Convex and quasiconvex functions in metric graphs

  • Published: 28 June 2021
  • Primary: 05C12, 52A41

  • We study convex and quasiconvex functions on a metric graph. Given a set of points in the metric graph, we consider the largest convex function below the prescribed datum. We characterize this largest convex function as the unique largest viscosity subsolution to a simple differential equation, $ u'' = 0 $ on the edges, plus nonlinear transmission conditions at the vertices. We also study the analogous problem for quasiconvex functions and obtain a characterization of the largest quasiconvex function that is below a given datum.

    Citation: Leandro M. Del Pezzo, Nicolás Frevenza, Julio D. Rossi. Convex and quasiconvex functions in metric graphs[J]. Networks and Heterogeneous Media, 2021, 16(4): 591-607. doi: 10.3934/nhm.2021019

    Related Papers:

  • We study convex and quasiconvex functions on a metric graph. Given a set of points in the metric graph, we consider the largest convex function below the prescribed datum. We characterize this largest convex function as the unique largest viscosity subsolution to a simple differential equation, $ u'' = 0 $ on the edges, plus nonlinear transmission conditions at the vertices. We also study the analogous problem for quasiconvex functions and obtain a characterization of the largest quasiconvex function that is below a given datum.



    加载中


    [1] A partial differential equation for the \begin{document}$ \epsilon $\end{document}-uniformly quasiconvex envelope. IMA J. Numer. Anal. (2019) 39: 141-166.
    [2] Computing the level set convex hull. J. Sci. Comput. (2018) 75: 26-42.
    [3] Functions which are quasiconvex under linear perturbations. SIAM J. Optim. (2012) 22: 1089-1108.
    [4] Quasiconvex functions and nonlinear PDEs. Trans. Amer. Math. Soc. (2013) 365: 4229-4255.
    [5] The quasiconvex envelope through first-order partial differential equations which characterize quasiconvexity of nonsmooth functions. Discrete Contin. Dyn. Syst. Ser. B (2012) 17: 1693-1706.
    [6] G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, Mathematical Surveys and Monographs, 186, American Mathematical Society, Providence, RI, 2013. doi: 10.1090/surv/186
    [7] Games for eigenvalues of the Hessian and concave/convex envelopes. J. Math. Pures Appl. (2019) 127: 192-215.
    [8] Steiner distance and convexity in graphs. European J. Combin. (2008) 29: 726-736.
    [9] Convex envelopes on trees. J. Convex Anal. (2020) 27: 1195-1218.
    [10] Nonconvex duality in multiobjective optimization. Math. Oper. Res. (1977) 2: 285-291.
    [11] A. Eberhard and C. E. M. Pearce, Class-inclusion properties for convex functions, in Progress in Optimization ({P}erth, 1998), Appl. Optim., 39, Kluwer Acad. Publ., Dordrecht, 2000,129-133. doi: 10.1007/978-1-4613-0301-5_9
    [12] On the connection between tug-of-war games and nonlocal PDEs on graphs. C. R. Mécanique (2017) 345: 177-183.
    [13] Convexity in graphs and hypergraphs. SIAM J. Algebraic Discrete Methods (1986) 7: 433-444.
    [14] On local convexity in graphs. Discrete Math. (1987) 66: 231-247.
    [15] Elementary proof for Sion's minimax theorem. Kodai Math. J. (1988) 11: 5-7.
    [16] Nonlinear elliptic partial differential equations and $p-$harmonic functions on graphs. Differential Integral Equations (2015) 28: 79-102.
    [17] Discrete convex analysis. Math. Programming (1998) 83: 313-371.
    [18] K. Murota, Discrete Convex Analysis, SIAM Monographs on Discrete Mathematics and Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003. doi: 10.1137/1.9780898718508
    [19] K. Murota, Recent developments in discrete convex analysis, in Research Trends in Combinatorial Optimization, Springer, Berlin, 2009,219-260. doi: 10.1007/978-3-540-76796-1_11
    [20] C. P. Niculescu and L.-E. Persson, Convex Functions and Their Applications, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 23, Springer, New York, 2006., doi: 10.1007/0-387-31077-0
    [21] The convex envelope is the solution of a nonlinear obstacle problem. Proc. Amer. Math. Soc. (2007) 135: 1689-1694.
    [22] The Dirichlet problem for the convex envelope. Trans. Amer. Math. Soc. (2011) 363: 5871-5886.
    [23] C. E. M. Pearce, Quasiconvexity, fractional programming and extremal traffic congestion, in Frontiers in Global Optimization, Nonconvex Optim. Appl., 74, Kluwer Acad. Publ., Boston, MA, 2004,403-409. doi: 10.1007/978-1-4613-0251-3_22
    [24] I. M. Pelayo, Geodesic Convexity in Graphs, SpringerBriefs in Mathematics, Springer, New York, 2013. doi: 10.1007/978-1-4614-8699-2
    [25] On general minimax theorems. Pacific J. Math. (1958) 8: 171-176.
    [26] M. L. J. van de Vel, Theory of Convex Structures, North-Holland Mathematical Library, 50, North-Holland Publishing Co., Amsterdam, 1993.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2561) PDF downloads(392) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog