Research article

Weighted implicit-explicit discontinuous Galerkin methods for two-dimensional Ginzburg–Landau equations on general meshes

  • Published: 12 December 2025
  • In this paper, a second-order linearized discontinuous Galerkin method on general meshes, which treats the backward differentiation formula of order two (BDF2) and Crank–Nicolson schemes as special cases, is proposed for solving the two-dimensional Ginzburg–Landau equations with cubic nonlinearity. By utilizing the discontinuous Galerkin inverse inequality and the mathematical induction method, the unconditionally optimal error estimate in $ L^2 $-norm is obtained. The core of the analysis in this paper resides in the classification and discussion of the relationship between the temporal step size $ \tau $ and the spatial step size $ h $, specifically distinguishing between the two scenarios of $ \tau^2 \leq h^{k+1} $ and $ \tau^2 > h^{k+1} $, where $ k $ denotes the degree of the discrete spatial scheme. Finally, this paper presents two numerical examples involving various grids and polynomial degrees to verify the correctness of the theoretical results.

    Citation: Zhen Guan, Xianxian Cao. Weighted implicit-explicit discontinuous Galerkin methods for two-dimensional Ginzburg–Landau equations on general meshes[J]. Networks and Heterogeneous Media, 2025, 20(4): 1367-1391. doi: 10.3934/nhm.2025059

    Related Papers:

  • In this paper, a second-order linearized discontinuous Galerkin method on general meshes, which treats the backward differentiation formula of order two (BDF2) and Crank–Nicolson schemes as special cases, is proposed for solving the two-dimensional Ginzburg–Landau equations with cubic nonlinearity. By utilizing the discontinuous Galerkin inverse inequality and the mathematical induction method, the unconditionally optimal error estimate in $ L^2 $-norm is obtained. The core of the analysis in this paper resides in the classification and discussion of the relationship between the temporal step size $ \tau $ and the spatial step size $ h $, specifically distinguishing between the two scenarios of $ \tau^2 \leq h^{k+1} $ and $ \tau^2 > h^{k+1} $, where $ k $ denotes the degree of the discrete spatial scheme. Finally, this paper presents two numerical examples involving various grids and polynomial degrees to verify the correctness of the theoretical results.



