The analysis of non-local regularisations of scalar conservation laws is an active research program. Applications of such equations are found in modelling physical phenomena, such as traffic flow. In this paper, we propose an inviscid, non-local regularisation in a non-divergence form. The salient feature of our approach is that we can obtain sharp a priori estimates on the total variation $ (TV) $ and supremum norm and justify the singular limit for Lipschitz initial data up to the time of catastrophe. For generic conservation laws, this result was sharp, since we could demonstrate non-convergence when the initial data featured simple discontinuities. However, when the flux derivative was linear, such as for the Burgers equation, we obtained stronger limits on the singular limit. Therefore, we devoted special attention to regularisations of the Burgers equation, specifically the limiting behaviour of solutions to the Cauchy problems with fixed initial data.
Citation: Shyam Sundar Ghoshal, Parasuram Venkatesh, Emil Wiedemann. A non-conservative, non-local approximation of the Burgers equation[J]. Networks and Heterogeneous Media, 2025, 20(4): 1061-1086. doi: 10.3934/nhm.2025046
The analysis of non-local regularisations of scalar conservation laws is an active research program. Applications of such equations are found in modelling physical phenomena, such as traffic flow. In this paper, we propose an inviscid, non-local regularisation in a non-divergence form. The salient feature of our approach is that we can obtain sharp a priori estimates on the total variation $ (TV) $ and supremum norm and justify the singular limit for Lipschitz initial data up to the time of catastrophe. For generic conservation laws, this result was sharp, since we could demonstrate non-convergence when the initial data featured simple discontinuities. However, when the flux derivative was linear, such as for the Burgers equation, we obtained stronger limits on the singular limit. Therefore, we devoted special attention to regularisations of the Burgers equation, specifically the limiting behaviour of solutions to the Cauchy problems with fixed initial data.
| [1] |
S. N. Kružkov, First order quasilinear equations in several independent variables, Math. USSR Sb., 10 (1970), 217. https://doi.org/10.1070/SM1970v010n02ABEH002156 doi: 10.1070/SM1970v010n02ABEH002156
|
| [2] |
K. Zumbrun, On a nonlocal dispersive equation modeling particle suspensions, Q. Appl. Math., 57 (1999), 573–600. https://doi.org/10.1090/qam/1704419 doi: 10.1090/qam/1704419
|
| [3] |
A. Bayen, J. Friedrich, A. Keimer, L. Pflug, T. Veeravalli, Modeling multilane traffic with moving obstacles by nonlocal balance laws, SIAM J. Appl. Dyn. Syst., 21 (2022), 1495–1538. https://doi.org/10.1137/20M1366654 doi: 10.1137/20M1366654
|
| [4] |
J. Friedrich, O. Kolb, S. Göttlich, A Godunov type scheme for a class of LWR traffic flow models with non-local flux, Networks Heterogen. Media, 13 (2018), 531–547. https://doi.org/10.3934/nhm.2018024 doi: 10.3934/nhm.2018024
|
| [5] | P. Goatin, S. Scialanga, Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Networks Heterogen. Media, 11 (2016), 107–121. |
| [6] |
F. Betancourt, R. Bürger, K. H. Karlsen, E. M. Tory, On nonlocal conservation laws modelling sedimentation, Nonlinearity, 24 (2011), 855. https://doi.org/10.1088/0951-7715/24/3/008 doi: 10.1088/0951-7715/24/3/008
|
| [7] |
G. Aletti, G. Naldi, G. Toscani, First‐order continuous models of opinion formation, SIAM J. Appl. Math., 67 (2007), 837–853. https://doi.org/10.1137/060658679 doi: 10.1137/060658679
|
| [8] |
A. Keimer, G. Leugering, T. Sarkar, Analysis of a system of nonlocal balance laws with weighted work in progress, J. Hyperbolic Differ. Equ., 15 (2018), 375–406. https://doi.org/10.1142/S0219891618500145 doi: 10.1142/S0219891618500145
|
| [9] |
A. Keimer, L. Pflug, Existence, uniqueness and regularity results on nonlocal balance laws, J. Differ. Equ., 263 (2017), 4023–4069. https://doi.org/10.1016/j.jde.2017.05.015 doi: 10.1016/j.jde.2017.05.015
|
| [10] |
G. M. Coclite, N. De Nitti, A. Keimer, L. Pflug, On existence and uniqueness of weak solutions to nonlocal conservation laws with BV kernels, Z. Angew. Math. Phys., 73 (2022), 241. https://doi.org/10.1007/s00033-022-01766-0 doi: 10.1007/s00033-022-01766-0
|
| [11] |
G. Crippa, M. Lécureux-Mercier, Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow, Nonlinear Differ. Equ. Appl., 20 (2013), 523–537. https://doi.org/10.1007/s00030-012-0164-3 doi: 10.1007/s00030-012-0164-3
|
| [12] |
A. Bayen, J. M. Coron, N. De Nitti, A. Keimer, L. Pflug, Boundary controllability and asymptotic stabilization of a nonlocal traffic flow model, Vietnam J. Math., 49 (2021), 957–985. https://doi.org/10.1007/s10013-021-00506-7 doi: 10.1007/s10013-021-00506-7
|
| [13] |
J. M. Coron, Z. Wang, Controllability for a scalar conservation law with nonlocal velocity, J. Differ. Equ., 252 (2012), 181–201. https://doi.org/10.1016/j.jde.2011.08.042 doi: 10.1016/j.jde.2011.08.042
|
| [14] |
G. Norgard, K. Mohseni, A regularization of the Burgers equation using a filtered convective velocity, J. Phys. A: Math. Theor., 41 (2008), 344016. https://doi.org/10.1088/1751-8113/41/34/344016 doi: 10.1088/1751-8113/41/34/344016
|
| [15] |
G. Norgard, K. Mohseni, On the convergence of the convectively filtered Burgers equation to the entropy solution of the inviscid Burgers equation, Multiscale Model. Simul., 7 (2009), 1811–1837. https://doi.org/10.1137/080735485 doi: 10.1137/080735485
|
| [16] |
J. M. Coron, A. Keimer, L. Pflug, Nonlocal transport equations—Existence and uniqueness of solutions and relation to the corresponding conservation laws, SIAM J. Math. Anal., 52 (2020), 5500–5532. https://doi.org/10.1137/20M1331652 doi: 10.1137/20M1331652
|
| [17] |
C. De Lellis, P. Gwiazda, A. Świerczewska-Gwiazda, Transport equations with integral terms: existence, uniqueness and stability, Calc. Var. Partial Differ. Equ., 55 (2016), 128. https://doi.org/10.1007/s00526-016-1049-9 doi: 10.1007/s00526-016-1049-9
|
| [18] |
M. Colombo, G. Crippa, L. V. Spinolo, On the singular local limit for conservation laws with nonlocal fluxes, Arch. Ration. Mech. Anal., 233 (2019), 1131–1167. https://doi.org/10.1007/s00205-019-01375-8 doi: 10.1007/s00205-019-01375-8
|
| [19] |
G. M. Coclite, N. De Nitti, A. Keimer, L. Pflug, Singular limits with vanishing viscosity for nonlocal conservation laws, Nonlinear Anal., 211 (2021), 112370. https://doi.org/10.1016/j.na.2021.112370 doi: 10.1016/j.na.2021.112370
|
| [20] |
M. Colombo, G. Crippa, E. Marconi, L. V. Spinolo, Local limit of nonlocal traffic models: Convergence results and total variation blow-up, Ann. Chim. Anal. Rev. Chim. Anal. Reunies, 38 (2021), 1653–1666. https://doi.org/10.1016/j.anihpc.2020.12.002 doi: 10.1016/j.anihpc.2020.12.002
|
| [21] | G. M. Coclite, N. De Nitti, On a nonlocal regularization of a non-strictly hyperbolic system of conservation laws, 2024. Available from: https://cvgmt.sns.it/media/doc/paper/6554/NonlocalSysLimit.pdf. |
| [22] | E. Marconi, L. V. Spinolo, Nonlocal generalized Aw-Rascle-Zhang model: Well-posedness and singular limit, 2025. https://doi.org/10.48550/arXiv.2505.10102 |
| [23] | J. Smoller, Shock Waves and Reaction—Diffusion Equations, 2nd edition, Grundlehren der mathematischen Wissenschaften, Springer, New York, NY, 258 (2012). |
| [24] | E. Godlewski, P. A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer New York, 2021. http://dx.doi.org/10.1007/978-1-0716-1344-3 |
| [25] | R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 31 (2002). |
| [26] | E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/b79761 |
| [27] | J. Wang, X. Jiang, H. Zhang, X. Yang, A new fourth-order nonlinear difference scheme for the nonlinear fourth-order generalized Burgers-type equation, J. Appl. Math. Comput., (2025), 1–31. https://doi.org/10.1007/s12190-025-02467-3 |
| [28] |
J. Wang, X. Jiang, H. Zhang, A BDF3 and new nonlinear fourth-order difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett., 151 (2024), 109002. https://doi.org/10.1016/j.aml.2024.109002 doi: 10.1016/j.aml.2024.109002
|
| [29] |
Y. Shi, X. Yang, The pointwise error estimate of a new energy-preserving nonlinear difference method for supergeneralized viscous Burgers' equation, Comput. Appl. Math., 44 (2025), 257. https://doi.org/10.1007/s40314-025-03222-x doi: 10.1007/s40314-025-03222-x
|
| [30] |
X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80. https://doi.org/10.1007/s10915-024-02511-7 doi: 10.1007/s10915-024-02511-7
|
| [31] |
G. M. Coclite, J. M. Coron, N. De Nitti, A. Keimer, L. Pflug, A general result on the approximation of local conservation laws by nonlocal conservation laws: The singular limit problem for exponential kernels, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 40 (2022), 1205–1223. https://doi.org/10.4171/AIHPC/58 doi: 10.4171/AIHPC/58
|
| [32] |
A. Keimer, L. Pflug, On approximation of local conservation laws by nonlocal conservation laws, J. Math. Anal. Appl., 475 (2019), 1927–1955. https://doi.org/10.1016/j.jmaa.2019.03.063 doi: 10.1016/j.jmaa.2019.03.063
|
| [33] |
J. Friedrich, S. Göttlich, A. Keimer, L. Pflug, Conservation laws with nonlocal velocity: The singular limit problem, SIAM J. Appl. Math., 84 (2022), 497–522. https://doi.org/10.1137/22M1530471 doi: 10.1137/22M1530471
|
| [34] | L. Hormander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques et Applications, Springer, Berlin, Germany, 1997. |
| [35] |
J. Simon, Compact sets in the space ${L}^p(0, {T}; {B})$, Ann. Mat. Pura Appl., 146 (1986), 65–96. https://doi.org/10.1007/bf01762360 doi: 10.1007/bf01762360
|
| [36] | L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, 2000. https://doi.org/10.1093/oso/9780198502456.001.0001 |