˜HX=˜HY | HX=HY | ‖U−UH‖ | Rate | Time(S) |
1/2 | 1/4 | 4.8437E-03 | − | 1.76 |
1/3 | 1/9 | 9.2451E-04 | 2.0423 | 7.81 |
1/4 | 1/16 | 2.8519E-04 | 2.0441 | 29.77 |
1/5 | 1/25 | 1.1151E-04 | 2.1042 | 89.94 |
1/6 | 1/36 | 4.9230E-05 | 2.2422 | 251.21 |
In this paper, a two-grid alternating direction implicit (ADI) finite element (FE) method based on the weighted and shifted Grünwald difference (WSGD) operator is proposed for solving a two-dimensional nonlinear time distributed-order fractional sub-diffusion equation. The stability and optimal error estimates with second-order convergence rate in spatial direction are obtained. The storage space can be reduced and computing efficiency can be improved in this method. Two numerical examples are provided to verify the theoretical results.
Citation: Yaxin Hou, Cao Wen, Yang Liu, Hong Li. A two-grid ADI finite element approximation for a nonlinear distributed-order fractional sub-diffusion equation[J]. Networks and Heterogeneous Media, 2023, 18(2): 855-876. doi: 10.3934/nhm.2023037
[1] | Kexin Li, Hu Chen, Shusen Xie . Error estimate of L1-ADI scheme for two-dimensional multi-term time fractional diffusion equation. Networks and Heterogeneous Media, 2023, 18(4): 1454-1470. doi: 10.3934/nhm.2023064 |
[2] | Xiongfa Mai, Ciwen Zhu, Libin Liu . An adaptive grid method for a singularly perturbed convection-diffusion equation with a discontinuous convection coefficient. Networks and Heterogeneous Media, 2023, 18(4): 1528-1538. doi: 10.3934/nhm.2023067 |
[3] | Huanhuan Li, Meiling Ding, Xianbing Luo, Shuwen Xiang . Convergence analysis of finite element approximations for a nonlinear second order hyperbolic optimal control problems. Networks and Heterogeneous Media, 2024, 19(2): 842-866. doi: 10.3934/nhm.2024038 |
[4] | Jinhu Zhao . Natural convection flow and heat transfer of generalized Maxwell fluid with distributed order time fractional derivatives embedded in the porous medium. Networks and Heterogeneous Media, 2024, 19(2): 753-770. doi: 10.3934/nhm.2024034 |
[5] | Panpan Xu, Yongbin Ge, Lin Zhang . High-order finite difference approximation of the Keller-Segel model with additional self- and cross-diffusion terms and a logistic source. Networks and Heterogeneous Media, 2023, 18(4): 1471-1492. doi: 10.3934/nhm.2023065 |
[6] | Zhe Pu, Maohua Ran, Hong Luo . Effective difference methods for solving the variable coefficient fourth-order fractional sub-diffusion equations. Networks and Heterogeneous Media, 2023, 18(1): 291-309. doi: 10.3934/nhm.2023011 |
[7] | Patrick Henning, Mario Ohlberger . The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks and Heterogeneous Media, 2010, 5(4): 711-744. doi: 10.3934/nhm.2010.5.711 |
[8] | Yinlin Ye, Hongtao Fan, Yajing Li, Ao Huang, Weiheng He . An artificial neural network approach for a class of time-fractional diffusion and diffusion-wave equations. Networks and Heterogeneous Media, 2023, 18(3): 1083-1104. doi: 10.3934/nhm.2023047 |
[9] | Alexander Mielke, Sina Reichelt, Marita Thomas . Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks and Heterogeneous Media, 2014, 9(2): 353-382. doi: 10.3934/nhm.2014.9.353 |
[10] | Yimamu Maimaiti, Zunyou Lv, Ahmadjan Muhammadhaji, Wang Zhang . Analyzing vegetation pattern formation through a time-ordered fractional vegetation-sand model: A spatiotemporal dynamic approach. Networks and Heterogeneous Media, 2024, 19(3): 1286-1308. doi: 10.3934/nhm.2024055 |
In this paper, a two-grid alternating direction implicit (ADI) finite element (FE) method based on the weighted and shifted Grünwald difference (WSGD) operator is proposed for solving a two-dimensional nonlinear time distributed-order fractional sub-diffusion equation. The stability and optimal error estimates with second-order convergence rate in spatial direction are obtained. The storage space can be reduced and computing efficiency can be improved in this method. Two numerical examples are provided to verify the theoretical results.
Distributed order differential equations [4,10,11,12,13,14,15,16,38,39,40] can be seen as a natural extension of single-term and multi-term fractional order differential equations. When the fractional order derivative term is sufficiently large, we take its limit state to obtain the distributed order derivative. Distributed order models are a broader class of models with a broader meaning. It can be used to describe processes that cannot be portrayed by a single-term or multi-term fractional differential equations, such as retarding sub-diffusion and accelerating superdiffusion [5,30]. The distribution order differential equations can be classified into time, space and space-time distributed order differential equations according to the location of the distributed order integral terms. Time distributed order differential equations are often used to describe some complex processes in which the diffusion index varies with time. It is now playing an important role in many fields and has become a popular research topic in the international academic community. However, the complexity and nonlocality of the distributed-order operator make it difficult to solve the exact solution of the distributed-order differential equations, so scholars have turned to its numerical solution and made important progress [13]. Among many algorithms, the finite element method is favored by scholars because of its strong regional adaptability, more flexible mesh parting, lower smoothness requirement, and strong generality [16].
In this paper, we consider the following nonlinear distributed-order fractional sub-diffusion equation
{ut(x,y,t)+Dωtu(x,y,t)−Δu(x,y,t)+m(u)=f(x,y,t),(x,y)∈Ω,t∈J,u(x,y,t)=0,(x,y)∈∂Ω,t∈ˉJ,u(x,y,0)=0,(x,y)∈ˉΩ, | (1.1) |
where Ω=Ix×Iy=(0,L)×(0,L), and the boundary ∂Ω is Lipschitz continuous. J=(0,T] is the time interval, and the nonlinear reaction term m(u) satisfies |m(u)|≤C|u| with |m′(u)|≤C, where C is a positive constant. The term f(x,y,t) is a given source function.
Define
Dωtu(x,y,t)=∫10ω(α)C0Dαtu(x,y,t)dα, | (1.2) |
where
C0Dαtu(x,y,t)={1Γ(1−α)∫t0(t−τ)−α∂u∂τ(x,y,τ)dτ,0≤α<1,ut(x,y,t),α=1, | (1.3) |
and ω(α)≥0,∫10ω(α)dα=C0>0.
Inspired by the works [19,23,24,34], in this article, we propose a two-grid ADI FE scheme with the WSGD approximation formula to solve nonlinear distributed-order fractional sub-diffusion equation. In what follows, we will introduce the advancements of the WSGD approximation formula, two-grid method, and ADI FE method.
In 2015, Tian et al. [31] proposed a WSGD approximation formula for the Riemann-Liouville space fractional derivative. Based on this operator, they got the second-order convergence, which is independent of the changed fractional parameters. The WSGD operator, with its outstanding advantages such as high-order approximation, has attracted the attention of many scholars and has been widely used, and many fruitful research results have been achieved. Wang and Vong in [32] discussed the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation by using the WSGD formula to approximate the Caputo fractional derivative of time. In 2016, Liu et al. [23] presented a two-grid FE scheme with the WSGD operator for solving the nonlinear fractional Cable equation. In 2017, Liu et al. [25] solved a Caputo time-fractional sub-diffusion equation by using a high-order local discontinuous Galerkin (LDG) method combined with the WSGD approximation. Wang et al. [33] discussed an H1-Galerkin mixed finite element (MFE) method combined with the WSGD operator for solving nonlinear convection-diffusion equation with time fractional derivative. In 2020, Saffarian and Mohebbi [29] discussed the application of ADI Galerkin spectral element method with the WSGD operator in solving two-dimensional time fractional sub-diffusion equation.
In 1994, Xu [34] presented a new finite element discretization technique based on two (coarse and fine) subspaces for a semilinear elliptic boundary value problem. And then in 1996, Xu [35] did further study and explored about the two-grid method. This method has attracted many scholars in solving partial differential equations because of the advantage of saving computational time. Since its introduction, the method has been mainly applied to numerically solve integer-order PDEs by many computational scholars [21,27]. Until 2015, Liu et al. [26] presented the application of the two-grid finite element method to numerically solve the nonlinear fourth-order fractional differential equations, in which the fractional derivative is the Caputo type. And in 2016, Liu et al. [23] discussed the numerical solution of nonlinear fractional Cable equation with initial and boundary condition by using two-grid FE method with higher-order time approximate scheme. Chen et al. in [1] proposed a fully discrete two-grid modified method of characteristics (MMOC) scheme for solving nonlinear variable-order time-fractional advection-diffusion equations in two space dimensions. Zeng and Tan in [37] developed a two-grid FE methods for variable coefficient time fractional diffusion equations. However, there is still a lack of work on the numerical solution of fractional partial differential equations using the two-grid FE method, especially there are few studies on the solution of nonlinear time-distributed partial differential equations using the two-grid FE method, so the research on this method still needs to be focused. The ADI FE method is an efficient algorithm for solving multi-dimensional differential equations. It inherits the advantages of the ADI method of low computation and low storage, and also has the characteristics of high accuracy of the FE algorithm. Therefore, it has received a lot of attention from researchers in solving differential equations. In 1971, Douglas and Dupont [8] for the first time proposed the ADI FE method. Then Dendy [6,7] and Fernandes [9] and Zhang [36] have studied the method in depth and further extended the application of the method. In 2013, Li and Xu [19] discussed the Galerkin FE method in space and the ADI method in the time stepping for the two-dimensional fractional diffusion-wave equation. Li and Xu [18] in 2014 studied the two-dimensional time fractional evolution equation by ADI Galerkin FE method. In 2017, Chen and Li [3] proposed an efficient ADI Galerkin method for solving a time-fractional partial differential equation with damping. In the same year, Li and Huang [20] solved a class of 2D nonlinear fractional diffusion-wave equations with the Caputo-type temporal derivative and Riesz-type spatial derivative by using the ADI FE method. In 2020, Chen [2] used the ADI FE method to numerically solve two classes of Riesz space fractional partial differential equations. In the same year, Qiu et al. [28] presented the ADI Galerkin FE method for solving the distributed-order time-fractional mobile-immobile equation in two dimensions.
However, there is little research on solving distributed-order partial differential equations using the ADI FE method. In particular, we are not aware of any studies that apply the two-grid ADI FE method to numerically solve the time-distributed order reaction diffusion equation with nonlinear terms and time-integer order derivatives. Based on these considerations, we propose two-grid ADI FE method for solving this model (1.1), prove the stability, and derive the a priori error estimates. Finally, we verify the effectiveness and computational efficiency of the algorithm by carrying out numerical tests.
This paper is organized as follows. In Section 2, we give some preliminaries and lemmas. In Section 3, we present the ADI FE numerical approximation of the nonlinear distributed order equation. In Section 4, we analyze the stability and convergence of the fully discrete scheme. In Section 5, some numerical examples are presented to confirm the theoretical analysis. In Section 6, conclusions and future works are discussed.
We insert the nodes αk=kΔα, k=0,1,2⋯,2K in the interval [0,1], where Δα=12K and 0=α0<α1<α2<⋯<α2K=1. Δt=TN+1 is the step size, tn=nΔt (n=0,1,2,⋯,N+1), and 0=t0<t1<t2<⋯<tN+1=T, where N is positive integer, and for a smooth function ψ on [0,T], we denote ψn=ψ(tn), and δtψn+12=ψn+1−ψnΔt, ψn+12=ψn+1+ψn2.
Define Hm(Ω), L∞(Ω), L2(Ω) and ‖⋅‖m, ‖⋅‖∞, ‖⋅‖ be the usual Sobolev spaces and their norms, respectively. Meanwhile, the inner product of L2(Ω) is denoted by (⋅,⋅). For ℏ>0 (ℏ indicates fine grid size h or coarse grid size ˜H), r≥2, define Vrℏ⊂H10(Ω) is a finite-dimensional subspace and Vrℏ satisfies the following properties [9]
(1)Vrℏ⊂Z∩H10(Ω),(2)‖∂2v∂x∂y‖≤Cℏ−2‖v‖,v∈Vrℏ,(3)infv∈Vrℏ[2∑m=0ℏm∑i,j=0,1,i+j=m‖∂m(u−v)∂xi∂yj‖]≤Cℏs‖u‖Hs,u∈Hs(Ω)∩Z∩H10(Ω),2≤s≤r, | (2.1) |
where
Z={u|u,∂u∂x,∂u∂y,∂2u∂x∂y∈L2(Ω)}. |
In order to give the numerical approximation of Eq (1.1), we use the following composite Trapezoid formula.
Lemma 2.1. Letting s(α)∈C2[0,1], we have
∫10s(α)dα=Δα2I∑k=0cks(αk)−Δα212s(2)(ζ),ζ∈(0,1), | (2.2) |
where
ck={12,k=0,2I,1,otherwise. |
Lemma 2.2. [31,32] For 0<α<1, the following approximate formula holds
C0Dαtu(x,y,tn+1)=n+1∑j=0(Δt)−αqα(j)u(x,y,tn+1−j)+O(Δt2)≜Dα,n+1Δtu+O(Δt2), | (2.3) |
where
qα(j)≜{2+α2γα0,j=0,2+α2γαj−α2γαj−1,j>0, | (2.4) |
and
γα0=1;γαj=Γ(j−α)Γ(−α)Γ(j+1);γαj=(1−α+1j)γαj−1,j≥1. | (2.5) |
Lemma 2.3. [23] For series {γαj} given by Lemma 2.2, we have
γα0=1>0;γαj<0,(j=1,2,…);∞∑j=1γαj=−1. | (2.6) |
Lemma 2.4. [23,31,32] For series {qα(j)} defined by formula (2.4). Then for any integer n and any positive integer N as well as real vector (u0,u1,…uN)∈RN+1, we get
N∑n=0(n∑j=0qα(j)un−j,un)≥0. | (2.7) |
By using Lemma 2.1, we discretize the integral term of the distributed order equation. Suppose s(α)∈C2[0,1], and set s(α)=ω(α)C0Dαtu, to arrive at
Dωtu=Δα2K∑k=0ckω(αk)C0Dαktu−R1, | (3.1) |
where R1=O(Δα2).
By using Lemma 2.2 and formula (3.1), the time discretization scheme of Eq (1.1) can be written as
δtun+12+Δα2K∑k=0ckω(αk)Dαk,n+12Δtu−Δun+12+m(un+12)=fn+12+3∑i=1Ri. | (3.2) |
Denote
Rn+121=Dωtun+12−Δα2K∑k=0ckω(αk)C0Dαktun+12=O(Δα2),n≥0,Rn+122=C0Dαtu(x,y,tn+12)−Dα,n+12Δtu=O(Δt2),n≥0,Rn+123=δtun+12−un+12t=O(Δt2),n≥0. | (3.3) |
So we have
(δtun+12,v)+Δα2K∑k=0ckω(αk)(Dαk,n+12Δtu,v)+(∇un+12,∇v)+(m(un+12),v)=(fn+12,v)+(3∑i=1Ri,v). | (3.4) |
Finding un+1h∈Vrh, we arrive at the following FE scheme of formula (3.4)
(δtun+12h,vh)+Δα2K∑k=0ckω(αk)(Dαk,n+12Δtuh,vh)+(∇un+12h,∇vh)+(m(un+12h),vh)=(fn+12,vh),∀vh∈Vrh. | (3.5) |
To speed up the calculation, we create the following two-grid ADI finite element scheme.
Denote
a2=(12Δt)2,b=1+12ΔtΔα2K∑k=0ckω(αk)(Δt)−αkqαk(0). |
Then, we get the following two-grid ADI finite element scheme.
Step 1: Letting Un+1˜H:[0,T]⟼Vr˜H⊂Vrh be the solution of the following nonlinear system which is based on the coarse grid T˜H, we have
(δtUn+12˜H,v˜H)+Δα2K∑k=0ckω(αk)(Dαk,n+12ΔtU˜H,v˜H)+(∇Un+12˜H,∇v˜H)+(m(Un+12˜H),v˜H)+a2b(∂2δtUn+12˜H∂x∂y,∂2v˜H∂x∂y)=(fn+12,v˜H),∀v˜H∈Vr˜H. | (3.6) |
Step 2: Letting un+1h:[0,T]⟼Vrh be the solution of the following nonlinear system which is based on the fine grid Th, we have
(δtun+12h,vh)+Δα2K∑k=0ckω(αk)(Dαk,n+12Δtuh,vh)+(∇un+12h,∇vh)+a2b(∂2δtun+12h∂x∂y,∂2vh∂x∂y)+(m(Un+12˜H)+m′(Un+12˜H)(un+12h−Un+12˜H),vh)=(fn+12,vh),∀vh∈Vrh, | (3.7) |
where h≪˜H.
Next, we further discuss the numerical scheme (3.6). We rewrite it into a more familiar alternating direction finite element form. Assume that Vrh=Vrh,x⊗Vrh,y, where Vrh,x and Vrh,y are finite-dimensional subspaces of H10(Ω). Let {φi}Nx−1i=1 and {χp}Ny−1p=1 be bases of Vrh,x and Vrh,y, respectively. So {φiχp}Nx−1,Ny−1i=1,p=1 is the tensor product basis of Vrh.
Let
Un˜H(x,y)=Nx−1∑i=1Ny−1∑p=1σ(n)ipφi(x)χp(y),In(x,y)=Un˜H(x,y)−Un−1˜H(x,y)=Nx−1∑i=1Ny−1∑p=1β(n)ipφi(x)χp(y), | (3.8) |
where
β(n)ip=σ(n)ip−σ(n−1)ip. | (3.9) |
Let v˜H=φlχm,l=1,⋯,Nx−1;m=1,⋯,Ny−1, then the scheme (3.6) can be changed into
Nx−1∑i=1Ny−1∑p=1β(n+1)ip{(φiχp,φlχm)+ab[(∂φi∂xχp,∂φl∂xχm)+(φi∂χp∂y,φl∂χm∂y)]+a2b2(∂φi∂x∂χp∂y,∂φl∂x∂χm∂y)}=Fn+1,n=0,1,2,⋯,N, | (3.10) |
where
Fn+1=1b{Δt(fn+12,φlχm)−Δt(m(Un+12˜H),φlχm)−Nx−1∑i=1Ny−1∑p=1ΔtΔα2K∑k=0ckω(αk)(Δt)−αkqαk(0)σ(n)ip(φiχp,φlχm)−Nx−1∑i=1Ny−1∑p=1ΔtΔα2K∑k=0ckω(αk)n∑j=1(Δt)−αkqαk(j)σ(n+12−j)ip(φiχp,φlχm)−Nx−1∑i=1Ny−1∑p=1Δtσ(n)ip[(∂φi∂xχp,∂φl∂xχm)+(φi∂χp∂y,φl∂χm∂y)]}. | (3.11) |
Denote
Ax=((φi,φp)x)Nx−1i,p=1,Ay=((χi,χp)y)Ny−1i,p=1,Bx=((∂φi∂x,∂φp∂x)x)Nx−1i,p=1,By=((∂χi∂y,∂χp∂y)y)Ny−1i,p=1,ˆF(n+1)=[Fn+1(φ1,χ1),Fn+1(φ1,χ2),⋯,Fn+1(φ1,χNy−1),Fn+1(φ2,χ1),⋯,Fn+1(φNx−1,χNy−1)]T, |
and let
σ(j)=[σ(j)11,σ(j)12,⋯,σ(j)1Ny−1,σ(j)21,⋯,σ(j)Nx−1,Ny−1]T,β(j)=[β(j)11,β(j)12,⋯,β(j)1Ny−1,β(j)21,⋯,β(j)Nx−1,Ny−1]T. |
So we obtain the matrix form of the ADI Galerkin scheme (3.10) as follows
[(Ax+abBx)⊗INy−1][INx−1⊗(Ay+abBy)]β(n+1)=ˆF(n+1), | (3.12) |
where ⊗ denotes the matrix tensor product and INx−1 and INy−1 denote the identity matrices of order Nx−1 and Ny−1, respectively. By introducing the auxiliary vector ˆβ(n+1), then the Eq (3.12) is equivalent to
[(Ax+abBx)⊗INy−1]ˆβ(n+1)=ˆF(n+1),[INx−1⊗(Ay+abBy)]β(n+1)=ˆβ(n+1). | (3.13) |
Thus we determine β(n+1) by solving two sets of independent one-dimensional problems.
In x-direction, we calculate ˆβ(n+1)p by using the following equations
(Ax+abBx)ˆβ(n+1)p=ˆF(n+1)p,p=1,2,⋯,Ny−1, | (3.14) |
where
ˆβ(n+1)p=[ˆβ(n+1)1p,ˆβ(n+1)2p,⋯,ˆβ(n+1)Nx−1,p]T,ˆF(n+1)p=[ˆF(n+1)1p,ˆF(n+1)2p,⋯,ˆF(n+1)Nx−1,p]T. |
In y-direction, we can calculate β(n+1)i by using the following equations
(Ay+abBy)β(n+1)i=ˆβ(n+1)i,i=1,2,⋯,Nx−1, | (3.15) |
where
β(n+1)i=[β(n+1)i1,β(n+1)i2,⋯,β(n+1)i,Ny−1]T,ˆβ(n+1)i=[ˆβ(n+1)i1,ˆβ(n+1)i2,⋯,ˆβ(n+1)i,Ny−1]T. |
For the numerical scheme (3.7) we use a similar approach to the above process. In the next process, we consider the stability and convergence of the two-grid FE systems (3.6) and (3.7).
Theorem 4.1. For the systems (3.6) and (3.7), which is based on coarse grid T˜H and fine grid Th, the following stable inequality holds
‖unh‖2≤Cmax0≤i≤n‖fi‖2. | (4.1) |
Proof. Taking vh=2un+12h in scheme (3.7), we obtain
1Δt(‖un+1h‖2−‖unh‖2)+2Δα2K∑k=0ckω(αk)(Dαk,n+12Δtuh,un+12h)+2‖∇un+12h‖2+a2Δtb(‖∂2∂x∂yun+1h‖2−‖∂2∂x∂yunh‖2)=−(m(Un+12˜H)+m′(Un+12˜H)(un+12h−Un+12˜H),2un+12h)+(fn+12,2un+12h). | (4.2) |
By using Cauchy-Schwarz inequality and Young inequality, we can get
1Δt(‖un+1h‖2−‖unh‖2)+2Δα2K∑k=0ckω(αk)(Dαk,n+12Δtuh,un+12h)+2‖∇un+12h‖2+a2Δtb(‖∂2∂x∂yun+1h‖2−‖∂2∂x∂yunh‖2)≤C(‖un+12h‖2+‖Un+12˜H‖2+‖fn+12‖2). | (4.3) |
Multiply Δt on both sides of inequality (4.3) and sum the resulting inequality (4.3) for n from 0 to N to obtain
‖uN+1h‖2+2ΔtΔαN∑n=02K∑k=0ckω(αk)(Dαk,n+12Δtuh,un+12h)+2ΔtN∑n=0‖∇un+12h‖2+a2b‖∂2∂x∂yuN+1h‖2≤CΔtN+1∑n=0(‖unh‖2+‖Un˜H‖2+‖fn‖2)+‖u0h‖2+a2b‖∂2∂x∂yu0h‖2. | (4.4) |
By using Lemma 2.4 and Gronwall lemma, we have
‖uN+1h‖2≤CΔtN+1∑n=0(‖Un˜H‖2+‖fn‖2)+C(‖u0h‖2+a2b‖∂2∂x∂yu0h‖2). | (4.5) |
Next we discuss the term ‖Un˜H‖2. Take v˜H=2Un+12˜H in scheme (3.6) and use the same process of the derivation for ‖uNh‖2 to arrive at
‖Un˜H‖2≤C(‖U0˜H‖2+a2b‖∂2∂x∂yU0˜H‖2+max0≤i≤n‖fi‖2). | (4.6) |
Use ΔtN∑n=0≤T and substitute inequality (4.6) into inequality (4.5) to derive
‖uN+1h‖2≤Cmax0≤i≤N+1‖fi‖2. | (4.7) |
Thus, the proof of stability is completed.
Define a Ritz projection operator ℜℏ:H10(Ω)→Vrℏ by
(∇(u−ℜℏu),∇vℏ)=0,∀vℏ∈Vrℏ. |
Then, we introduce the property of the projector ℜℏ.
Lemma 4.2. [9] If ∂lu∂tl∈Lp(Hr), l=0,1,2, p=2,∞, then there exists a constant C that is independent of ℏ, such that
‖∂l(u−ℜℏu)∂tl‖Lp(Hk)≤Cℏs−k‖∂lu∂tl‖Lp(Hs), | (4.8) |
where, k=0,1, 1≤s≤r and ℏ is coarse grid step length ˜H or fine grid size h.
Lemma 4.3. [7] Let D represent the operator ∂∂t or ∂2∂t2. By using the triangle inequality and inequality (2.1), we have
‖∂2(D(u−ℜℏu)n)∂x∂y‖≤Cℏr−2‖Du‖Hr+Cℏ−2‖D(u−ℜℏu)n‖. | (4.9) |
To simplify the notations, we denote
u(tn)−unh=(u(tn)−ℜhun)+(ℜhun−unh)=ξnu+ηnu,u(tn)−Un˜H=(u(tn)−ℜ˜Hun)+(ℜ˜Hun−Un˜H)=λnu+ρnu. |
Theorem 4.4. Let u(tn), U˜H and uh be the solution of Eq (1.1), scheme (3.6) and scheme (3.7), respectively. Assume that u(tn)∈L∞(Hr), ∂u∂t∈L2((0,T];Hr), ∂3u∂x∂y∂t∈L2((0,T];L2) and r≥2, then we obtain the following error results
‖u(tn)−unh‖2≤C(h2r‖u‖2L∞(Hr)+h2r‖∂u∂t‖2L2(Hr)+h2r−4Δt2|lnΔt|‖∂u∂t‖2L2(Hr)+Δt2|lnΔt|‖∂3u∂x∂y∂t‖2L2(L2)+h2r+Δt4+Δα4+˜H4r‖u‖4L∞(Hr)+˜H4r‖∂u∂t‖4L2(Hr)+˜H4r−8Δt4|lnΔt|2‖∂u∂t‖4L2(Hr)+Δt4|lnΔt|2‖∂3u∂x∂y∂t‖4L2(L2)+˜H4r), | (4.10) |
where C is a positive constant independent of fine grid step length h, coarse grid step length ˜H as well as time step parameter Δt.
Proof. Combining scheme (3.4) and scheme (3.7), the error equation is as follows
(δtηn+12u,vh)+Δα2K∑k=0ckω(αk)(Dαk,n+12Δtηu,vh)+(∇ηn+12u,∇vh)+a2b(∂2δtηn+12u∂x∂y,∂2vh∂x∂y)=−(m(un+12)−m(Un+12˜H)+m′(Un+12˜H)(ξn+12u+ηn+12u−un+12+Un+12˜H),vh)−(δtξn+12u,vh)−Δα2K∑k=0ckω(αk)(Dαk,n+12Δtξu,vh)−(∇ξn+12u,∇vh)+a2b(∂2δtun+12∂x∂y,∂2vh∂x∂y)−a2b(∂2δtξn+12u∂x∂y,∂2vh∂x∂y)+3∑i=1(Ri,vh),∀vh∈Vrh. | (4.11) |
Taking vh=2ηn+12u, summing up Eq (4.11) for n from 0 to N, and multiplying Δt on both sides of the above equation, we can get
‖ηN+1u‖2+2ΔtN∑n=0Δα2K∑k=0ckω(αk)(Dαk,n+12Δtηu,ηn+12u)+2ΔtN∑n=0‖∇ηn+12u‖2+a2b‖∂2ηN+1u∂x∂y‖2=−ΔtN∑n=0(m(un+12)−m(Un+12˜H)+m′(Un+12˜H)(ξn+12u+ηn+12u−un+12+Un+12˜H),2ηn+12u)−ΔtN∑n=0(δtξn+12u,2ηn+12u)−ΔtN∑n=0Δα2K∑k=0ckω(αk)(Dαk,n+12Δtξu,2ηn+12u)+ΔtN∑n=0a2b(∂2δtun+12∂x∂y,∂22ηn+12u∂x∂y)−ΔtN∑n=0a2b(∂2δtξn+12u∂x∂y,∂22ηn+12u∂x∂y)+ΔtN∑n=03∑i=1(Ri,2ηn+12u)+‖η0u‖2+a2b‖∂2η0u∂x∂y‖2=E1+E2+E3+E4+E5+E6+E7+E8. | (4.12) |
In the following, we estimate the terms Ei, i=1,2,…,8.