    加载中


    [1] S. I. Abarzhi, Interfaces and mixing–non-equilibrium dynamics and conservation laws at continuous and kinetic scales, Front. Appl. Math. Stat., 28 (2022), 978881. https://doi.org/10.3389/fams.2022.978881 doi: 10.3389/fams.2022.978881
    [2] K. H. Hoffmann, Q. Tang, Ginzburg-Landau Phase Transition Theory and Superconductivity, Birkhäuser, Washington, 2012. https://doi.org/10.1007/978-3-0348-8274-3
    [3] A. V. Porubov, M. G. Velarde, Exact periodic solutions of the complex Ginzburg–Landau equation, J. Math. Phys., 40 (1999), 884–896. https://doi.org/10.1063/1.532692 doi: 10.1063/1.532692
    [4] C. R. Doering, J. D. Gibbon, C. D. Levermore, Weak and strong solutions of the complex Ginzburg-Landau equation, Phys. D: Nonlinear Phenom., 71 (1994), 285–318. https://doi.org/10.1016/0167-2789(94)90150-3 doi: 10.1016/0167-2789(94)90150-3
    [5] N. Akhmediev, A. Ankiewicz, J. Soto-Crespo, Multisoliton solutions of the complex Ginzburg-Landau equation, Phys. Rev. Lett., 79 (1997), 4047. https://doi.org/10.1103/PhysRevLett.79.4047 doi: 10.1103/PhysRevLett.79.4047
    [6] B. Guo, M. Jiang, Y. Li, Ginzburg-Landau Equations, Science Press, Beijing, 2020.
    [7] Q. Xu, Q. Chang, Difference methods for computing the Ginzburg‐Landau equation in two dimensions, Numer. Methods Partial Differ. Equ., 27 (2011), 507–528. https://doi.org/10.1002/num.20535 doi: 10.1002/num.20535
    [8] X. Hu, S. Chen, Q. Chang, Fourth‐order compact difference schemes for 1D nonlinear Kuramoto-Tsuzuki equation, Numer. Methods Partial Differ. Equ., 31 (2015), 2080–2109. https://doi.org/10.1002/num.21979 doi: 10.1002/num.21979
    [9] Z. Hao, Z. Sun, W. Cao, A three‐level linearized compact difference scheme for the Ginzburg-Landau equation, Numer. Methods Partial Differ. Equ., 31 (2015), 876–899. https://doi.org/10.1002/num.21979 doi: 10.1002/num.21979
    [10] Y. Zhao, A. Ostermann, X. Gu, A low-rank Lie-Trotter splitting approach for nonlinear fractional complex Ginzburg-Landau equations, J. Comput. Phys., 446 (2021), 110652. https://doi.org/10.1016/j.jcp.2021.110652 doi: 10.1016/j.jcp.2021.110652
    [11] L. Chai, Y. Liu, H. Li, Two families of weighted-$\theta$ compact ADI difference schemes for the three-dimensional space fractional complex Ginzburg-Landau equation, Appl. Math. Lett., 173 (2025), 109798. https://doi.org/10.1016/j.aml.2025.109798 doi: 10.1016/j.aml.2025.109798
    [12] D. Shi, Q. Liu, Superconvergence analysis of a two grid finite element method for Ginzburg–Landau equation, Appl. Math. Comput., 365 (2020), 124691. https://doi.org/10.1016/j.amc.2019.124691 doi: 10.1016/j.amc.2019.124691
    [13] H. Yang, X. Jia, Unconditionally convergence and superconvergence error analyses of the backward Euler–Galerkin finite element method for the Kuramoto-Tsuzuki equation, Int. J. Comput. Math., 102 (2025), 2167–2187. https://doi.org/10.1080/00207160.2025.2541065 doi: 10.1080/00207160.2025.2541065
    [14] X. Li, X. Cui, S. Zhang, Analysis of a Crank-Nicolson fast element-free Galerkin method for the nonlinear complex Ginzburg-Landau equation, J. Comput. Appl. Math., 457 (2025), 116323. https://doi.org/10.1016/j.cam.2024.116323 doi: 10.1016/j.cam.2024.116323
    [15] N. Wang, M. Li, Unconditional error analysis of a linearized BDF2 virtual element method for nonlinear Ginzburg-Landau equation with variable time step, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 106889. https://doi.org/10.1016/j.cnsns.2022.106889 doi: 10.1016/j.cnsns.2022.106889
    [16] M. Li, L. Wang, N. Wang, Variable time step BDF2 nonconforming VEM for coupled Ginzburg-Landau equations, Appl. Numer. Math., 186 (2023), 378–410. https://doi.org/10.1016/j.apnum.2023.01.022 doi: 10.1016/j.apnum.2023.01.022
    [17] D. Shi, J. Wang, Unconditional superconvergence analysis of an $H^1$-Galerkin mixed finite element method for two-dimensional ginzburg-landau equation, J. Comput. Math., 37 (2019), 437–457. Available from: https://www.jstor.org/stable/45151554.
    [18] Y. Liu, Y. Du, H. Li, F. Liu, W. Wang, Some second-order $\theta$ schemes combined with finite element method for nonlinear fractional cable equation, Numer. Algorithms, 80 (2019), 533–555. https://doi.org/10.1007/s11075-018-0496-0 doi: 10.1007/s11075-018-0496-0
    [19] D. Wang, M. Li, Y. Lu, Unconditionally convergent and superconvergent analysis of second-order weighted IMEX FEMs for nonlinear Ginzburg-Landau equation, Comput. Math. Appl., 146 (2023), 84–105. https://doi.org/10.1016/j.camwa.2023.06.033 doi: 10.1016/j.camwa.2023.06.033
    [20] S. Peng, Y, Chen, Unconditional error analysis of weighted implicit-explicit virtual element method for nonlinear neutral delay-reaction-diffusion equation, Commun. Nonlinear Sci. Numer. Simul., 140 (2025), 108384. https://doi.org/10.1016/j.cnsns.2024.108384 doi: 10.1016/j.cnsns.2024.108384
    [21] Y. Chen, S. Peng, Optimal error estimates of second-order weighted virtual element method for nonlinear coupled prey-predator equation, J. Comput. Appl. Math., 467 (2025), 116617. https://doi.org/10.1016/j.cam.2025.116617 doi: 10.1016/j.cam.2025.116617
    [22] M. F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal., 15 (1978), 152–161. https://doi.org/10.1137/0715010 doi: 10.1137/0715010
    [23] D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 742–760. https://doi.org/10.1137/0719052 doi: 10.1137/0719052
    [24] F. Bassi, L. Botti, A. Colombo, D.A. Di Pietro, P. Tesini, On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, J. Comput. Phys., 231 (2012), 45–65. https://doi.org/10.1016/j.jcp.2011.08.018 doi: 10.1016/j.jcp.2011.08.018
    [25] B. Li, W. Sun, Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media, SIAM J. Numer. Anal., 51 (2013), 1959–1977. https://doi.org/10.1137/120871821 doi: 10.1137/120871821
    [26] B. Li, W. Sun, Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations, Int. J. Numer. Anal. Model., 10 (2013), 622–633. Available from: https://www.math.ualberta.ca/ijnam/Volume-10-2013/No-3-13/2013-03-07.pdf.
    [27] W. Sun, J. Wang, Optimal error analysis of Crank-Nicolson schemes for a coupled nonlinear Schrödinger system in 3D, J. Comput. Appl. Math., 317 (2017), 685–699. https://doi.org/10.1016/j.cam.2016.12.004 doi: 10.1016/j.cam.2016.12.004
    [28] D. A. Di Pietro, A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Springer, Berlin, 2012. https://doi.org/10.1007/978-3-642-22980-0
    [29] D. A. Di Pietro, A. Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations, Math. Comput., 79 (2010), 1303–1330. https://doi.org/10.1090/S0025-5718-10-02333-1 doi: 10.1090/S0025-5718-10-02333-1
    [30] P. A. Gazca-Orozco, A. Kaltenbach, On the stability and convergence of discontinuous Galerkin schemes for incompressible flows, IMA J. Numer. Anal., 45 (2025), 243–282. https://doi.org/10.1093/imanum/drae004 doi: 10.1093/imanum/drae004
    [31] D. A. Di Pietro, J. Droniou, The Hybrid High-Order Method for Polytopal Meshes, Springer, Cham, 2020. https://doi.org/10.1007/978-3-030-37203-3
    [32] F. Chave, D. A. Di Pietro, F. Marche, et al., A hybrid high-order method for the Cahn-Hilliard problem in mixed form, SIAM J. Numer. Anal., 54 (2016), 1873–1898. https://doi.org/10.1137/15M1041055 doi: 10.1137/15M1041055
    [33] B. Riviére, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, SIAM, Philadelphia, 2008. https://doi.org/10.1137/1.9780898717440
    [34] H. Sun, Z. Sun, G. Gao, Some temporal second order difference schemes for fractional wave equations, Numer. Methods Partial Differ. Equ., 32 (2016), 970–1001. https://doi.org/10.1002/num.22038 doi: 10.1002/num.22038
    [35] G. Gao, H. Sun, Z. Sun, Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence, J. Comput. Phys., 280 (2015), 510–528. https://doi.org/10.1016/j.jcp.2014.09.033 doi: 10.1016/j.jcp.2014.09.033
    [36] J. G. Heywood, R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem Ⅳ: error analysis for second-order time discretization, SIAM J. Numer. Anal. 27 (1990), 353–384. https://doi.org/10.1137/0727022 doi: 10.1137/0727022
    [37] Z. Guan, J. Wang, Y. Liu, Y. Nie, Unconditionally optimal convergence of a linearized Galerkin FEM for the nonlinear time-fractional mobile/immobile transport equation, Appl. Numer. Math., 172 (2022), 133–156. https://doi.org/10.1016/j.apnum.2021.10.004 doi: 10.1016/j.apnum.2021.10.004
    [38] X. Li, H. Dong, Unconditional error analysis of an element-free Galerkin method for the nonlinear Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul., 151 (2025), 109103. https://doi.org/10.1016/j.cnsns.2025.109103 doi: 10.1016/j.cnsns.2025.109103
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(522) PDF downloads(67) Cited by(1)

Article outline

Figures and Tables

Figures(6)  /  Tables(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog