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Abstract: This paper is dedicated to the study of H∞ synchronization for Hopfield networks (HNs)
with time-variable delay via quantized control. The delay function is assumed to be continuous and
bounded, yet not necessarily differentiable. A delay-dependent sufficient condition is derived using a
linear combination of Lyapunov functional candidates along with two matrix inequalities to ensure
the H∞ synchronization of drive-response HNs. Based on this, an alternative sufficient condition
characterized by reduced nonlinearities is further established by employing decoupling techniques.
With fixed bounds on the time delay and the H∞ disturbance attenuation level, an algorithm is then
proposed to compute the minimum required gain for the quantized controller. Finally, a numerical
example demonstrates the effectiveness of the proposedH∞ synchronization results.
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1. Introduction

Hopfield network (HN), designed by Hopfield in 1982 [1], is a single-layer, fully connected
recurrent neural network (RNN) subject to undirected connections between neurons [2]. Compared
with other RNN models, HNs are relatively easy to implement in hardware and offer efficient
computational capabilities. Notably, they are famous for their powerful associative memory ability.
Owing to these significant advantages, HNs have been successfully applied in a variety of realms,
including optimization [3], random number generation [4], and image encryption [5]. Moreover,
inherent time delays resulting from the finite switching speed of amplifiers are unavoidable in
hardware implementations of RNNs and often play a key role in degrading system performance [6, 7].
Compared to constant delays, time-variable delays are more commonly encountered in real-world
scenarios. Consequently, the dynamics analysis issues of delayed HNs, including but not limited to
stability, synchronization, and filtering, have gained wide research interest, especially for HNs with
time-variable delays [8–10].
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In nonlinear science, synchronization refers to the phenomenon that two or more systems with
different initial conditions evolve to a common dynamic behavior under the influence of coupling or
external forces, which widely occurs in biological neural systems [11]. HNs are inherently highly
nonlinear and can exhibit rich chaotic behaviors. The introduction of time-variable delays makes their
chaotic dynamics even more complex. As a result, the synchronization study of HNs with time-variable
delays has become a significant research focus, and various valid synchronization criteria have been
proposed. For example, the automorphic synchronization of quaternion-valued HNs with time-variable
and distributed delays was studied in [12], and the existence of automorphic solutions was established
by means of the Banach fixed point theorem. TheH∞ synchronization problem of chaotic HNs subject
to time-variable delays was discussed in [13], and a resilient dynamic output-feedback controller was
developed. The dissipativity-based synchronization was addressed for discrete-time switched HNs
subject to time-variable delays by devising a combined switching paradigm in [14]. The drive-response
exponential synchronization for high-order quaternion HNs with time-variable discrete delays was
investigated in [9], where a global synchronization criterion was established. In [15], finite-/fixed-time
synchronization for diffusive HNs subject to leakage and discrete delays was examined, and several
methods for designing negative exponential state-feedback controllers were proposed.

Because of the limited transmission capacity of network channels, network control systems are
prone to data dropouts during periods of high load [16, 17]. Therefore, from the control perspective,
it is essential to develop an energy-efficient control scheme to reduce channel resource consumption
and enhance the efficiency of information transmission. The quantized control (QC), as a perfect
candidate, has been proposed and commonly used since it can convert continuous signals into discrete
forms taking values in a finite set [18–20]. Nowadays, the synchronization of RNNs under QC scheme
has become a prominent research topic, yielding a range of noteworthy results. To name a few, the
asymptotic synchronization for fractional-order RNNs was considered in [21], where two different
classes of aperiodically intermittent quantized controllers were proposed. The quantized sampled-data
synchronization of RNNs with stochastic packet dropouts was investigated, and sufficient conditions
for ensuring the stochastic mean-square exponential synchronization were derived via an enhanced
looped functional in [22]. A quantized memory-based sampled-data control approach was developed
to address the synchronization problem of switching stochastic RNNs in [23]. However, to date, theH∞
synchronization for HNs under QC has not gained adequate research attention yet, particularly when
time-variable delays are also taken into account. It is, therefore, the main motivation for this paper.

