Research article Special Issues

Quantized $ \mathcal{H}_\infty $ synchronization for Hopfield networks subject to time-variable delay

  • Published: 15 December 2025
  • This paper is dedicated to the study of $ \mathcal{H}_\infty $ synchronization for Hopfield networks (HNs) with time-variable delay via quantized control. The delay function is assumed to be continuous and bounded, yet not necessarily differentiable. A delay-dependent sufficient condition is derived using a linear combination of Lyapunov functional candidates along with two matrix inequalities to ensure the $ \mathcal{H}_\infty $ synchronization of drive-response HNs. Based on this, an alternative sufficient condition characterized by reduced nonlinearities is further established by employing decoupling techniques. With fixed bounds on the time delay and the $ \mathcal{H}_\infty $ disturbance attenuation level, an algorithm is then proposed to compute the minimum required gain for the quantized controller. Finally, a numerical example demonstrates the effectiveness of the proposed $ \mathcal{H}_\infty $ synchronization results.

    Citation: Tianran Bu. Quantized $ \mathcal{H}_\infty $ synchronization for Hopfield networks subject to time-variable delay[J]. Networks and Heterogeneous Media, 2025, 20(4): 1392-1410. doi: 10.3934/nhm.2025060

    Related Papers:

  • This paper is dedicated to the study of $ \mathcal{H}_\infty $ synchronization for Hopfield networks (HNs) with time-variable delay via quantized control. The delay function is assumed to be continuous and bounded, yet not necessarily differentiable. A delay-dependent sufficient condition is derived using a linear combination of Lyapunov functional candidates along with two matrix inequalities to ensure the $ \mathcal{H}_\infty $ synchronization of drive-response HNs. Based on this, an alternative sufficient condition characterized by reduced nonlinearities is further established by employing decoupling techniques. With fixed bounds on the time delay and the $ \mathcal{H}_\infty $ disturbance attenuation level, an algorithm is then proposed to compute the minimum required gain for the quantized controller. Finally, a numerical example demonstrates the effectiveness of the proposed $ \mathcal{H}_\infty $ synchronization results.



    加载中


    [1] J. J. Hopfield, Quantum Hopfield neural network, Proc. Natl. Acad. Sci. USA, 79 (1982), 2554–2558. https://doi.org/10.1073/pnas.79.8.2554 doi: 10.1073/pnas.79.8.2554
    [2] P. Rebentrost, T. R. Bromley, C. Weedbrook, S. Lloyd, Quantum Hopfield neural network, Phys. Rev. A, 98 (2018), 042308. https://doi.org/10.1103/PhysRevA.98.042308 doi: 10.1103/PhysRevA.98.042308
    [3] S. Rbihou, N. E. Joudar, K. Haddouch, Parameter tuning of continuous Hopfield network applied to combinatorial optimization, Ann. Math. Artif. Intell., 92 (2024), 257–275. https://doi.org/10.1007/s10472-023-09895-6 doi: 10.1007/s10472-023-09895-6
    [4] F. Yu, Z. Zhang, H. Shen, Y. Huang, S. Cai, J. Jin, et al., Design and FPGA implementation of a pseudo-random number generator based on a Hopfield neural network under electromagnetic radiation, Front. Phys., 9 (2021), 690651. https://doi.org/10.3389/fphy.2021.690651 doi: 10.3389/fphy.2021.690651
    [5] M. Hu, X. Huang, Q. Shi, F. Yuan, Z. Wang, Design and analysis of a memristive Hopfield switching neural network and application to privacy protection, Nonlinear Dyn., 112 (2024), 12485–12505. https://doi.org/10.1007/s11071-024-09696-4 doi: 10.1007/s11071-024-09696-4
    [6] Y. Chen, Y. Liu, X. Wang, The critical delay of the consensus for a class of multi-agent system involving task strategies, Networks Heterog. Media, 18 (2023), 513–531. https://doi.org/10.3934/nhm.2023021 doi: 10.3934/nhm.2023021
    [7] J. Zhou, X. Ma, Z. Yan, S. Arik, Non-fragile output-feedback control for time-delay neural networks with persistent dwell time switching: A system mode and time scheduler dual-dependent design, Neural Networks, 169 (2024), 733–743. https://doi.org/10.1016/j.neunet.2023.11.007 doi: 10.1016/j.neunet.2023.11.007
    [8] X. Lv, A new approach to stability analysis for stochastic hopfield neural networks with time delays, IEEE Trans. Autom. Control, 67 (2021), 5278–5288. https://doi.org/10.1109/TAC.2021.3120682 doi: 10.1109/TAC.2021.3120682
    [9] Y. Chen, X. Zhang, Y. Xue, Global exponential synchronization of high-order quaternion Hopfield neural networks with unbounded distributed delays and time-varying discrete delays, Math. Comput. Simul., 193 (2022), 173–189. https://doi.org/10.1016/j.matcom.2021.10.012 doi: 10.1016/j.matcom.2021.10.012
    [10] X. Liang, S. Wang, R. Wang, X. Hu, Z. Wang, Synchronization of reaction–diffusion Hopfield neural networks with s-delays through sliding mode control, Nonlinear Anal. Model. Control, 27 (2022), 331–349. http://doi.org/10.15388/namc.2022.27.25388 doi: 10.15388/namc.2022.27.25388
    [11] H. Lin, C. Wang, C. Chen, Y. Sun, C. Zhou, C. Xu, et al., Neural bursting and synchronization emulated by neural networks and circuits, IEEE Trans. Circuits Syst. I: Regul. Pap., 68 (2021), 3397–3410. https://doi.org/10.1109/TCSI.2021.3081150 doi: 10.1109/TCSI.2021.3081150
    [12] Y. Li, H. Wang, X. Meng, Almost automorphic synchronization of quaternion-valued high-order hopfield neural networks with time-varying and distributed delays, IMA J. Math. Control Inf., 36 (2019), 983–1013. https://doi.org/10.1093/imamci/dny015 doi: 10.1093/imamci/dny015
    [13] X. Huang, Y. Zhou, Q. Kong, J. Zhou, M. Fang, $H_{\infty}$ synchronization of chaotic Hopfield networks with time-varying delay: A resilient DOF control approach, Commun. Theor. Phys., 72 (2020), 015003. https://doi.org/10.1088/1572-9494/ab5452 doi: 10.1088/1572-9494/ab5452
    [14] H. Sang, H. Nie, J. Zhao, Dissipativity-based synchronization for switched discrete-time-delayed neural networks with combined switching paradigm, IEEE Trans. Cybern., 52 (2021), 7995–8005. https://doi.org/10.1109/TCYB.2021.3052160 doi: 10.1109/TCYB.2021.3052160
    [15] M. Fang, J. Liu, W. Wang, Finite-/fixed-time synchronization of leakage and discrete delayed hopfield neural networks with diffusion effects, Electron. Res. Arch., 31 (2023), 4088–4101. https://doi.org/10.3934/era.2023208 doi: 10.3934/era.2023208
    [16] F. Huang, Y. Pan, Q. Lu, Observer-based event-triggered security control for nonlinear networked control systems with cyber attacks, Int. J. Robust Nonlinear Control, 34 (2024), 2691–2710. https://doi.org/10.1002/rnc.7103 doi: 10.1002/rnc.7103
    [17] Y. Tao, H. Tao, Z. Zhuang, V. Stojanovic, W. Paszke, Quantized iterative learning control of communication-constrained systems with encoding and decoding mechanism, Trans. Inst. Meas. Control, 46 (2024), 1943–1954. https://doi.org/10.1177/01423312231225782 doi: 10.1177/01423312231225782
    [18] F. Guo, M. Luo, J. Cheng, X. Wang, K. Shi, Quantization-based tracking control for fuzzy singularly perturbed markov jump systems with incomplete transition information and packet dropout, Nonlinear Dyn., 111 (2023), 9255–9273. https://doi.org/10.1007/s11071-023-08309-w doi: 10.1007/s11071-023-08309-w
    [19] X. Gao, Y. Su, C. Han, J. Han, Y. Chen, Quantized control for input-to-state stabilization of discrete-time markov jump systems with coding and decoding procedures, IAENG Int. J. Appl. Math., 55 (2025), 26–33. Available from: https://www.iaeng.org/IJAM/issues_v55/issue_1/IJAM_55_1_04.pdf.
    [20] J. Zhou, J. Dong, S. Xu, Asynchronous dissipative control of discrete-time fuzzy markov jump systems with dynamic state and input quantization, IEEE Trans. Fuzzy Syst., 31 (2023), 3906–3920. https://doi.org/10.1109/TFUZZ.2023.3271348 doi: 10.1109/TFUZZ.2023.3271348
    [21] T. Jing, T. He, Synchronization of fractional-order neural networks via intermittent quantized control: Optimal algorithm, Int. J. Theor. Phys., 63 (2024), 164. https://doi.org/10.1007/s10773-024-05701-z doi: 10.1007/s10773-024-05701-z
    [22] S. A. Samy, J. H. Jeong, Y. H. Joo, Reachable set performance and quantized sampled-data synchronization analysis of neural networks under random packet dropouts via enhanced looped functional, Expert Syst. Appl., 252 (2024), 124055. https://doi.org/10.1016/j.eswa.2024.124055 doi: 10.1016/j.eswa.2024.124055
    [23] M. Kamali, A. Chandrasekar, Quantized sampled-data control for synchronization of switching stochastic neural networks with time-varying delays and random packet dropouts: Application to secure communications, Chin. J. Phys., 97 (2025), 168–187. https://doi.org/10.1016/j.cjph.2025.06.033 doi: 10.1016/j.cjph.2025.06.033
    [24] W. Tai, A. Zhao, T. Guo, J. Zhou, Delay-independent and dependent $l_2-l_\infty$ filter design for time-delay reaction–diffusion switched hopfield networks, Circuits Syst. Signal Process., 42 (2023), 173–198. https://doi.org/10.1007/s00034-022-02125-0 doi: 10.1007/s00034-022-02125-0
    [25] X. Meng, Y. Wang, C. Liu, Observer-based $H_{\infty}$ control of memristor-based neural networks with unbounded time-varying delays, Neurocomputing, 549 (2023), 126357. https://doi.org/10.1016/j.neucom.2023.126357 doi: 10.1016/j.neucom.2023.126357
    [26] X. Yang, M. Yuan, S. Xu, J. Leng, Mean random dynamical systems and random attractors of stochastic hopfield neural models with locally Lipschitz noise and time delay, J. Differ. Equ. Appl., 31 (2025), 389–405. https://doi.org/10.1080/10236198.2024.2427631 doi: 10.1080/10236198.2024.2427631
    [27] H. O. Bae, S. Y. Cho, J. Yoo, S. B. Yun, Effect of time delay on flocking dynamics, Networks Heterog. Media, 17 (2022), 803–825. https://doi.org/10.3934/nhm.2022027 doi: 10.3934/nhm.2022027
    [28] Q. Song, Q. Wu, Y. Liu, Stabilization of chaotic quaternion-valued neutral-type neural networks via sampled-data control with two-sided looped functional approach, Nonlinear Anal. Model. Control, 29 (2024), 1144–1160. https://doi.org/10.15388/namc.2024.29.37852 doi: 10.15388/namc.2024.29.37852
    [29] Z. Yan, X. Huang, Y. Fan, J. Xia, H. Shen, Threshold-function-dependent quasi-synchronization of delayed memristive neural networks via hybrid event-triggered control, IEEE Trans. Syst., Man, Cybern. Syst., 51 (2021), 6712–6722. https://doi.org/10.1109/TSMC.2020.2964605 doi: 10.1109/TSMC.2020.2964605
