This paper investigates the chaotic dynamics and control of fractional-order chaotic systems. A high-precision numerical method based on the Grünwald–Letnikov definition is developed to explore the system's dynamics. We also design linear feedback and adaptive control strategies to achieve chaotic synchronization and system stabilization. Numerical simulations validate the effectiveness of our methods, showing successful synchronization and control of the chaotic system.
Citation: Hai Yan Zhang, Wei Zhang. An effective numerical method for simulating a class of fractional-order chaotic system[J]. Networks and Heterogeneous Media, 2025, 20(4): 1087-1107. doi: 10.3934/nhm.2025047
This paper investigates the chaotic dynamics and control of fractional-order chaotic systems. A high-precision numerical method based on the Grünwald–Letnikov definition is developed to explore the system's dynamics. We also design linear feedback and adaptive control strategies to achieve chaotic synchronization and system stabilization. Numerical simulations validate the effectiveness of our methods, showing successful synchronization and control of the chaotic system.
| [1] |
X. L. Gao, Z. Y. Li, Y. L. Wang, Chaotic dynamic behavior of a fractional-order financial system with constant inelastic demand, Int. J. Bifurcat. Chaos, 34 (2024), 2450111. https://doi.org/10.1142/S0218127424501116 doi: 10.1142/S0218127424501116
|
| [2] |
X. H. Wang, H. L. Zhang, Y. L. Wang, Z. Y. Li, Dynamic properties and numerical simulations of the fractional Hastings-Powell model with the Grünwald–Letnikov differential derivative, Int. J. Bifurcat. Chaos, 35 (2025), 2550145. https://doi.org/10.1142/S0218127425501457 doi: 10.1142/S0218127425501457
|
| [3] |
H. Che, Y. L. Wang, Z. Y. Li, Novel patterns in a class of fractional reaction-diffusion models with the Riesz fractional derivative, Math. Comput. Simul., 202 (2022), 149–163. https://doi.org/10.1016/j.matcom.2022.05.037 doi: 10.1016/j.matcom.2022.05.037
|
| [4] |
X. L. Gao, H. L. Zhang, X. Y. Li, Research on pattern dynamics of a class of predator-prey model with interval biological coefficients for capture, AIMS Math., 9 (2024), 18506–18527. https://doi.org/10.3934/math.2024901 doi: 10.3934/math.2024901
|
| [5] |
A. Khan, A. Tyagi, Disturbance observer-based adaptive sliding mode hybrid projective synchronisation of identical fractional-order financial systems, Pramana-J. Phys., 90 (2018), 67. https://doi.org/10.1007/s12043-018-1555-8 doi: 10.1007/s12043-018-1555-8
|
| [6] |
F. Xu, Y. Lai, X. B. Shu, Chaos in integer order and fractional order financial systems and their synchronization, Chaos Solitons Fractals, 117 (2018), 125–136. https://doi.org/10.1016/j.chaos.2018.10.005 doi: 10.1016/j.chaos.2018.10.005
|
| [7] |
B. Xin, T. Chen, Projective synchronization of n-dimensional chaotic fractional-order systems via linear state error feedback control, Discrete Dyn. Nat. Soc., 2012 (2012), 191063. https://doi.org/10.1155/2012/191063 doi: 10.1155/2012/191063
|
| [8] |
A. Hajipour, M. Hajipour, D. Baleanu, On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system, Phys. A, 497 (2018), 139–153. https://doi.org/10.1016/j.physa.2018.01.019 doi: 10.1016/j.physa.2018.01.019
|
| [9] |
Z. Zhang, J. Zhang, F. Cheng, F. Liu, A novel stability criterion of time-varying delay fractional-order financial systems based a new functional transformation lemma, Int. J. Control Autom. Syst., 17 (2019), 916–925. https://doi.org/10.1007/s12555-018-0552-5 doi: 10.1007/s12555-018-0552-5
|
| [10] |
W. C. Chen, Nonlinear dynamics and chaos in a fractional-order financial system, Chaos Solitons Fractals, 36 (2008), 1305–1314. https://doi.org/10.1016/j.chaos.2006.07.051 doi: 10.1016/j.chaos.2006.07.051
|
| [11] |
Z. Wang, X. Huang, G. Shi, Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay, Comput. Math. Appl., 62 (2011), 1531–1539. https://doi.org/10.1016/j.camwa.2011.04.057 doi: 10.1016/j.camwa.2011.04.057
|
| [12] |
L. Chen, Y. Chai, R. Wu, Control and synchronization of fractional-order financial system based on linear control, Discrete Dyn. Nat. Soc., 2011 (2011), 958393. https://doi.org/10.1155/2011/958393 doi: 10.1155/2011/958393
|
| [13] |
Z. Gao, Simulated dynamics complexity of fractional financial system with price index, AIP Adv., 15 (2025), 065010. https://doi.org/10.1063/5.0268791 doi: 10.1063/5.0268791
|
| [14] |
C. Zhang, Y. Gao, J. Yao, F. Qian, Synchronization of bidirectionally coupled fractional-order chaotic systems with unknown time-varying parameter disturbance in different dimensions, Mathematics, 12 (2024), 2775. https://doi.org/10.3390/math12172775 doi: 10.3390/math12172775
|
| [15] |
B. S. T. Alkahtani, K. Agrawal, S. Kumar, S. S. Alzaid, Bernoulli polynomial based wavelets method for solving chaotic behaviour of financial model, Results Phys., 53 (2023), 107011. https://doi.org/10.1016/j.rinp.2023.107011 doi: 10.1016/j.rinp.2023.107011
|
| [16] |
H. Malaikah, J. F. Alabdali, Analysis of noise on ordinary and fractional-order financial systems, Fractal Fract., 9 (2025), 316. https://doi.org/10.3390/fractalfract9050316 doi: 10.3390/fractalfract9050316
|
| [17] |
S. Yang, N. Li, Chaotic behavior of a new fractional-order financial system and its predefined-time sliding mode control based on the RBF neural network, Electron. Res. Arch., 33 (2025), 2762–2799. https://doi.org/10.3934/era.2025122 doi: 10.3934/era.2025122
|
| [18] |
X. L. Gao, H. L. Zhang, Y. L. Wang, Z. Y. Li, Research on pattern dynamics behavior of a fractional vegetation-water model in arid flat environment, Fractal Fract., 8 (2024), 264. https://doi.org/10.3390/fractalfract8050264 doi: 10.3390/fractalfract8050264
|
| [19] |
S. Zhang, H. L. Zhang, Y. L. Wang, Z. Y. Li, Dynamic properties and numerical simulations of a fractional phytoplankton-zooplankton ecological model, Networks Heterog. Media, 20 (2025), 648–669. https://doi.org/10.3934/nhm.2025028 doi: 10.3934/nhm.2025028
|
| [20] |
X. Y. Li, Y. L. Wang, Z. Y. Li, Numerical simulation for the fractional-in-space Ginzburg–Landau equation using Fourier spectral method, AIMS Math., 8 (2023), 2407–2418. https://doi.org/10.3934/math.2023124 doi: 10.3934/math.2023124
|
| [21] |
H. L. Zhang, Y. L. Wang, J. X. Bi, S. H. Bao, Novel pattern dynamics in a vegetation-water reaction-diffusion model, Math. Comput. Simul., 241 (2026), 97–116. https://doi.org/10.1016/j.matcom.2025.09.020 doi: 10.1016/j.matcom.2025.09.020
|
| [22] |
C. Han, Y. L. Wang, Numerical solutions of variable-coefficient fractional-in-space KdV equation with the Caputo fractional derivative, Fractal Fract., 6 (2022), 207. https://doi.org/10.3390/fractalfract6040207 doi: 10.3390/fractalfract6040207
|
| [23] |
C. Han, Y. L. Wang, Z. Y. Li, Numerical solutions of space fractional variable-coefficient KdV-modified KdV equation by Fourier spectral method, Fractals, 29 (2021), 2150246. https://doi.org/10.1142/S0218348X21502467 doi: 10.1142/S0218348X21502467
|
| [24] |
Z. Y. Li, M. C. Wang, Y. L. Wang, Solving a class of variable order nonlinear fractional integral differential equations by using reproducing kernel function, AIMS Math., 7 (2022), 12935–12951. https://doi.org/10.3934/math.2022716 doi: 10.3934/math.2022716
|
| [25] |
Z. Y. Li, Y. L. Wang, F. G. Tan, X. H. Wan, H. Yu, J. S. Duan, Solving a class of linear nonlocal boundary value problems using the reproducing kernel, Appl. Math. Comput., 265 (2015), 1098–1105. https://doi.org/10.1016/j.amc.2015.05.117 doi: 10.1016/j.amc.2015.05.117
|
| [26] |
Y. L. Wang, L. N. Jia, H. L. Zhang, Numerical solution for a class of space-time fractional equation by the piecewise reproducing kernel method, Int. J. Comput. Math., 96 (2019), 2100–2111. https://doi.org/10.1080/00207160.2018.1544367 doi: 10.1080/00207160.2018.1544367
|
| [27] | I. Podlubny, Fractional Differential Equations, San Diego, Academic Press, 1999. |
| [28] | D. Y. Xue, Fractional Calculus and Fractional-Order Control, Beijing, Science Press, 2018. |
| [29] |
D. Y. Xue, L. Bai, Numerical algorithms for Caputo fractional-order differential equations, Int. J. Control, 90 (2016), 1201–1211. https://doi.org/10.1080/00207179.2016.1158419 doi: 10.1080/00207179.2016.1158419
|
| [30] | D. Y. Xue, C. N. Zhao, Y. Q. Chen, A modified approximation method of fractional order system, in Proceedings of IEEE Conference on Mechatronics and Automation, Luoyang, China, 2006, 1043–1048. https://doi.org/10.1109/ICMA.2006.257769 |
| [31] |
M. T. Vu, S. H. Kim, D. H. Pham, H. L. T. N. Nguyen, V. Pham, M. Roohi, Adaptive dynamic programming-based intelligent finite-time flexible SMC for stabilizing fractional-order four-wing chaotic systems, Nonlinear Anal. Hybrid Syst., 50 (2025), 101564. https://doi.org/10.3390/math13132078 doi: 10.3390/math13132078
|
| [32] |
A. A. Alikhanov, M. S. Asl, C. Huang, A. A. Alikhanov, A discrete Grönwall inequality for L2-type difference schemes with application to multi-term time-fractional nonlinear Sobolev-type convection-diffusion equations with delay, Commun. Nonlinear Sci. Numer. Simul., 152 (2026), 109231. https://doi.org/10.1016/j.cnsns.2025.109231 doi: 10.1016/j.cnsns.2025.109231
|
| [33] |
M. S. Asl, M. Javidi, Numerical evaluation of order six for fractional differential equations: Stability and convergency, Bull. Belg. Math. Soc. Simon Stevin, 26 (2019), 203–221. https://doi.org/10.36045/bbms/1561687562 doi: 10.36045/bbms/1561687562
|
| [34] |
A. A. Alikhanov, P. Yadav, V. K. Singh, M. S. Asl, A high-order compact difference scheme for the multi-term time-fractional Sobolev-type convection-diffusion equation, Comput. Appl. Math., 44 (2025), 115. https://doi.org/10.1007/s40314-024-03077-8 doi: 10.1007/s40314-024-03077-8
|
| [35] |
N. Ma, J. Song, Z. Zhang, Y. Yu, Bursting dynamics in a state controlled cellular neural network based MLC circuit with periodic forcing signals, Commun. Nonlinear Sci. Numer. Simul., 138 (2024), 108203. https://doi.org/10.1016/j.cnsns.2024.108203 doi: 10.1016/j.cnsns.2024.108203
|
| [36] |
Y. Yu, W. Zhou, Z. Zhang, Q. Bi, Analysis on the motion of nonlinear vibration with fractional order and time variable mass, Appl. Math. Lett., 124 (2022), 107621. https://doi.org/10.1016/j.aml.2021.107621 doi: 10.1016/j.aml.2021.107621
|
| [37] |
M. T. Vu, S. H. Kim, D. H. Pham, H. L. N. N. Thanh, V. Pham, M. Roohi, Adaptive dynamic programming-based intelligent finite-time flexible SMC for stabilizing fractional-order four-wing chaotic systems, Mathematics, 13 (2025), 2078. https://doi.org/10.3390/math13132078 doi: 10.3390/math13132078
|
| [38] |
J. X. Lv, X. Z. Ju, C. H. Wang, Neural network prescribed-time observer-based output-feedback control for uncertain pure-feedback nonlinear systems, Expert Syst. Appl., 264 (2024), 125813. https://doi.org/10.1016/j.eswa.2024.125813 doi: 10.1016/j.eswa.2024.125813
|
| [39] |
H. L. N. N. Thanh, M. T. Vu, N. X. Mung, N. P. Nguyen, N. T. Phuong, Perturbation observer-based robust control using a multiple sliding surfaces for nonlinear systems with influences of matched and unmatched uncertainties, Mathematics, 8 (2020), 1371. https://doi.org/10.3390/math8081371 doi: 10.3390/math8081371
|
| [40] |
X. Y. Zhang, Y. H. Liu, X. K. Chen, Z. Li, C. Y. Su, Adaptive pseudoinverse control for constrained hysteretic nonlinear systems and its application on dielectric elastomer actuator, IEEE/ASME Trans. Mechatronics, 28 (2023), 2142–2154. https://doi.org/10.1109/TMECH.2022.3231263 doi: 10.1109/TMECH.2022.3231263
|
| [41] |
Z. Mokhtare, M. T. Vu, S. Mobayen, A. Fekih, Design of an LMI-based fuzzy fast terminal sliding mode control approach for uncertain MIMO systems, Mathematics, 10 (2022), 1236. https://doi.org/10.3390/math10081236 doi: 10.3390/math10081236
|
| [42] |
Y. Zhao, J. L. Yao, J. Tian, J. B. Yu, Adaptive fixed-time stabilization for a class of nonlinear uncertain systems, Math. Biosci. Eng., 20 (2023), 8241–8260. https://doi.org/10.3934/mbe.2023359 doi: 10.3934/mbe.2023359
|
| [43] |
M. Chatavi, M. T. Vu, S. Mobayen, A. Fekih, $H_\infty$ robust LMI-based nonlinear state feedback controller of uncertain nonlinear systems with external disturbances, Mathematics, 10 (2022), 3518. https://doi.org/10.3390/math10193518 doi: 10.3390/math10193518
|
| [44] |
C. Q. Guo, J. P. Hu, Time base generator-based practical predefined-time stabilization of high-order systems with unknown disturbance, IEEE Trans. Circuits Syst. II, 70 (2023), 2670–2674. https://doi.org/10.1109/TCSII.2023.3242856 doi: 10.1109/TCSII.2023.3242856
|