Building on prior analysis, this work endeavors to investigate theH∞ quantized synchronization for
HNs with time-variable delay. The delay function here is assumed to be continuous and bounded, yet
not necessarily differentiable. By constructing a linear combination of Lyapunov functional candidates
and employing inequality techniques, two sufficient conditions are established to assure that the norm
from external disturbances to the synchronization error remains below a prescribed bound, referred to
as theH∞ disturbance attenuation level (HDAL). With fixed bounds on the time delay and the HDAL,
an algorithm is then proposed to compute the minimum required gain for the quantized controller. The
remainder is organized as follows: Section 2 introduces the HN model, the QC law, synchronization
error system (SES), and two needed matrix inequalities. Section 3 proposes two sufficient conditions
for ensuring theH∞ synchronization of drive-response HNs and details the algorithm for determining
the minimum required gain for the quantized controller. Section 4 provides a numerical example to
illustrate the applicability and superiority of the H∞ synchronization results. Section 5 summarizes
the conclusions.
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2. Preliminaries

Throughout, Rm denotes the m-dimensional Euclidean space, and Rm1×m2 represents the family
of m1 × m2 real matrices. For a matrix X, the notation XT denotes its transpose, and S (X) refers
to the sum of X and XT . If U = UT , then U > 0 (respectively, U ≥ 0) indicates that U
is a positive-definite (respectively, positive semi-definite) matrix. The set of all real symmetric
positive-definite matrices of order n is denoted by Sn

+. The symbol ∗ is used to represent the block
induced by symmetry in a matrix. Furthermore, diag {· · · } denotes a diagonal matrix, col {·} a column
vector, and I (respectively, 0) refers to the unity (respectively, zero) matrix of appropriate dimensions.

Consistent with studies such as [24–26], the HN model considered here incorporates a time-variable
delay. Its dynamic model is given by

ṙ(t) = A0r(t) + A1r(t − λ(t)) + B0 f (r(t)) + B1g(r(t − λ(t))) +J , (2.1)

where r(t) ∈ Rn represents the neuron state vector; f (·) ∈ Rn and g(·) ∈ Rn represent activation
functions; A0, A1, B0, and B1 are known real matrices of appropriate dimensions; J stands for a
constant input vector; and the time-variable delay λ(t) is continuous and satisfies

0 ≤ λ1 ≤ λ(t) ≤ λ2, λ12 ≜ λ2 − λ1, (2.2)

where λ1 and λ2 are given constants. Notice that delay function λ(t) considered here can degenerate into
the constant delay studied in [27, 28] when λ1 = λ2. Moreover, it is not required to be differentiable,
thereby relaxing the differentiability requirement imposed in [29–32].

The delayed HNs in Eq (2.1) is regarded as the drive system. Then the response HN under
consideration is given as

˙̂r(t) = A0r̂(t) + A1r̂(t − λ(t)) + B0 f (r̂(t)) + B1g(r̂(t − λ(t)))
+J + Eu(t) + Fω(t), (2.3)

where r̂(t) ∈ Rn is state vector of the response HN; u(t) ∈ Rn represents the control input; ω(t) ∈
Rk denotes the disturbance belonging to L2[0,∞), the space of square-integrable vector functions
on [0,∞); and E and F are given real matrices of appropriate dimensions.

Define e(·) = r̂(·) − r(·). The following system can be established from HNs in Eqs (2.1) and (2.3):

ė(t) = A0e(t) + A1e(t − λ(t)) + B0 f̄ (e(t))
+ B1ḡ(e(t − λ(t))) + Eu(t) + Fω(t), (2.4)

where

f̄ (e(t)) = f (r̂(t)) − f (r(t)),
ḡ(e(t − λ(t))) = g(r̂(t − λ(t))) − g(r(t − λ(t))).

In this paper, a quantized controller is employed, which is designed as

u(t) = kq(e(t)), (2.5)
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where k is the control gain, and q(·) : Rn → Υn is a quantizer defined as
q(x) = [q1(x1), q2(x2), · · · , qn(xn)]T , in which Υ = {±βl, βl = ϱlβ0} ∪ {0} with β0 > 0 and
0 < ϱ < 1 ([33, 34]). For any x j ∈ R, j = 1, 2, · · · , n, q j(x j) is given by

q j(x j) =


βl, βl/(1 + β) < x j ≤ βl/(1 − β),
0, x j = 0,
−q j(−x j), x j < 0,

where β = (1 − ϱ)/(1 + ϱ). According to the sector bound method [35], q(x) can be expressed as

q(x) = (1 + ∆)x, ∆ ∈ [−β, β]. (2.6)

Combining HN in Eq (2.4) with Eq (2.6), one gets

ė(t) = A0e(t) + A1e(t − λ(t)) + B0 f̄ (e(t))
+ B1ḡ(e(t − λ(t))) + Ek(1 + ∆)e(t) + Fω(t). (2.7)

The following definition (partially adapted from [25]), assumption, and lemmas are required to
obtain the main results.

Definition 1. The drive HN in Eq (2.1) and the response HN in Eq (2.3) are said to beH∞ synchronized
if the following two conditions hold:

(i) The SES in Eq (2.7) satisfies the HDAL; that is,∫ ∞

0
eT (s)We(s)ds ≤ γ2

∫ ∞

0
ωT (s)ω(s)ds (2.8)

for a given constant γ > 0 and a given positive definite symmetric matrix W, under the zero
initial condition;

(ii) The SES in Eq (2.7) is globally asymptotically stable (GAS) when ω(t) ≡ 0.

Assumption 1. The activation functions f (·) and g(·) are globally Lipschitz continuous. That is, for
any ρ1, ρ2 ∈ R

n, there exist Lipschitz constants l f and lg, such that

∥ f (ρ1) − f (ρ2)∥ ≤ l f ∥ρ1 − ρ2∥, (2.9)
∥g(ρ1) − g(ρ2)∥ ≤ lg∥ρ1 − ρ2∥. (2.10)

Such an assumption is commonly adopted in the analysis and synthesis of RNNs due to its simplicity
and suitability for linear matrix inequality-based or M-matrix-based designs; see, e.g., [36–39].
Numerous widely-used activation functions satisfy this assumption, including the tanh, logistic, and
saturated linear functions.

Lemma 1. (see [40]) Given a matrix Q ∈ Sn
+, then for any differentiable function h: [p, q] → Rn, it

holds that ∫ q

p
ḣT (s)Qḣ(s)ds ≥

1
q − p

ΩT diag{Q, 3Q, 5Q}Ω,
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where

Ω =


h(q) − h(p)

h(q) + h(p) − 2
q−p

∫ q

p
h(s)ds

h(q) − h(p) − 6
q−p

∫ q

p
δ(s)h(s)ds

 ,
δ(s) = 2(

s − p
q − p

) − 1.

Lemma 2. (see [41]) Consider a parameter-dependent matrix Θ(α) in Sm satisfying

Θ(α) ≤ (1 − α)Θ(0) + αΘ(1)

for all α in [0, 1]. Suppose that there are matrices Q in Sn
+, Γ in R2n×m with rank(Γ) = 2n, and N1, N2

in Rm×n such that  Θ(α)−ΓTQ(α)Γ−S

(
ΓT

[
(1 − α)NT

1
αNT

2

])
∗

αNT
1 + (1 − α)NT

2 −Q

 < 0

holds for α = {0, 1}, where

Q(α) =
[

(2 − α)Q 0
0 (1 + α)Q

]
.

Then,
Θ(α) − Σ(α) < 0,∀α ∈ (0, 1)

holds, where

Σ(α) = ΓT

[ 1
α

Q 0
0 1

1−αQ

]
Γ.

Lemma 3. (Schur complement [42]) Given matrices Ua, Ub, and Uc of appropriate dimensions,[
Ua Ub

∗ Uc

]
< 0

holds if and only if

Uc < 0 and Ua − UbU−1
c UT

b < 0.

3. Main results

For the simplicity of presentation, the following notations are introduced:

πi =
[

0n×(i−1)n In 0n×(16−i)n

]
, i = 1, . . . , 16,

ξ0(t) =
[

eT (t) eT (t − λ1) eT (t − λ(t)) eT (t − λ2)
]T
,

ξ1(t) =
1
λ1

[ ∫ 0

−λ1
eT

t (s)ds
∫ 0

−λ1
δ1(s)eT

t (s)ds
]T
,

ξ2(t) =
1

λ(t) − λ1

[ ∫ −λ1

−λ(t)
eT

t (s)ds
∫ −λ1

−λ(t)
δ2(s)eT

t (s)ds
]T
,
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ξ3(t) =
1

λ2 − λ(t)

[∫ −λ(t)

−λ2
eT

t (s)ds
∫ −λ(t)

−λ2
δ3(s)eT

t (s)ds
]T
,

ξ4(t) = (λ(t) − λ1) ξ2(t), ξ5(t) = (λ2 − λ(t)) ξ3(t),

ξ6(t) =
[ ∫ −λ1

−λ2
eT

t (s)ds λ12

∫ −λ1

−λ2
δ4(s)eT

t (s)ds
]T
,

ξ7(t) =
[

f̄ T (r(t)) ḡT (r(t − λ(t)))
]T
,

ξ(t) = col {ξ0(t), ξ1(t), ξ2(t), ξ3(t), ξ4(t), ξ5(t), ξ7(t)} ,

δ1(s) = 2
s + λ1

λ1
− 1, δ2(s) = 2

s + λ(t)
λ(t) − λ1

− 1,

δ3(s) = 2
s + λ2

λ2 − λ(t)
− 1, δ4(s) = 2

s + λ2

λ12
− 1,

et(s) = e(t + s), α =
λ(t) − λ1

λ12
.

This section focuses on the H∞ synchronization analysis for HNs in Eqs (2.1) and (2.3). Two
sufficient conditions are established by the following theorems:

Theorem 1. For given scalars λ2 ≥ λ1 ≥ 0, γ > 0 and given matrices W in Sn
+, suppose that there exist

scalars ε f > 0, εg > 0 and matrices P ∈ S5n
+ , R1, R2, Q1, Q2 ∈ S

n
+, M1, M2 ∈ R

16n×2n, N1, N2 ∈ R
16n×3n,

such that for α = {0, 1}, the following matrix inequality
Θ0(α) − Θ1(α) ∗ ∗

αNT
1 + (1 − α)NT

2 −Q2 ∗

ΘT
2 (α) 0 Θ3

 < 0 (3.1)

holds, where

Θ0(α) = S (GT
1 (α)PG0 + M1g1(α) + M2g2(α)) + R̂ + R̆ −GT

2Q1G2

+ ΠT Q̂12Π,

Θ1(α) = ΓTQ0(α)Γ +S

(
ΓT

[
(1 − α)NT

1
αNT

2

])
,

Θ2(α) = GT
1 (α)PF̄ + ΠT Q̂12F,

Θ3 = FT Q̂12F − γ2I,

g1(α) = αλ12

[
π7

π8

]
−

[
π11

π12

]
,

g2(α) = (1 − α)λ12

[
π9

π10

]
−

[
π13

π14

]
with

Q0(α) =
[

(2 − α)Q2 0
0 (1 + α)Q2

]
,

R̂ = diag{R1, −R1 + R2, 0n, −R2, 012n},

R̆ = diag{W + ε f l2
f I, 0n, εgl2

gI, 011n, −ε f I,−εgI},
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Q̂12 = λ
2
1Q1 + λ

2
12Q2,

Qi = diag{Qi, 3Qi, 5Qi}, i = 1, 2,

G1(α) =
[
πT

1 λ1π
T
5 λ1π

T
6 πT

11 + π
T
13 ĜT

1 (α)
]T
,

Ĝ1(α) = (1 − α)λ12(π11 + π14) + αλ12(π12 − π13),

G0 =
[
ΠT πT

1− π
T
2 πT

1 + π
T
2− 2πT

5 πT
2 −π

T
4 ĜT

0

]T
,

G2 =
[
πT

1 − π
T
2 πT

1 + π
T
2 − 2πT

5 πT
1 − π

T
2 − 6πT

6

]T
,

G3 =
[
πT

2 − π
T
3 πT

2 + π
T
3 − 2πT

7 πT
2 − π

T
3 − 6πT

8

]T
,

G4 =
[
πT

3 − π
T
4 πT

3 + π
T
4 − 2πT

9 πT
3 − π

T
4 − 6πT

10

]T
,

Ĝ0 = λ12(π2 + π4) − 2(π11 + π13), Γ =
[

GT
3 GT

4

]T
,

Π = (A0 + Ek(1 + ∆)π1 + A1π3 + B0π15 + B1π16,

F̄ =
[

FT 0n 0n 0n 0n

]T
.

Then, the drive-response HNs in Eqs (2.1) and (2.3) areH∞ synchronized.

Proof. Construct the following linear combination of Lyapunov functional candidates:

V(t) = V1(et) + V2(et) + V3(et, ėt), (3.2)

where

V1(et) = [G1(α)ξ(t)]T P[G1(α)ξ(t)],

V2(et) =
∫ t

t−λ1

eT (s)R1e(s)ds +
∫ t−λ1

t−λ2

eT (s)R2e(s)ds,

V3(et, ėt) = λ1

∫ 0

−λ1

∫ t

t+θ
ėT (s)Q1ė(s)dsdθ

+ λ12

∫ −λ1

−λ2

∫ t

t+θ
ėT (s)Q2ė(s)dsdθ.

Calculating the time derivatives of V1(t), V2(t), and V3(t) along the trajectories of HN in Eq (2.7),
respectively, yields that

V̇1(et) =ξT (t)S (GT
1 (α)PG0)ξ(t)+2ξT (t)GT

1 (α)PF̄ω(t),
V̇2(et) =ξT (t)R̂ξ(t),

V̇3(et, ėt) = [Πξ(t)+Fω(t)]T Q̂12[Πξ(t)+Fω(t)]

− λ1

∫ t

t−λ1

ėT (s)Q1ė(s)ds

− λ12

∫ t−λ1

t−λ2

ėT (s)Q2ė(s)ds.
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On account of Lemma 1, one has

−λ1

∫ t

t−λ1

ėT (s)Q1ė(s)ds ≤ −ξT (t)GT
2Q1G2)ξ(t), (3.3)

−λ12

∫ t−λ1

t−λ2

ėT (s)Q2ė(s)ds = −λ12

∫ t−λ(t)

t−λ2

ėT (s)Q2ė(s)ds − λ12

∫ t−λ1

t−λ(t)
ėT (s)Q2ė(s)ds

≤−
λ12

λ2 − λ(t)
ξT (t)GT

4Q2G4ξ(t) −
λ12

λ(t) − λ1
ξT (t)GT

3Q2G3ξ(t)

= −ξT (t)Σ0(α)ξ(t), (3.4)

where

Σ0(α) = ΓT

[ 1
α
Q2 0
0 1

1−αQ2

]
Γ.

From the given vectors, it is not difficult to observe that

(λ(t) − λ1) ξ2(t) − ξ4(t) = g1(α)ξ(t) = 0,
(λ2 − λ(t)) ξ3(t) − ξ5(t) = g2(α)ξ(t) = 0,

which implies that for any matrices M1, M2 in R16n×2n, the following equality holds:

ξT (t)S (M1g1(α) + M2g2(α)) ξ(t) = 0. (3.5)

Furthermore, in view of inequalities (2.9) and (2.10), one obtains that

ε f f̄ T (e(t)) f̄ (e(t))≤ε f l2
f ξ

T (t)πT
1 π1ξ(t), (3.6)

εgḡT (e(t − λ(t)))ḡ(e(t − λ(t)))≤εgl2
gξ

T (t)πT
3 π3ξ(t). (3.7)

Combining inequalities (3.3)–(3.7) with the derivative of V(t) leads to

V̇(t) ≤
[
ξ(t)
ω(t)

]T

Ω(α)
[
ξ(t)
ω(t)

]
, (3.8)

where

Ω(α) =
[
Ω1(α) − diag{W, 015n} Θ2(α)

∗ FT Q̂12F

]
,

Ω1(α) = Θ0(α) − Σ0(α).

Define

J(t) ≜
∫ t

0
(eT (s)We(s) − γ2ωT (s)ω(s))ds.

Since V(t) ≥ 0 and inequality (3.8) holds, under the zero initial condition, one has

J(∞) = J(∞) +
∫ ∞

0
V̇(s)ds − (V(∞) − V(0))
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≤ J(∞) +
∫ ∞

0
V̇(s)ds

=

∫ ∞

0

[
ξ(s)
ω(s)

]T

Ω̂(α)
[
ξ(s)
ω(s)

]
ds,

where

Ω̂(α) =
[
Ω1(α) Θ2(α)
∗ Θ3

]
.

By Lemma 3 [43], it shows that Ω̂(α) < 0 is equivalent to

Θ0(α) − Σ0(α) − Θ2(α)Θ−1
3 Θ

T
2 (α) < 0. (3.9)

The matrix Θ0(α) − Θ2(α)Θ−1
3 Θ

T
2 (α) is convex for α ∈ [0, 1]. Thus, by Lemma 2, inequality (3.9)

holds for all α ∈ (0, 1) if [
Θ0(α) − Θ2(α)Θ−1

3 Θ
T
2 (α) − Θ1(α) ∗

αNT
1 + (1 − α)NT

2 −Q2

]
< 0

holds for α = {0, 1}. Using Lemma 3 again, the above inequality can be recast as inequality (3.1). Thus,
inequality (3.1) ensures Ω̂(α) < 0, implying J(∞) < 0, and, correspondingly, that inequality (2.8)
holds. This means that the HDAL of SES in Eq (2.9) is guaranteed.

In the case when ω(t) ≡ 0, it follows from inequality (3.8) that

V̇(t) ≤ ξT (t)
(
Ω1(α) − diag{W, 015n}

)
ξ(t),

which, together with Ω̂(α) < 0, implies V̇(t) < 0 for any ξ(t) , 0. In the light of the Lyapunov stability
theory, the SES in Eq (2.7) with ω(t) ≡ 0 is GAS.

In summary, it is shown that the drive-response HNs in Eqs (2.1) and (2.3) areH∞ synchronized in
the sense of Definition 1, and the proof is completed.

Clearly, the inequality in Theorem 1 involves certain nonlinear terms. It is time to reduce these
terms by employing some decoupling techniques and develop an alternative sufficient condition.

Theorem 2. For given scalars λ2 ≥ λ1 ≥ 0, γ > 0, β > 0 and given matrices W in Sn
+, suppose that

there exist scalars ε f > 0, εg > 0, ε > 0 and matrices P = (Pi j)5n×5n ∈ S
5n
+ , R1, R2, Q1, Q2 ∈ S

n
+, M1,

M2 ∈ R
16n×2n, N1, N2 ∈ R

16n×3n, such that for α = {0, 1}, the following condition[
Λ0(α) + Λ1 ∗

βΛT
2 (α) −εIn

]
< 0 (3.10)

holds, where

Λ0(α) =


Θ̂0(α) − Θ1(α) ∗ ∗ ∗

αNT
1 +(1 − α)NT

2 −Q2 ∗ ∗

Θ̂T
2 (α) 0 Θ3 ∗

Q̂12Π1 0 0 −Q̂12

 ,
Networks and Heterogeneous Media Volume 20, Issue 4, 1392–1410.
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Λ1 = ε
[
π1 0 0 0

]T [
π1 0 0 0

]
,

Λ2(α) = G5(α)k

with

Θ̂0(α) = S (GT
1 (α)PG01 + M1g1(α) + M2g2(α)) + R̂ + R̆ −GT

2Q1G2,

Θ̂2(α) = GT
1 (α)PF̄ + ΠT

1 Q̂12F,

G01 =
[
ΠT

1 πT
1− π

T
2 πT

1 + π
T
2− 2πT

5 πT
2 −π

T
4 ĜT

0

]T
,

Π1 = (A0 + Ek)π1 + A1π3 + B0π15 + B1π16,

Q̂12 = λ
2
1Q1 + λ

2
12Q2,

G5(α) =
[

(GT
1 (α)P̂E)T 0 (FT Q̂12E)T (Q̂12E)T

]T
,

P̂ =
[

P11 P12 P13 P14 P15

]T
.

Then, the drive-response HNs in Eqs (2.1) and (2.3) areH∞ synchronized.

Proof. By utilizing Lemma 3, inequality (3.1) is equivalent to
Θ̄0(α) − Θ1(α) ∗ ∗ ∗

αNT
1 +(1 − α)NT

2 −Q2 ∗ ∗

ΘT
2 (α) 0 Θ3 ∗

Q̂12Π 0 0 −Q̂12

< 0,

where

Θ̄0(α) = S (GT
1 (α)PG0 + M1g1(α) + M2g2(α)) + R̂ + R̆ −GT

2Q1G2.

The above inequality can be recast as

Λ0(α) + Λ3(α) < 0, (3.11)

where

Λ3(α) =


S (GT

1 (α)PG02) 0 ∗ ∗

0 0 0 0
FT Q̂12Π2 0 0 0

Q̂12Π2 0 0 0

 ,
G02 =

[
ΠT

2 0 0 0 0
]T
,

Π2 = Ek∆π1.

According to the inequality UaUT
b + UbUT

a ≤
1
ϵ
UaUT

a + ϵUbUT
b and the fact ∆2 ≤ β2, one gets

Λ0(α) + Λ3(α) ≤ Λ0(α) + Λ1 +
β2

ε
Λ2(α)ΛT

2 (α). (3.12)
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Algorithm 1 Search for the Minimal Gain k∗ EnsuringH∞ Synchronization
Require: System matrices and scalars required in Theorem 2, initial trial value k0 > 0 (e.g., k0 = 10),

tolerance δ > 0 (e.g., δ = 10−3), maximum iteration max iter
Ensure: Minimal scalar k∗ such that inequalities in Theorem 2 are feasible

1: Initialize: ktrial = k0, kmin = 0, kmax = 1/δ, iter = 0
2: while |kmax − kmin| > δ and iter < max iter do
3: Check feasibility of the inequalities in Theorem 2 using k = ktrial

4: if feasible then
5: kmax = ktrial, ktrial =

1
2 (kmin + ktrial)

6: else
7: kmin = ktrial

8: if kmax = 1/δ then
9: ktrial = 2ktrial

10: if ktrial > 1/δ then
11: return “No feasible solution found”
12: end if
13: else
14: ktrial =

1
2 (kmax + kmin)

15: end if
16: end if
17: iter = iter + 1
18: end while
19: if |kmax − kmin| ≤ δ and feasible(kmax) then
20: return k∗ = kmax

21: else
22: return “No feasible solution found”
23: end if

By Lemma 3 again, inequality (3.10) is equivalent to

Λ0(α) + Λ1 +
β2

ε
Λ2(α)ΛT

2 (α) < 0,

which, together with inequality (3.12), implies inequality (3.11). Consequently, inequality (3.10)
ensures inequality (3.1), which completes the proof.

Remark 1. Theorem 2 presents an alternative sufficient condition for ensuring theH∞ synchronization
of the drive HN in Eq (2.1) and the response HN in Eq (2.3). By employing decoupling
techniques (specifically, the Schur complement and bounding the nonlinear term involving ∆), the
term ΠT Q̂12Π in inequality (3.1) is replaced by βΛT

2 (α) and Q̂12Π1. Consequently, the nonlinearities of
the condition is significantly reduced compared to the one of Theorem 1.

Based on Theorem 2, we develop Algorithm 1 to search for the minimal value of control gain
k (denoted as k∗) that ensures the H∞ synchronization of the drive-response HNs. Given that the
inequalities involved are linear matrix inequalities, the algorithm can be readily implemented using
available convex optimization solvers.

Networks and Heterogeneous Media Volume 20, Issue 4, 1392–1410.
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4. Numerical simulation

This section presents a numerical example to demonstrate the applicability and superiority of the
present theoretical results. Computations and simulations are performed in MATLAB using YALMIP
with MOSEK as the optimization solver.

0 20 40 60 80 100

0
2
4
6

0 20 40 60 80 100
-5
0
5

10

Figure 1. State trajectories of the unforced HNs.

Consider an HN described by

ṙ(t) =
[
−1 0
0 −1

]
r(t) +

[
2 −0.1
−5 2

]
tanh(r(t))

+

[
−1.5 −0.1
−0.2 −1.5

]
tanh(r(t − λ(t))), (4.1)

where λ(t) is taken as λ2−λ12e−t. It follows from inequalities (2.9) and (2.10) that l f = lg = 1. Besides,
we set ω(t) = [5e−2t, 3e−2t]T ,

E =
[
−1.2 0

0 −1.7

]
, F =

[
1.4 1
−1.1 1

]
,W =

[
0.1 0
0 0.1

]
.

The initial conditions of the unforced drive-response HNs are taken as φ(s) = [0.7,−1]T and
ψ(s) = [0.9, 0.7]T , respectively, where s ∈ [−1, 0]. The corresponding state trajectories are displayed
in Figure 1. The phase-plane trajectories depicted in Figures 2 and 3 exhibit the chaotic behaviors.
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Figure 2. Phase-plane trajectory of the drive HN with the initial condition [0.7,−1]T .

-1 -0.5 0 0.5 1
-4

-2

0

2

4

Figure 3. Phase-plane trajectory of the unforced response HN with the initial condition
[0.9, 0.7]T .
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Set k = 10, ∆ = 0. Table 1 presents admissible upper bound of λ2 obtained by Theorem 1 and
Theorem 1 in [13] with ξ(t) = e(t),C = I, and △K = 0. In this case, γ is fixed with a value of 0.1.
It is shown from Table 1 that admissible upper bounds of λ2 based on Theorem 1 in the present paper
are larger than those on the basis of the method in [13]. Moreover, when λ1 is fixed with a value
of 0.4, Table 2 presents admissible minimum H∞ disturbance attenuation bound γ. It is obvious from
the horizontal direction of Table 2 that the admissible minimum H∞ disturbance attenuation bound
increases gradually as λ2 increases. In the vertical direction, the values of γ based on Theorem 1 are
consistently smaller than those on the basis of the method in [13], which suggests that the present
condition allows for a stronger anti-interference ability.

Table 1. Admissible upper bound of λ2.

λ1 = 0.4 λ1 = 0.5 λ1 = 0.6 λ1 = 0.7
Theorem 1 [13] 1.22 1.32 1.42 1.52
Theorem 1 1.64 1.74 1.84 1.94

Table 2. Admissible minimumH∞ disturbance attenuation bound γ.

λ2 = 0.8 λ2 = 1.0 λ2 = 1.2 λ2 = 1.4
Theorem 1 [13] 0.072 0.080 0.097 0.140
Theorem 1 0.070 0.073 0.078 0.086

Let λ1 = 0.5, λ2 = 1.1, β = 0.01, β0 = 0.7, and γ = 0.1. Then, with Algorithm 1, the
minimal (optimal) control gain k∗ is found to be 8.3722, and the corresponding R1, R2 are calculated as

R1 =

[
0.0236 0.0007
0.0007 0.0335

]
,R2 =

[
0.0039 −0.0027
−0.0027 0.0089

]
.

Hence, the H∞ synchronization of the drive-response delayed HNs can be guaranteed based on
k∗ = 8.3722 determined by Theorem 2.

To characterize theH∞ disturbance attenuation performance, define

W(t) ≜

√∫ t

0
eT (s)We(s)ds

/ ∫ ∞

0
ωT (s)ω(s)ds.

The curve of W(t) under the zero initial condition is shown in Figure 4. It is clear that
W(∞) = 0.0309 < γ = 0.1, which means the HDAL of the SES is guaranteed. The corresponding
state trajectories of the SES with ω(t) ≡ 0 are displayed in Figure 5, demonstrating the successful
achievement of asymptotic stability in the SES.
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Figure 4. State trajectory of W(t) under the zero initial condition.

0 2 4 6 8 10

-2

-1

0

1

2

Figure 5. State trajectories of the SES with ω(t) ≡ 0.

5. Conclusions

In this paper, QC is adopted to address theH∞ synchronization problem of drive-response delayed
HNs. Theorem 1 establishes a delay-dependent sufficient condition for achievingH∞ synchronization
within the framework of QC, based on a linear combination of Lyapunov functional candidates

Networks and Heterogeneous Media Volume 20, Issue 4, 1392–1410.
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V(t) together with two efficient matrix inequalities. Thanks to the introduction of some decoupling
techniques, Theorem 2 presents an alternative synchronization criterion characterized by reduced
nonlinearities. Furthermore, with fixed bounds on the time delay and the HDAL, Algorithm 1 is
proposed to determine the minimum required gain k∗ for the quantized controller. A numerical example
is provided to demonstrate the applicability and superiority of the present theoretical results.

The quantizer adopted in the present work is static with fixed parameters. One limitation is that the
quantization range cannot be adjusted dynamically. Extending the proposed framework to dynamic QC
that incorporate a time-varying scaling factor to avoid signal saturation is a natural direction for future
research. Other potential extensions include combining the proposed approach with event-triggered
mechanisms and applying it to more general classes of delayed RNNs.
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