    [30] N. Gunasekaran, M. S. Ali, S. Arik, H. A. Ghaffar, A. A. Z. Diab, Finite-time and sampled-data synchronization of complex dynamical networks subject to average dwell-time switching signal, Neural Networks, 149 (2022), 137–145. https://doi.org/10.1016/j.neunet.2022.02.013 doi: 10.1016/j.neunet.2022.02.013
    [31] J. Wang, X. Wang, X. Zhang, S. Zhu, Global h-synchronization for high-order delayed inertial neural networks via direct sors strategy, IEEE Trans. Syst., Man, Cybern.: Syst., 53 (2023), 6693–6704. https://doi.org/10.1109/TSMC.2023.3286095 doi: 10.1109/TSMC.2023.3286095
    [32] C. Ge, X. Liu, Y. Liu, C. Hua, Synchronization of inertial neural networks with unbounded delays via sampled-data control, IEEE Trans. Neural Networks Learn. Syst., 35 (2024), 5891–5901. https://doi.org/10.1109/TNNLS.2022.3222861 doi: 10.1109/TNNLS.2022.3222861
    [33] L. He, X. Zhang, T. Jiang, C. Tang, Guaranteed performance control for delayed markov jump neural networks with output quantization and data-injection attacks, Int. J. Mach. Learn. Cybern., 16 (2025), 173–188. https://doi.org/10.1007/s13042-024-02195-3 doi: 10.1007/s13042-024-02195-3
    [34] Y. Zhou, X.-H. Chang, J. H. Park, Quantized asynchronous filtering for fuzzy semi-markov switching systems with multiple stochastic delays under deception attacks, IEEE Trans. Fuzzy Syst., 32 (2024), 2378–2389. https://doi.org/10.1109/TFUZZ.2023.3346927 doi: 10.1109/TFUZZ.2023.3346927
    [35] M. Fu, A tutorial on quantized feedback control, IEEE/CAA J. Autom. Sin., 11 (2024), 5–17. https://doi.org/10.1109/JAS.2023.123972 doi: 10.1109/JAS.2023.123972
    [36] S. Arik, New criteria for stability of neutral-type neural networks with multiple time delays, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 1504–1513. https://doi.org/10.1109/TNNLS.2019.2920672 doi: 10.1109/TNNLS.2019.2920672
    [37] J. Zhao, Z. Zhang, D. Yang, Exponential stabilisation analysis of a class of delayed inertial memristive neural networks, Int. J. Control, 96 (2023), 2438–2446. https://doi.org/10.1080/00207179.2022.2097127 doi: 10.1080/00207179.2022.2097127
    [38] Q. Xi, X. Liu, X. Li, Finite-time synchronization of complex dynamical networks via a novel hybrid controller, IEEE Trans. Neural Networks Learn. Syst., 35 (2024), 1040–1049. https://doi.org/10.1109/TNNLS.2022.3185490 doi: 10.1109/TNNLS.2022.3185490
    [39] G. Brundhashree, S. Shanmugam, S. Magudeeswaran, R. Vadivel, N. Gunasekaran, M. Rhaima, Master–slave synchronization for fuzzy markovian jump complex dynamical networks with coupling delay via fault-tolerant control, Int. J. Fuzzy Syst., 27 (2025), 1904–1923. https://doi.org/10.1007/s40815-024-01880-3 doi: 10.1007/s40815-024-01880-3
    [40] K. Liu, A. Seuret, Y. Xia, Stability analysis of systems with time-varying delays via the second-order Bessel–Legendre inequality, Automatica, 76 (2017), 138–142. https://doi.org/10.1016/j.automatica.2016.11.001 doi: 10.1016/j.automatica.2016.11.001
    [41] A. Seuret, K. Liu, F. Gouaisbaut, Generalized reciprocally convex combination lemmas and its application to time-delay systems, Automatica, 95 (2018), 488–493. https://doi.org/10.1016/j.automatica.2018.06.017 doi: 10.1016/j.automatica.2018.06.017
    [42] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, 1994. https://doi.org/10.1137/1.9781611970777
    [43] M. Syed Ali, B. Vigneshwar, G. Rajchakit, B. Priya, G. Thakur, Event-triggered $H_{\infty}$ filtering for TS fuzzy discrete-time conic-type nonlinear networked control systems, Iran. J. Fuzzy Syst., 21 (2024), 137–154. https://doi.org/10.22111/ijfs.2024.46459.8184 doi: 10.22111/ijfs.2024.46459.8184
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(349) PDF downloads(23) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog