dx. It is obvious that if w = 1, λ = 1 − p
q , then Mp,λ(w) = Mp,q(Rn). For

w ∈ Ap(1 ≤ p < ∞), if λ = 0, then Mp,0(w) = Lp(w) and if λ = 1, Mp,1(w) = L∞(w).
The corresponding Morrey space related to the boundedness for Iα is the weighted Morrey space

Mp,λ(w1,w2) with two weights which is also introduced by Komori and Shirai in [19]. Let 1 ≤ p < ∞,
0 < λ < 1. For two weights w1 and w2,

Mp,λ (w1,w2) =

 f : || f ||Mp,λ(w1,w2) = sup
B

(
1

w2 (B)λ

∫
B
| f (x) |pw1 (x) dx

) 1
p

< ∞

 .
If w1 = w2 = w, we denote by Mp,λ(w1,w1) = Mp,λ(w2,w2) = Mp,λ(w).
Over the past decade, the theory of weighted Morrey spaces has undergone substantial

diversification, [20–23] discuss the properties and applications of Morrey spaces, while [24–26]
establish the boundedness of some singular integral operators on Morrey spaces. Building on this
foundation, the present work seeks to extend the foundational results of Komori and Shirai [19] by
establishing operator estimates under refined Lr-Hörmander-type conditions. Our principal
contributions are organized as follows:

Theorem 1.1. Let 0 < λ < 1, 1 < r < ∞, 1/r + 1/r′ = 1, r′ ≤ p < ∞ and K ∈ Hr. Then T is bounded
on Mp,λ(w) with w ∈ A p

r′
.

Denote by

Tα f (x) =
∫
Rn

Kα(x − y) f (y)dy,

Networks and Heterogeneous Media Volume 20, Issue 5, 1509–1523.
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where Kα satisfy Eq (1.7), 0 < α < n and

|Kα (x) | ≤
1
|x|n−α

. (1.8)

It is obvious that when |Kα (x) | = 1
|x|n−α , Tα agrees with the fractional integral Iα. For the fractional

case Tα, we have

Theorem 1.2. Let 0 < λ < p
q , 0 < α < n, 1 < r < ∞, 1/r + 1/r′ = 1,r′ ≤ p < n/α, 1

q =
1
p −

α
n . Then Tα

is bounded from Mp,λ(wp,wq) to Mq, qλp
(wq) with wr′ ∈ A( p

r′ ,
q
r′ ).

For any ball B ∈ Rn,BMO (Rn) is defined to be the set of all locally integrable functions f on Rn

such that
∥ f ∥BMO(Rn) = sup

B

1
|B|

∫
B
| f (y) − fB| dy < ∞,

where the supreme is taken over all balls B ⊂ Rn and bB =
1
|B|

∫
B

b(y)dy. An early work about BMO(Rn)
space can attribute to John and Nirenberg [27]. Given an operator T acting on a generic function f and
a function b, the commutator Tb is formally defined as

Tb f = [b,T ] f = bT ( f ) − T (b f ).

Given the strict inclusion L∞(Rn) ⊊ BMO(Rn), the commutator operator Tb exhibits weaker
boundedness properties compared to its non-commutator counterpart T particularly in contexts
involving singular integral behavior (see, e.g., [28] for quantitative manifestations of this
phenomenon). This discrepancy has motivated sustained inquiry into whether Tb retains boundedness
properties analogous to those of T? A substantial body of literature addresses commutators of
operators with BMO-class functions over Lebesgue spaces, tracing its origins to the seminal work of
Coifman, Rochberg, and Weiss et al. [29], who introduced these objects in their analysis of
factorization theorems for generalized Hardy spaces. Subsequent investigations have bifurcated into
two principal directions: (i) the use of commutators to characterize function spaces, as exemplified
by [30–33]; and (ii) applications of commutator theory to regularity and solvability problems in
partial differential equations, as developed in [34–36].

We will extend the boundedness of T and Tα to Tb and Tα,b on the weighted Morrey spaces,
respectively.

Theorem 1.3. Let r, p, λ,K and w be as in Theorem 1.1 and b ∈ BMO(Rn). Then Tb is bounded on
Mp,λ(w).

Theorem 1.4. Let p, r, q, λ, α,w,Kα be as in Theorem 1.2 and b ∈ BMO(Rn). Then Tα,b is bounded
from Mp,λ(wp,wq) to Mq, qλp

(wq).

In the foregoing and following, the letter C stands for a positive constant which may change from
line to line. For a, b ∈ R, a ≲ b (resp. a ≳ b) means a ⩽ Cb (resp. a ⩾ Cb) and a ≈ b equals a ≲ b ≲ a.
| · | means the Lebesgue measure and ωq (B) =

∫
B
ωq (x) dx.

This paper demonstrates broad application potential in harmonic analysis and the theory of partial
differential equations. Specifically, Theorems 1.1 and 1.2 establish boundedness properties in

Networks and Heterogeneous Media Volume 20, Issue 5, 1509–1523.
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weighted Morrey spaces, while Theorems 1.3 and 1.4 extend the boundedness theory for commutators
in these spaces. These results provide new tools for studying the regularity of solutions to elliptic and
parabolic partial differential equations in inhomogeneous media, offering distinct advantages when
addressing equations with non-smooth coefficients or complex geometric structures. In image
processing and signal analysis, this theoretical framework supports the design of adaptive filters based
on singular integral operators, thereby enhancing the stability of edge detection and texture analysis
algorithms. The classes of weights Ap and A(p,q) mentioned in this paper have become central to the
study of weighted norm inequalities in modern analysis and have found applications in several
branches of Analysis, from Complex function theory to PDEs [1]. Future research may develop in
several directions, such as extending the framework to variable exponent weighted Morrey spaces to
address nonlinear scaling problems, and investigating the boundedness of higher-order commutators
and multilinear operators.

2. Proofs of the main results

The proofs of Theorems 1.1 and 1.2 rely greatly on specific properties of Ap weights, which are
extensively discussed in the literature on weighted boundedness for operators in harmonic analysis,
including references such as [17]. To facilitate the reader’s understanding, we summarize some relevant
properties of the Ap weights without providing proofs, thereby ensuring that our exposition remains
self-contained.

Lemma 2.1. Let 1 ≤ p < ∞ and w ∈ Ap. Then ω > 0 almost everywhere and the following statements
are true

(a) [37, Lemma 4.1.3] There exists a constant C such that

w(2B) ≤ Cw(B). (2.1)

Condition (a) is referred to as the doubling condition.
(b) [37, Theorem 4.2.6] There exists a constant C > 1 such that

w(2B) ≥ Cw(B). (2.2)

Condition (b) is referred to as the reverse doubling condition.
(c) [1, IV. Lemma 2.2] For all µ > 1, we have

w(µB) ≤ Cµnpw(B). (2.3)

(d) [1, IV. Theorem 2.9] There exist two constants C and δ > 0 such that for any measurable set
Q ⊂ B

w(Q)
w(B)

≤ C
(
|Q|
|B|

)δ
. (2.4)

If w satisfies Eq (2.4), we say w ∈ A∞.
(e) [1, IV. Corollary 2.13] For all p < q < ∞, we have

A∞ = ∪pAp, Ap ⊂ Aq. (2.5)

Networks and Heterogeneous Media Volume 20, Issue 5, 1509–1523.
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The next two lemmas give the boundedness of T and Tα on weighted Lebesgue spaces, which are
needed in the proof of our main results.

Lemma 2.2. [8, Theorem 1] Let 1 < r < ∞, K ∈ Hr, r′ ≤ p < ∞ and w ∈ A p
r′

. Then T is bounded on
Lp(w).

Lemma 2.3. [11, Theorem 2.3] Let 0 < α < n, r′ ≤ p < n
α
, 1

q =
1
p −

α
n . Then there exists C > 0 such

that
∥Tα f ∥Lq(wq) ≤ C∥ f ∥Lp(wp).

Proof of Theorem 1.1. Let w ∈ Ap/r′ and 0 < λ < 1. By Eq (2.5), we have w ∈ Ap. For a fixed ball
B = B(x0,R). We decompose

f = fχ2B + fχ(2B)c := f1 + f2.

Therefore, we have

1
w(B)λ

∫
B
|T f (x)|pw(x)dx

≤
C

w(B)λ

∫
B
|T f1(x)|pw(x)dx +

C
w(B)λ

∫
B
|T f2(x)|pw(x)dx

:= I + II.

Using Lemma 2.2, it is easy to obtain that

I ≤
C

w(B)λ

∫
Rn
|T f1(x)|pw(x)dx ≤

C
w(B)λ

∫
2B
| f (x)|pw(x)dx ≤ C∥ f ∥pMp,λ(w).

For the term II, after observing for x ∈ B and y ∈ (2B)c, |x0 − y| < C|x − y|, we get

|T f2(x)| ≤ C
∫
|x0−y|>2R

| f (y)|
|x0 − y|n

dy

= C
∞∑

k=1

∫
2kR<|x0−y|<2k+1R

| f (y)|
|x0 − y|n

dy

≤ C
∞∑

k=1

1
|2kB|

∫
2k+1B
| f (y)|dy.

It follows from Hölder’s inequality and the definition of Ap that

∞∑
k=1

1
|2kB|

∫
2k+1B
| f (y)|dy ≤

∞∑
k=1

1
|2kB|

(∫
2k+1B
| f (y) |pw (y) dy

) 1
p
(∫

2k+1B
w (y)

−p′
p dy

) 1
p′

≤ C|| f ||Mp,λ(w)

∞∑
k=1

|2k+1B|

|2kB|w
(
2k+1B

) (1−λ)
p

.

Thus,

II ≤ C|| f ||pMp,λ(w)

 ∞∑
k=1

w (B)
(1−λ)

p

w
(
2k+1B

) (1−λ)
p


p

≤ C|| f ||pMp,λ(w),
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we have used Eq (2.2) in the last inequality, which gives the desired result with a constant
C = C (n, p, λ).We have thus completed the proof of Theorem 1.1.

Proof of Theorem 1.2. We can use the similar arguments as in the proof of Theorem 1.1. It suffices
to show that

1

(wq (B))
qλ
p

∫
B
|Tα f (x)|qw(x)qdx ≤ C∥ f ∥qMp,λ(wp,wq).

For a fixed ball B = B(x0,R), we decompose f = fχ2B + fχ(2B)c := f1 + f2. Since Tα is a linear
operator, we get

1

(wq (B))
qλ
p

∫
B
|Tα f (x)|qw(x)qdx

≤
C

(wq (B))
qλ
p

∫
B
(|Tα f1(x)|q + |Tα f2(x)|q)wq(x)dx

:= J + JJ.

To estimate the term J, Lemma 2.3 shows that∫
B
|Tα f1 (x) |qwq (x) dx ≤ C|| f ||qMp,λ(wp,wq)(w

q (B))
qλ
p ,

which inturn implies that
J ≤ C∥ f ∥qMp,λ(wp,wq).

For the term JJ, by Hölder’s inequality and the definition of A(p,q)

JJ ≤ C
∑

k

(∫
2kR<|x0−y|<2k+1R

| f (y) |
|x0 − y|n−α

dy
)q

(wq (B))1− qλ
p

≤ C
∑

k

(
2−k(n−α)

∫
2k+1B
| f (y) |dy

)q

(ωq (B))1− qλ
p

≤ C
∑

k

2−k(n−α)
(∫

2k+1B
| f (y) |pω (y)p dy

) 1
p
(∫

2k+1B
ω (y)−p′ dy

) 1
p′


q

(ωq (B))1− qλ
p

≤ C
∑

k

2−k(n−α)
∥ f ∥Mp,λ(wp,wq)|2k+1B|1−

α
n

1

wq (
2k+1B

) 1
q−
λ
p

q

(wq (B))1− qλ
p

≤ C∥ f ∥qMp,λ(wp,wq)

 ∞∑
k=1

wq (B)
1
q−
λ
p

wq (
2k+1B

) 1
q−
λ
p

q

≤ C∥ f ∥qMp,λ(wp,wq).

We have used Eq (2.2) in the last inequality. This yields the desired result, with a constant C =
C (n, p, q, λ).

The following lemmas about BMO(Rn) functions will help us to prove Theorems 1.3 and 1.4.

Networks and Heterogeneous Media Volume 20, Issue 5, 1509–1523.
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Lemma 2.4. Let 1 ≤ p < ∞, b ∈ BMO(Rn). Then for any ball B ⊂ Rn, the following statements are
true

(a) [1, Theorem II.3.8] There exist constants C1, C2 such that for all α > 0

| {x ∈ B : |b (x) − bB| > α}| ≤ C1|B|e
−

C2α
||b||BMO(Rn) . (2.6)

Inequality (2.6) is called the John-Nirenberg inequality, which has a weighted version:
(b) There exist constants C1, C2 such that for all α > 0

ω ({x ∈ B : |b (x) − bB > α|}) ≤ C1ω (B) e
−

C2α
||b||BMO(Rn) . (2.7)

(c) The notation 2µB denotes the ball concentric with the ball B and a radius 2µ times that of B,
where µ is a positive integer.

|b2µB − bB| ≤ 2nµ∥b∥BMO(Rn). (2.8)

Lemma 2.5. [17, Proposition 7.1.2](see also [18, Theorem 5]) Let w ∈ A∞ and 1 < p < ∞. Then the
following statements are true.

(a) ||b||BMO(Rn) ≈ supB

(
1
|B|

∫
B
|b (x) − bB|

pdx
) 1

p ;
(b) ∥b∥BMO(Rn) ≈ supB infa∈R

1
|B|

∫
B
|b(x) − a|dx;

(c) ∥b∥BMO(w) ≈ supB

(
1

w(B)

∫
B
|b (x) − bb,w|

pw (x) dx
) 1

p where BMO(w) = {b : ∥b∥BMO(w) < ∞} and
bB,w =

1
w(B)

∫
B

b(y)w(y)dy.

Lemma 2.6. Let b ∈ BMO(Rn), B = B(x0,R) be a generic fixed ball, 0 < λ < 1, 1 < p < ∞,
bB,ω =

1
ω(B)

∫
B

b (z)ω (z) dz and w ∈ Ap. Then the inequality(∫
|x0−y|>2R

| f (y)|
|x0 − y|n

|bB,w − b(y)|dy
)p

w(B)1−λ ≤ C∥ f ∥pMp,λ(w) (2.9)

holds for every y ∈ (2B)c =: Rn \ (2B).

Proof. Using Hölder’s inequality to the left-hand-side of Eq (2.9), we have(∫
|x0−y|>2R

| f (y)|
|x0 − y|n

|bB,w − b(y)|dy
)p

w(B)1−λ

≤

 ∞∑
j=1

∫
2 jR<|x0−y|<2 j+1R

| f (y)|
|x0 − y|n

|bB,w − b(y)|dy


p

w(B)1−λ

≤

 ∞∑
j=1

1
|2 jB|

∫
2 j+1B
| f (y)||bB,w − b(y)|dy


p

w(B)1−λ

≤ C

 ∞∑
j=1

1
|2 jB|

(∫
2 j+1B
| f (y) |pw (y) dy

) 1
p
(∫

2 j+1B
|bB,w − b (y) |p

′

w (y)1−p′ dy
) 1

p′


p

w (B)1−λ

≤ C|| f ||pMp,λ(w)


∞∑
j=1

w
(
2 j+1B

) λ
p

|2 jB|

(∫
2 j+1B
|bB,w − b (y) |p

′

w (y)1−p′ dy
) 1

p′


p

w (B)1−λ .
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For the simplicity of analysis, we denote

A =
(∫

2 j+1B
|bB,w − b (y) |p

′

w (y)1−p′ dy
) 1

p′

.

By an elementary estimate, we have

A ≤
(∫

2 j+1B

(
|b2 j+1B,w1−p′ − b (y) | + |b2 j+1B,w1−p′ − bB,w|

)p′
w (y)1−p′ dy

) 1
p′

≤

(∫
2 j+1B
|b2 j+1B,w1−p′ − b (y) |p

′

w (y)1−p′ dy
) 1

p′

+ |b2 j+1B,w1−p′ − bB,w|w1−p′
(
2 j+1B

) 1
p′

=: A1 + A2.

For the term A1, Lemma 2.5 gives

A1 ≤ C||b||BMO(w1−p′)w
1−p′

(
2 j+1B

) 1
p′
≤ Cw1−p′

(
2 j+1B

) 1
p′ . (2.10)

To deal with A2, we first observe by Eq (2.8) that

|b2 j+1B,w1−p′ − bB,w|

≤ |b2 j+1B,w1−p′ − b2 j+1B| + |b2 j+1B − bB| + |bB − bB,w|

≤
1

w1−p′(2 j+1B)

∫
2 j+1B
|b(y) − b2 j+1B|w(y)1−p′dy + 2n( j + 1)∥b∥BMO(Rn)

+
1

w(B)

∫
B
|b(y) − bB|w(y)dy

:= A21 + A22 + A23.

Combining Eq (2.3) with Eq (2.6), we deduce that

A23 =
1

w(B)

∫ ∞

0
w({x ∈ B : |b(y) − bB| > α})dα

≤ C
∫ ∞

0
e
− Cαδ
||b||BMO(Rn) dα

≤ C.

Similar arguments apply to the term A21, we see that

A21 ≤ C.

It follows immediately that

A2 ≤ C (2n ( j + 1) + 2) w1−p′
(
2 j+1B

) 1
p′ . (2.11)

We conclude from Eqs (2.10) and (2.11) that

A ≤ C ( j + 1) w1−p′
(
2 j+1B

) 1
p′ .
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Hence, the proof of Eq (2.9) is concluded from Eq (2.2) and the following observation
∞∑
j=1

w
(
2 j+1B

) λ
p

|2 jB|

(∫
2 j+1B
|b (y) − bB,w|

p′w (y)1−p′ dy
) 1

p′


p

w (B)1−λ

≤ C

 ∞∑
j=1

( j + 1) w (B)
(1−λ)

p

w
(
2 j+1B

) (1−λ)
p


p

= C (n, p, λ) = C.

Having disposed of these steps, we can now return to the proof of our main results as follows.
Proof of Theorem 1.3. The task is now to find a constant C such that for fixed ball B = B(x0,R),

we can obtain
1

w(B)λ

∫
B
|Tb f (x)|p w(x)dx ≤ C∥ f ∥pMp,λ(w). (2.12)

We decompose f = fχ2B + fχ(2B)c := f1 + f2, and consider the corresponding splitting∫
B
|Tb f (x)|p w(x)dx ≤ C

(∫
B
|Tb f1(x)|pw(x)dx +

∫
B
|Tb f2(x)|pw(x)dx

)
=: K + KK.

Since T is a linear operator, by the well-known result that the weighted Lp boundedness of Tb can
be attribute to the weighted Lp boundedness of T ( [2, Theorem 2.4.3]), we deduce that Tb is bounded
on Lp(w) with w ∈ A p

r′
. Therefore

K ≤ C
∫

2B
| f (x)|pw(x)dx ≤ C∥ f ∥pMp,λ(w)w(B)λ.

Then a further use of Eq (1.2) derives that

|Tb f2(x)|p ≤ C
(∫

Rn

| f2(y)||b(x) − b(y)|
|x − y|n

dy
)p

≤ C
(∫
|x0−y|>2R

| f (y)|
|x0 − y|n

{|b(x) − bB,w| + |bB,w − b(y)|}dy
)p

.

Thus, we have

KK ≤ C
(∫
|x0−y|>2r

| f (y)|
|x0 − y|n

dy
)p ∫

B
|b(x) − bB,w|

pw(x)dx

+C
(∫
|x0−y|>2r

| f (y)|
|x0 − y|n

|b(y) − bB,w|dy
)p

w(B)

:= KK1 + KK2.

Using Lemma 2.6, we have
KK2 ≤ C∥ f ∥pMp,λ(w)w(B)λ.
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KK1 can be estimated taking into account Eq (2.1), Lemma 2.5, Hölder’s inequality, and the
definition of Ap. In fact,

KK1 =

 ∞∑
j=1

∫
2 jR<|x0−y|<2 j+1R

| f (y)|
|x0 − y|n

dy


p ∫

B
|b(x) − bB,w|

pw(x)dx

≤

 ∞∑
j=1

1
|2 jB|

∫
2 j+1B
| f (y)|dy


p ∫

B
|b(x) − bB,w|

pw(x)dx

≤

 ∞∑
j=1

1
|2 jB|

(∫
2 j+1B
| f (y)|pw(y)dy

) 1
p
(∫

2 j+1B
w(y)−

p′
p dy

) 1
p′


p ∫
B
|b(x) − bB,w|

pw(x)dx

≤ C∥ f ∥pMp,λ(w)

 ∞∑
j=1

|2 j+1B|
|2 jB|

w(2 j+1B)
λ−1

p


p ∫

B
|b(x) − bB,w|

pw(x)dx

≤ C∥ f ∥pMp,λ(w)∥b∥
p
BMO(w)

∞∑
j=1

 w(B)
1−λ

p

w(2 j+1B)
1−λ

p

p

w(B)λ

≤ C∥ f ∥pMp,λ(w)w(B)λ.

We have used Eq (2.2) in the last inequality to obtain the desired result, with a constant C =
C (n, p, λ), hence

KK ≤ C∥ f ∥pMp,λ(w)w(B)λ.

Proof of Theorem 1.4. The proof of Theorem 1.4 is similar as that of Theorem 1.3, except using
wr′ ∈ A( p

r′ ,
q
r′ ), we omit its proof here.
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