From Lemma 4.2, we can get
‖ξn+12u‖2≤‖ξu‖2L∞(L2)≤Ch2r‖u‖2L∞(Hr). | (4.13) |
Then we have
E1=−ΔtN∑n=0(m(un+12)−m(Un+12˜H)+m′(Un+12˜H)(ξn+12u+ηn+12u−un+12+Un+12˜H),2ηn+12u)≤CΔtN∑n=0(h2r‖u‖2L∞(Hr)+‖ηn+12u‖2)+CΔtN∑n=0‖(un+12−Un+12˜H)2‖2+CΔtN∑n=0‖ηn+12u‖2. | (4.14) |
Use Cauchy-Schwarz inequality, Young inequality and Lemma 4.2 to arrive at
E2=−ΔtN∑n=0(δtξn+12u,2ηn+12u)≤CΔtN∑n=01Δt∫tn+1tn‖ξut‖2ds+CΔtN∑n=0‖ηn+12u‖2≤Ch2r‖∂u∂t‖2L2(Hr)+CΔtN∑n=0‖ηn+12u‖2. | (4.15) |
By using the Cauchy-Schwarz inequality and Young inequality, we have
E3=−ΔtN∑n=0Δα2K∑k=0ckω(αk)(Dαk,n+12Δtξu,2ηn+12u)≤ΔtN∑n=0Δα2K∑k=0ckω(αk)‖Dαk,n+12Δtξu‖‖2ηn+12u‖≤CΔtN∑n=0Δα2K∑k=0ckω(αk)(‖Rn+122‖2+‖2ηn+12u‖2)+Ch2rΔα2K∑k=0ckω(αk)‖C0Dαktu‖2L∞(Hr). | (4.16) |
By using the Young inequality and H¨older inequality, we have
E4=−ΔtN∑n=0a2b(∂2δtξn+12u∂x∂y,∂22ηn+12u∂x∂y)≤Ca2b∫T0‖∂3ξu(s)∂x∂y∂t‖2ds+CΔtN∑n=0a2b‖∂2ηn+12u∂x∂y‖2. | (4.17) |
From Lemma 4.2 and Lemma 4.3, we obtain
∫T0‖∂3ξu(s)∂x∂y∂t‖2ds≤Ch2r−4‖∂u∂t‖2L2(Hr). |
So we can get
E4≤Ch2r−4a2b‖∂u∂t‖2L2(Hr)+CΔtN∑n=0a2b‖∂2ηn+12u∂x∂y‖2. | (4.18) |
Similarly, we have
E5=ΔtN∑n=0a2b(∂2δtun+12∂x∂y,∂22ηn+12u∂x∂y)≤Ca2b‖∂3u∂x∂y∂t‖2L2(L2)+CΔtN∑n=0a2b‖∂2ηn+12u∂x∂y‖2. | (4.19) |
Together, we have
E6=ΔtN∑n=03∑i=1(Ri,2ηn+12u)≤CΔtN∑n=0(Δt4+Δα4+‖ηn+1u‖2+‖ηnu‖2). | (4.20) |
Substituting inequalities (4.14)–(4.20) into Eq (4.12) and using Gronwall lemma, we have
‖ηN+1u‖2+2ΔtN∑n=0Δα2K∑k=0ckω(αk)(Dαk,n+12Δtηu,ηn+12u)+2ΔtN∑n=0‖∇ηn+12u‖2+a2b‖∂2ηN+1u∂x∂y‖2≤CTh2r‖u‖2L∞(Hr)+Ch2r‖∂u∂t‖2L2(Hr)+Ch2r−4a2b‖∂u∂t‖2L2(Hr)+Ca2b‖∂3u∂x∂y∂t‖2L2(L2)+Ch2rmax0≤k≤2K‖C0Dαktu‖2L∞(Hr)+CT(Δt4+Δα4)+CΔtN∑n=0‖(un+12−Un+12˜H)2‖2+‖η0u‖2+a2b‖∂2η0u∂x∂y‖2. | (4.21) |
For the next discussion, we give the estimate for the term ΔtN∑n=0‖(un+12−Un+12˜H)2‖2.
Subtract scheme (3.6) from scheme (3.4) to arrive at
(δtρn+12u,v˜H)+Δα2K∑k=0ckω(αk)(Dαk,n+12Δtρu,v˜H)+(∇ρn+12u,∇v˜H)+a2b(∂2δtρn+12u∂x∂y,∂2v˜H∂x∂y)=−(m(un+12)−m(Un+12˜H),v˜H)−(δtλn+12u,v˜H)−Δα2K∑k=0ckω(αk)(Dαk,n+12Δtλu,v˜H)−(∇λn+12u,∇v˜H)+a2b(∂2δtun+12∂x∂y,∂2v˜H∂x∂y)−a2b(∂2δtλn+12u∂x∂y,∂2v˜H∂x∂y)+3∑i=1(Ri,v˜H),∀v˜H∈Vr˜H. | (4.22) |
Take v˜H=2ρn+12u in scheme (4.22) and use the similar process of proof to the estimate for ‖u(tn)−unh‖ to obtain
‖ρN+1u‖2+2ΔtN∑n=0Δα2K∑k=0ckω(αk)(Dαk,n+12Δtρu,ρn+12u)+2ΔtN∑n=0‖∇ρn+12u‖2+a2b‖∂2ρN+1u∂x∂y‖2≤CT˜H2r‖u‖2L∞(Hr)+C˜H2r‖∂u∂t‖2L2(Hr)+C˜H2r−4a2b‖∂u∂t‖2L2(Hr)+Ca2b‖∂3u∂x∂y∂t‖2L2(L2)+C˜H2rmax0≤k≤2K‖C0Dαktu‖2L∞(Hr)+CT(Δt4+Δα4)+‖ρ0u‖2+a2b‖∂2ρ0u∂x∂y‖2. | (4.23) |
By using the similar progress of [22], we have
CΔtN∑n=0‖(un+12−Un+12˜H)2‖2=CΔtN∑n=0‖un+12−Un+12˜H‖40,4≤C(˜H4r‖u‖4L∞(Hr)+˜H4r‖∂u∂t‖4L2(Hr)+˜H4r−8(a2b)2‖∂u∂t‖4L2(Hr)+(a2b)2‖∂3u∂x∂y∂t‖4L2(L2)+˜H4rmax0≤k≤2K‖C0Dαktu‖4L∞(Hr)+Δt8+Δα8+‖ρ0u‖4+(a2b)2‖∂2ρ0u∂x∂y‖4). | (4.24) |
By using the similar progress of [17], we can get
a2b=(12Δt)21+12ΔtΔα∑2Kk=0ckω(αk)(Δt)−αkqαk(0)≤(12Δt)212Δα∑2Kk=0ckω(αk)(Δt)1−αk(1+αk2)=O(Δt2|lnΔt|). | (4.25) |
Substitute inequalities (4.24) and (4.25) into inequality (4.21) to have
‖ηN+1‖2≤C(h2r‖u‖2L∞(Hr)+h2r‖∂u∂t‖2L2(Hr)+h2r−4Δt2|lnΔt|‖∂u∂t‖2L2(Hr)+Δt2|lnΔt|‖∂3u∂x∂y∂t‖2L2(L2)+h2r+Δt4+Δα4+˜H4r‖u‖4L∞(Hr)+˜H4r‖∂u∂t‖4L2(Hr)+˜H4r−8Δt4|lnΔt|2‖∂u∂t‖4L2(Hr)+Δt4|lnΔt|2‖∂3u∂x∂y∂t‖4L2(L2)+˜H4r). | (4.26) |
By using triangle inequality, we finish the proof of the theorem.
In this section, we carry out numerical experiments to illustrate our theoretical results.
Example 5.1. On the space-time domain [0,1]2×[0,12], we choose ω(α)=Γ(4−α), nonlinear term m(u)=sin(u), source term
f(x,t)=(3t2+6(t3−t2)ln(t)+2π2t3)sinπxsinπy+sin(t3sinπxsinπy), | (5.1) |
and the exact solution
u=t3sinπxsinπy. | (5.2) |
In Table 1, with Δα=1/500, Δt=1/200, ˜Hx=˜Hy=1/2,1/3,1/4,1/5, 1/6 and hx=hy=1/4,1/9,1/16,1/25, 1/36, the error estimate result, second-order spatial convergence rates and computation time of u are obtained. In Table 2, with Δα=Δt=hx=hy=˜H2x=˜H2y=1/4,1/16,1/36,1/64 and 1/100, we get the convergence in time and space. The data results show that the two-grid ADI finite element metnod can effectively solve the nonlinear time distributed-order reaction-diffusion equations.
˜HX=˜HY | HX=HY | ‖U−UH‖ | Rate | Time(S) |
1/2 | 1/4 | 4.8437E-03 | − | 1.76 |
1/3 | 1/9 | 9.2451E-04 | 2.0423 | 7.81 |
1/4 | 1/16 | 2.8519E-04 | 2.0441 | 29.77 |
1/5 | 1/25 | 1.1151E-04 | 2.1042 | 89.94 |
1/6 | 1/36 | 4.9230E-05 | 2.2422 | 251.21 |
˜Hx=˜Hy | hx=hy | ‖u−uh‖ | Rate | time(s) |
1/2 | 1/4 | 1.2439E-02 | − | 0.36 |
1/4 | 1/16 | 9.1725E-04 | 1.8807 | 0.59 |
1/6 | 1/36 | 1.9373E-04 | 1.9174 | 10.29 |
1/8 | 1/64 | 6.3576E-05 | 1.9366 | 220.41 |
1/10 | 1/100 | 2.6660E-05 | 1.9474 | 3837.59 |
˜Hx=˜Hy | hx=hy | ‖u−uh‖ | Rate | time(s) |
1/2 | 1/4 | 1.9517E-04 | − | 3.19 |
1/3 | 1/9 | 3.6717E-05 | 2.0601 | 14.59 |
1/4 | 1/16 | 1.1455E-05 | 2.0245 | 73.51 |
1/5 | 1/25 | 4.6293E-06 | 2.0301 | 182.94 |
1/6 | 1/36 | 2.1858E-06 | 2.0580 | 463.55 |
In Figure 1, we give the surface for the exact solution u at t=0.5 with hx=hy=1/200. Furthermore, in Figures 2–7, by taking Δα=1/500, Δt=1/200, hx=hy=˜H2x=˜H2y=1/4,1/9,1/16,1/25,1/36 and 1/49, at t=0.5, we show the surfaces for the numerical solutions uh. In order to show the error behavior between the numerical solution and the exact solution, in Figures 8–13, we give the surfaces for the errors u−uh with Δα=1/500, Δt=1/200, hx=hy=˜H2x=˜H2y=1/4,1/9,1/16,1/25,1/36, 1/49 at t=0.5. It can be seen from the image display that the numerical method is effective in solving the nonlinear time distributed-order reaction-diffusion equation.
Example 5.2. On the space-time domain [0,1]2×[0,12], we choose ω(α)=Γ(5−α), nonlinear term m(u)=arctan(u), source term
f(x,y,t)=(4t3+24(t4−t3)ln(t))x(1−x)y(1−y)+2t4(y(1−y)+x(1−x))+arctan(t4x(1−x)y(1−y)), | (5.3) |
and the exact solution
u=t4x(1−x)y(1−y). | (5.4) |
In Table 3, by taking fixed temporal step length Δt=1/300, fractional parameter Δα=1/600, and changed ˜Hx=˜Hy=1/2,1/3,1/4,1/5, 1/6, hx=hy=1/4,1/9,1/16,1/25, 1/36, we show the error estimation results, the second-order spatial convergence rate and calculation time of u, from which one can see that we can obtain the similar results as that shown in Example 5.1.
Remark 5.1. As pointed out in some works, when the exact solution u(x,y,t) has a strong singularity, the WSGD scheme maybe cannot preserve second-order approximation accuracy in time, so the initial correction technique presented in [44,45] can be considered.
In this paper, a two-dimensional nonlinear time distributed-order fractional sub-diffusion equation is solved by a proposed two-grid ADI FE method based on the WSGD operator. The unconditional stability and optimal error estimates with second-order convergence rate in spatial direction are obtained. The comparison of the numerical solution and the exact solution is made to demonstrate the efficiency of the numerical method. Compared with the traditional FE method, computing time can be saved and the storage space can be reduced in this method. Therefore, this method has further research value.
In the future, this method can be used to numerically solve nonlinear distributed-order time-space fractional sub-diffusion equations and nonlinear Volterra integro-differential equation with weakly singular kernel [42,43], and an ADI method with two-grid finite volume element method [41] for solving fractional models will be developed in another work.
This work is supported by the Inner Mongolia University of Technology 2021 Research Start-up Grant Program (DC2200000908), the Natural Science Foundation of Inner Mongolia (2021MS01018), the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (NMGIRT2207), the Scientific research innovation project of postgraduate of Inner Mongolia University (11200-5223737).
The authors declare there is no conflict of interest.
[1] |
C. J. Chen, H. Liu, X. C. Zheng, H. Wang, A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile/immobile advection-diffusion equations, Comput. Math. Appl., 79 (2019), 2771–2783. https://doi.org/10.1016/j.camwa.2019.12.008 doi: 10.1016/j.camwa.2019.12.008
![]() |
[2] |
A. Chen, Crank-Nicolson ADI Galerkin finite element methods for two classes of Riesz space fractional partial differential equations, Comp. Model. Eng. Sci., 123 (2020), 916–938. https://doi.org/10.32604/cmes.2020.09224 doi: 10.32604/cmes.2020.09224
![]() |
[3] |
A. Chen, C. P. Li, An alternating direction Galerkin method for a time-fractional partial differential equation with damping in two space dimensions, Adv. Differ. Equ., 356 (2017), 1687–1847. https://doi.org/10.1186/s13662-017-1414-9 doi: 10.1186/s13662-017-1414-9
![]() |
[4] |
K. Diethelm, N. J. Ford, Numerical analysis for distributed-order differential equations, J. Comput. Appl. Math., 225 (2009), 96–104. https://doi.org/10.1016/j.cam.2008.07.018 doi: 10.1016/j.cam.2008.07.018
![]() |
[5] |
A. V. Chechkin, R. Gorenflo, I. M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations, Phys. Rev. E., 66 (2002), 046129. https://doi.org/10.1103/physreve.66.046129 doi: 10.1103/physreve.66.046129
![]() |
[6] |
J. E. Dendy, G. Fairweather, Alternating-direction Galerkin methods for parabolic and hyperbolic problems on rectangular polygons, SIAM J. Numer. Anal., 12 (1975), 144–163. https://doi.org/10.1137/0712014 doi: 10.1137/0712014
![]() |
[7] |
J. E. Dendy, An analysis of some Galerkin schemes for the solution of nonlinear time-dependent problems, SIAM J. Numer. Anal., 12 (1975), 541–565. https://doi.org/10.1137/0712042 doi: 10.1137/0712042
![]() |
[8] | J. J. Douglas, T. Dupont, Alternating direction Galerkin methods on rectangles, in Numerical Solution of Partial Differential Equations–II, New York: Academic Press, (1971), 133–214. https://doi.org/10.1016/B978-0-12-358502-8.50009-8 |
[9] |
R. I. Fernandes, G. Fairweather, An alternating direction Galerkin method for a class of second-order hyperbolic equations in two space variables, SIAM J. Numer. Anal., 28 (1991), 1265–1281. https://doi.org/10.1137/0728067 doi: 10.1137/0728067
![]() |
[10] |
J. C. Ren, H. Chen, A numerical method for distributed order time fractional diffusion equation with weakly singular solutions, Appl. Math. Lett., 96 (2019), 159–165. https://doi.org/10.1016/j.aml.2019.04.030 doi: 10.1016/j.aml.2019.04.030
![]() |
[11] |
M. H. Ran, C. J. Zhang, New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order, Appl. Numer. Math., 129 (2018), 58–70. https://doi.org/10.1016/j.apnum.2018.03.005 doi: 10.1016/j.apnum.2018.03.005
![]() |
[12] |
H. Y. Jian, T. Z. Huang, X. M. Gu, X. L. Zhao, Y. L. Zhao, Fast second-order implicit difference schemes for time distributed-order and Riesz space fractional diffusion-wave equations, Comput. Math. Appl., 94 (2021), 136–154. https://doi.org/10.1016/j.camwa.2021.05.003 doi: 10.1016/j.camwa.2021.05.003
![]() |
[13] |
B. L. Yin, Y. Liu, H. Li, Z. M. Zhang, Approximation methods for the distributed order calculus using the convolution quadrature, Discrete Contin. Dyn. Syst. Ser. B., 26 (2021), 1447–1468. https://doi.org/10.3934/dcdsb.2020168 doi: 10.3934/dcdsb.2020168
![]() |
[14] |
W. P. Bu, A. G. Xiao, W. Zeng, Finite difference/finite element methods for distributed-order time fractional diffusion equations, J. Sci. Comput., 72 (2017), 422–441. https://doi.org/10.1007/s10915-017-0360-8 doi: 10.1007/s10915-017-0360-8
![]() |
[15] |
Y. X. Niu, Y. Liu, H. Li, F. W. Liu, Fast high-order compact difference scheme for the nonlinear distributed-order fractional Sobolev model appearing in porous media, Math. Comput. Simulat., 203 (2023), 387–407. https://doi.org/10.1016/j.matcom.2022.07.001 doi: 10.1016/j.matcom.2022.07.001
![]() |
[16] |
C. Wen, Y. Liu, B. L. Yin, H. Li, J. F. Wang, Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model, Numer. Algor., 88 (2021), 523–553. https://doi.org/10.1007/s11075-020-01048-8 doi: 10.1007/s11075-020-01048-8
![]() |
[17] |
G. H. Gao, Z. Z. Sun, Two alternating direction implicit difference schemes for solving the two-dimensional time distributed-order wave equations, J. Sci. Comput., 69 (2016), 506–531. https://doi.org/10.1007/s10915-016-0208-7 doi: 10.1007/s10915-016-0208-7
![]() |
[18] |
L. M. Li, D. Xu, Alternating direction implicit Galerkin finite element method for the two-dimensional time fractional evolution equation, Numer. Math. Theor. Meth. Appl., 7 (2014), 41–57. https://doi.org/10.4208/nmtma.2014.y11051 doi: 10.4208/nmtma.2014.y11051
![]() |
[19] |
L. M. Li, D. Xu, M. Luo, Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation, J. Comput. Phys., 255 (2013), 471–485. https://doi.org/10.1016/j.jcp.2013.08.031 doi: 10.1016/j.jcp.2013.08.031
![]() |
[20] |
M. Li, C. M. Huang, ADI Galerkin FEMs for the 2D nonlinear time-space fractional diffusion-wave equation, Int. J. Model. Simulat. Sci. Comput., 8 (2017), 1750025. https://doi.org/10.1142/s1793962317500258 doi: 10.1142/s1793962317500258
![]() |
[21] |
Q. F. Li, Y. P. Chen, Y. Q. Huang, Y. Wang, Two-grid methods for semilinear time fractional reaction diffusion equations by expanded mixed finite element method, Appl. Numer. Math., 157 (2020), 38–54. https://doi.org/10.1016/j.apnum.2020.05.024 doi: 10.1016/j.apnum.2020.05.024
![]() |
[22] |
Q. F. Li, Y. P. Chen, Y. Q. Huang, Y. Wang, Two-grid methods for nonlinear time fractional diffusion equations by L1-Galerkin FEM, Math. Comput. Simulat., 185 (2021), 436–451. https://doi.org/10.1016/j.matcom.2020.12.033 doi: 10.1016/j.matcom.2020.12.033
![]() |
[23] |
Y. Liu, Y. W. Du, H. Li, J. F. Wang, A two-grid finite element approximation for a nonlinear time-fractional Cable euqation, Nonlinear Dyn., 85 (2016), 2535–2548. https://doi.org/10.1007/s11071-016-2843-9 doi: 10.1007/s11071-016-2843-9
![]() |
[24] |
Y. Liu, Y. W. Du, H. Li, F. W. Liu, Y. J. Wang, Some second-order θ schemes combined with finite element method for nonlinear fractional Cable equation, Numer. Algor., 80 (2019), 533–555. https://doi.org/10.1007/s11075-018-0496-0 doi: 10.1007/s11075-018-0496-0
![]() |
[25] |
Y. Liu, M. Zhang, H. Li, J. C. Li, High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation, Comput. Math. Appl., 73 (2017), 1298–1314. https://doi.org/10.1016/j.camwa.2016.08.015 doi: 10.1016/j.camwa.2016.08.015
![]() |
[26] |
Y. Liu, Y. W. Du, H. Li, J. C. Li, S. He, A two-grid mixed finite element method for a nonlinear fourth-order reaction-diffusion problem with time-fractional derivative, Comput. Math. Appl., 70 (2015), 2474–2492. https://doi.org/10.1016/j.camwa.2015.09.012 doi: 10.1016/j.camwa.2015.09.012
![]() |
[27] |
W. Liu, H. X. Rui, F. Z. Hu, A two-grid algorithm for expanded mixed finite element approximations of semi-linear elliptic equations, Comput. Math. Appl., 66 (2013), 392–402. https://doi.org/10.1016/j.camwa.2013.05.016 doi: 10.1016/j.camwa.2013.05.016
![]() |
[28] |
W. L. Qiu, D. Xu, H. F. Chen, J. Guo, An alternating direction implicit Galerkin finite element method for the distributed-order time-fractional mobile-immobile equation in two dimensions, Comput. Math. Appl., 80 (2020), 3156–3172. https://doi.org/10.1016/j.camwa.2020.11.003 doi: 10.1016/j.camwa.2020.11.003
![]() |
[29] |
M. Saffarian, A. Mohebbi, A novel ADI Galerkin spectral element method for the solution of two-dimensional time fractional subdiffusion equation, Int. J. Comput. Math., 98 (2020), 845–867. https://doi.org/10.1080/00207160.2020.1792450 doi: 10.1080/00207160.2020.1792450
![]() |
[30] |
I. M. Sokolov, A. V. Chechkin, J. Klafter, Distributed-order fractional kinetics, Acta Phys. Polon. B., 35 (2004), 1323–1341. https://doi.org/10.48550/arXiv.cond-mat/0401146 doi: 10.48550/arXiv.cond-mat/0401146
![]() |
[31] |
W. Y. Tian, H. Zhou, W. H. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput., 84 (2015), 1703–1727. https://doi.org/10.1090/s0025-5718-2015-02917-2 doi: 10.1090/s0025-5718-2015-02917-2
![]() |
[32] |
Z. B. Wang, S. W. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys., 277 (2014), 1–15. https://doi.org/10.1016/j.jcp.2014.08.012 doi: 10.1016/j.jcp.2014.08.012
![]() |
[33] |
J. F. Wang, T. Q. Liu, H. Li, Y. Liu, S. He, Second-order approximation scheme combined with H1-Galerkin MFE method for nonlinear time fractional convection-diffusion equation, Comput. Math. Appl., 73 (2017), 1182–1196. https://doi.org/10.1016/j.camwa.2016.07.037 doi: 10.1016/j.camwa.2016.07.037
![]() |
[34] |
J. C. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15 (1994), 231–237. https://doi.org/10.1137/0915016 doi: 10.1137/0915016
![]() |
[35] |
J. C. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33 (1996), 1759–1777. https://doi.org/10.1137/s0036142992232949 doi: 10.1137/s0036142992232949
![]() |
[36] |
Z. Zhang, D. Deng, A new alternating-direction finite element method for hyperbolic equation, Numer. Meth. Part. Differ. Equ., 23 (2007), 1530–1559. https://doi.org/10.1002/num.20240 doi: 10.1002/num.20240
![]() |
[37] |
Y. Zeng, Z. Tan, Two-grid finite element methods for nonlinear time fractional variable coefficient diffusion equations, Appl. Math. Comput., 434 (2022), 127408. https://doi.org/10.1016/j.amc.2022.127408 doi: 10.1016/j.amc.2022.127408
![]() |
[38] |
H. Zhang, F. W. Liu, X. Y. Jiang, F. H. Zeng, I. Turner, A Crank-Nicolson ADI Galerkin-Legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation, Comput. Math. Appl., 76 (2018), 2460–2476. https://doi.org/10.1016/j.camwa.2018.08.042 doi: 10.1016/j.camwa.2018.08.042
![]() |
[39] |
L. Peng, Y. Zhou, The analysis of approximate controllability for distributed order fractional diffusion problems, Appl. Math. Opt., 86 (2022), 22. https://doi.org/10.1007/s00245-022-09886-9 doi: 10.1007/s00245-022-09886-9
![]() |
[40] |
L. Peng, Y. Zhou, J. W. He, The well-posedness analysis of distributed order fractional diffusion problems on RN, Monatsh. Math, 198 (2022), 445–463. https://doi.org/10.1007/s00605-021-01631-8 doi: 10.1007/s00605-021-01631-8
![]() |
[41] |
Z. C. Fang, R. X. Du, H. Li, Y. Liu, A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations, AIMS Math., 7 (2022), 1941–1970. https://doi.org/10.3934/math.2022112 doi: 10.3934/math.2022112
![]() |
[42] |
D. Wang, Y. Liu, H. Li, Z. C. Fang, Second-order time stepping scheme combined with a mixed element method for a 2D nonlinear fourth-order fractional integro-differential equations, Fractal Fract., 6 (2022), 201. https://doi.org/10.3390/fractalfract6040201 doi: 10.3390/fractalfract6040201
![]() |
[43] |
H. Chen, W. Qiu, M. A. Zaky, A. S. Hendy, A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel, Calcolo, 60 (2023), 13. https://doi.org/10.1007/s10092-023-00508-6 doi: 10.1007/s10092-023-00508-6
![]() |
[44] |
H. Zhang, X. Y. Jiang, F. W. Liu, Error analysis of nonlinear time fractional mobile/immobile advection-diffusion equation with weakly singular solutions, Fract. Calc. Appl. Anal., 24 (2021), 202–224. https://doi.org/10.1515/fca-2021-0009 doi: 10.1515/fca-2021-0009
![]() |
[45] |
F. H. Zeng, Z. Zhang, G. E. Karniadakis, Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions, Comput. Methods Appl. Mech. Eng., 327 (2017), 478–502. https://doi.org/10.1016/j.cma.2017.08.029 doi: 10.1016/j.cma.2017.08.029
![]() |
1. | Yubing Jiang, Hu Chen, Local convergence analysis of L1-ADI scheme for two-dimensional reaction-subdiffusion equation, 2024, 70, 1598-5865, 1953, 10.1007/s12190-024-02037-z | |
2. | Aniruddha Seal, Srinivasan Natesan, Suayip Toprakseven, A Dimensional-Splitting Weak Galerkin Finite Element Method for 2D Time-Fractional Diffusion Equation, 2024, 98, 0885-7474, 10.1007/s10915-023-02448-3 |
˜HX=˜HY | HX=HY | ‖U−UH‖ | Rate | Time(S) |
1/2 | 1/4 | 4.8437E-03 | − | 1.76 |
1/3 | 1/9 | 9.2451E-04 | 2.0423 | 7.81 |
1/4 | 1/16 | 2.8519E-04 | 2.0441 | 29.77 |
1/5 | 1/25 | 1.1151E-04 | 2.1042 | 89.94 |
1/6 | 1/36 | 4.9230E-05 | 2.2422 | 251.21 |
˜Hx=˜Hy | hx=hy | ‖u−uh‖ | Rate | time(s) |
1/2 | 1/4 | 1.2439E-02 | − | 0.36 |
1/4 | 1/16 | 9.1725E-04 | 1.8807 | 0.59 |
1/6 | 1/36 | 1.9373E-04 | 1.9174 | 10.29 |
1/8 | 1/64 | 6.3576E-05 | 1.9366 | 220.41 |
1/10 | 1/100 | 2.6660E-05 | 1.9474 | 3837.59 |
˜Hx=˜Hy | hx=hy | ‖u−uh‖ | Rate | time(s) |
1/2 | 1/4 | 1.9517E-04 | − | 3.19 |
1/3 | 1/9 | 3.6717E-05 | 2.0601 | 14.59 |
1/4 | 1/16 | 1.1455E-05 | 2.0245 | 73.51 |
1/5 | 1/25 | 4.6293E-06 | 2.0301 | 182.94 |
1/6 | 1/36 | 2.1858E-06 | 2.0580 | 463.55 |
˜HX=˜HY | HX=HY | ‖U−UH‖ | Rate | Time(S) |
1/2 | 1/4 | 4.8437E-03 | − | 1.76 |
1/3 | 1/9 | 9.2451E-04 | 2.0423 | 7.81 |
1/4 | 1/16 | 2.8519E-04 | 2.0441 | 29.77 |
1/5 | 1/25 | 1.1151E-04 | 2.1042 | 89.94 |
1/6 | 1/36 | 4.9230E-05 | 2.2422 | 251.21 |
˜Hx=˜Hy | Rate | time(s) | ||
1/2 | 1/4 | 1.2439E-02 | 0.36 | |
1/4 | 1/16 | 9.1725E-04 | 1.8807 | 0.59 |
1/6 | 1/36 | 1.9373E-04 | 1.9174 | 10.29 |
1/8 | 1/64 | 6.3576E-05 | 1.9366 | 220.41 |
1/10 | 1/100 | 2.6660E-05 | 1.9474 | 3837.59 |
Rate | time(s) | |||
1/2 | 1/4 | 1.9517E-04 | 3.19 | |
1/3 | 1/9 | 3.6717E-05 | 2.0601 | 14.59 |
1/4 | 1/16 | 1.1455E-05 | 2.0245 | 73.51 |
1/5 | 1/25 | 4.6293E-06 | 2.0301 | 182.94 |
1/6 | 1/36 | 2.1858E-06 | 2.0580 | 463.55 |