Loading [MathJax]/jax/output/SVG/jax.js

Convex and quasiconvex functions in metric graphs

  • Received: 01 February 2021 Revised: 01 May 2021 Published: 28 June 2021
  • Primary: 05C12, 52A41

  • We study convex and quasiconvex functions on a metric graph. Given a set of points in the metric graph, we consider the largest convex function below the prescribed datum. We characterize this largest convex function as the unique largest viscosity subsolution to a simple differential equation, u=0 on the edges, plus nonlinear transmission conditions at the vertices. We also study the analogous problem for quasiconvex functions and obtain a characterization of the largest quasiconvex function that is below a given datum.

    Citation: Leandro M. Del Pezzo, Nicolás Frevenza, Julio D. Rossi. Convex and quasiconvex functions in metric graphs[J]. Networks and Heterogeneous Media, 2021, 16(4): 591-607. doi: 10.3934/nhm.2021019

    Related Papers:

    [1] Michael Herty, Lorenzo Pareschi, Sonja Steffensen . Mean--field control and Riccati equations. Networks and Heterogeneous Media, 2015, 10(3): 699-715. doi: 10.3934/nhm.2015.10.699
    [2] Nastassia Pouradier Duteil . Mean-field limit of collective dynamics with time-varying weights. Networks and Heterogeneous Media, 2022, 17(2): 129-161. doi: 10.3934/nhm.2022001
    [3] Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang . Uniform stability and mean-field limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13(2): 297-322. doi: 10.3934/nhm.2018013
    [4] Martino Bardi . Explicit solutions of some linear-quadratic mean field games. Networks and Heterogeneous Media, 2012, 7(2): 243-261. doi: 10.3934/nhm.2012.7.243
    [5] András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon . Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks and Heterogeneous Media, 2012, 7(1): 43-58. doi: 10.3934/nhm.2012.7.43
    [6] Fabio Camilli, Italo Capuzzo Dolcetta, Maurizio Falcone . Preface. Networks and Heterogeneous Media, 2012, 7(2): i-ii. doi: 10.3934/nhm.2012.7.2i
    [7] Olivier Guéant . New numerical methods for mean field games with quadratic costs. Networks and Heterogeneous Media, 2012, 7(2): 315-336. doi: 10.3934/nhm.2012.7.315
    [8] Michele Gianfelice, Enza Orlandi . Dynamics and kinetic limit for a system of noiseless d-dimensional Vicsek-type particles. Networks and Heterogeneous Media, 2014, 9(2): 269-297. doi: 10.3934/nhm.2014.9.269
    [9] Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf . Sparse control of alignment models in high dimension. Networks and Heterogeneous Media, 2015, 10(3): 647-697. doi: 10.3934/nhm.2015.10.647
    [10] Maria Teresa Chiri, Xiaoqian Gong, Benedetto Piccoli . Mean-field limit of a hybrid system for multi-lane car-truck traffic. Networks and Heterogeneous Media, 2023, 18(2): 723-752. doi: 10.3934/nhm.2023031
  • We study convex and quasiconvex functions on a metric graph. Given a set of points in the metric graph, we consider the largest convex function below the prescribed datum. We characterize this largest convex function as the unique largest viscosity subsolution to a simple differential equation, u=0 on the edges, plus nonlinear transmission conditions at the vertices. We also study the analogous problem for quasiconvex functions and obtain a characterization of the largest quasiconvex function that is below a given datum.





    [1] A partial differential equation for the \begin{document}ϵ\end{document}-uniformly quasiconvex envelope. IMA J. Numer. Anal. (2019) 39: 141-166.
    [2] Computing the level set convex hull. J. Sci. Comput. (2018) 75: 26-42.
    [3] Functions which are quasiconvex under linear perturbations. SIAM J. Optim. (2012) 22: 1089-1108.
    [4] Quasiconvex functions and nonlinear PDEs. Trans. Amer. Math. Soc. (2013) 365: 4229-4255.
    [5] The quasiconvex envelope through first-order partial differential equations which characterize quasiconvexity of nonsmooth functions. Discrete Contin. Dyn. Syst. Ser. B (2012) 17: 1693-1706.
    [6] G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, Mathematical Surveys and Monographs, 186, American Mathematical Society, Providence, RI, 2013. doi: 10.1090/surv/186
    [7] Games for eigenvalues of the Hessian and concave/convex envelopes. J. Math. Pures Appl. (2019) 127: 192-215.
    [8] Steiner distance and convexity in graphs. European J. Combin. (2008) 29: 726-736.
    [9] Convex envelopes on trees. J. Convex Anal. (2020) 27: 1195-1218.
    [10] Nonconvex duality in multiobjective optimization. Math. Oper. Res. (1977) 2: 285-291.
    [11] A. Eberhard and C. E. M. Pearce, Class-inclusion properties for convex functions, in Progress in Optimization ({P}erth, 1998), Appl. Optim., 39, Kluwer Acad. Publ., Dordrecht, 2000,129-133. doi: 10.1007/978-1-4613-0301-5_9
    [12] On the connection between tug-of-war games and nonlocal PDEs on graphs. C. R. Mécanique (2017) 345: 177-183.
    [13] Convexity in graphs and hypergraphs. SIAM J. Algebraic Discrete Methods (1986) 7: 433-444.
    [14] On local convexity in graphs. Discrete Math. (1987) 66: 231-247.
    [15] Elementary proof for Sion's minimax theorem. Kodai Math. J. (1988) 11: 5-7.
    [16] Nonlinear elliptic partial differential equations and pharmonic functions on graphs. Differential Integral Equations (2015) 28: 79-102.
    [17] Discrete convex analysis. Math. Programming (1998) 83: 313-371.
    [18] K. Murota, Discrete Convex Analysis, SIAM Monographs on Discrete Mathematics and Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003. doi: 10.1137/1.9780898718508
    [19] K. Murota, Recent developments in discrete convex analysis, in Research Trends in Combinatorial Optimization, Springer, Berlin, 2009,219-260. doi: 10.1007/978-3-540-76796-1_11
    [20] C. P. Niculescu and L.-E. Persson, Convex Functions and Their Applications, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 23, Springer, New York, 2006., doi: 10.1007/0-387-31077-0
    [21] The convex envelope is the solution of a nonlinear obstacle problem. Proc. Amer. Math. Soc. (2007) 135: 1689-1694.
    [22] The Dirichlet problem for the convex envelope. Trans. Amer. Math. Soc. (2011) 363: 5871-5886.
    [23] C. E. M. Pearce, Quasiconvexity, fractional programming and extremal traffic congestion, in Frontiers in Global Optimization, Nonconvex Optim. Appl., 74, Kluwer Acad. Publ., Boston, MA, 2004,403-409. doi: 10.1007/978-1-4613-0251-3_22
    [24] I. M. Pelayo, Geodesic Convexity in Graphs, SpringerBriefs in Mathematics, Springer, New York, 2013. doi: 10.1007/978-1-4614-8699-2
    [25] On general minimax theorems. Pacific J. Math. (1958) 8: 171-176.
    [26] M. L. J. van de Vel, Theory of Convex Structures, North-Holland Mathematical Library, 50, North-Holland Publishing Co., Amsterdam, 1993.
  • This article has been cited by:

    1. Michael Herty, Dante Kalise, 2018, Suboptimal nonlinear feedback control laws for collective dynamics, 978-1-5386-6089-8, 556, 10.1109/ICCA.2018.8444303
    2. Melanie Harms, Simone Bamberger, Eva Zerz, Michael Herty, On d-Collision-Free Dynamical Systems, 2022, 55, 24058963, 25, 10.1016/j.ifacol.2022.11.303
    3. Fuguo Xu, Qiaobin Fu, Tielong Shen, PMP-based numerical solution for mean field game problem of general nonlinear system, 2022, 146, 00051098, 110655, 10.1016/j.automatica.2022.110655
    4. M. K. Banda, M. Herty, T. Trimborn, 2020, Chapter 7, 978-3-030-50449-6, 133, 10.1007/978-3-030-50450-2_7
    5. Michael Herty, Anna Thunen, 2021, Consistent Control of a Stackelberg Game with Infinitely many Followers, 978-1-6654-3659-5, 918, 10.1109/CDC45484.2021.9682798
    6. Michael Herty, Hui Yu, 2016, Boundary stabilization of hyperbolic conservation laws using conservative finite volume schemes, 978-1-5090-1837-6, 5577, 10.1109/CDC.2016.7799126
    7. Giacomo Albi, Michael Herty, Dante Kalise, Chiara Segala, Moment-Driven Predictive Control of Mean-Field Collective Dynamics, 2022, 60, 0363-0129, 814, 10.1137/21M1391559
    8. Giacomo Albi, Emiliano Cristiani, Lorenzo Pareschi, Daniele Peri, 2020, Chapter 8, 978-3-030-50449-6, 159, 10.1007/978-3-030-50450-2_8
    9. Michael Herty, Sonja Steffensen, Anna Thünen, Multiscale control of Stackelberg games, 2022, 200, 03784754, 468, 10.1016/j.matcom.2022.04.028
    10. Marco Caponigro, Benedetto Piccoli, Francesco Rossi, Emmanuel Trélat, Mean-field sparse Jurdjevic–Quinn control, 2017, 27, 0218-2025, 1223, 10.1142/S0218202517400140
    11. Bertram Düring, Lorenzo Pareschi, Giuseppe Toscani, Kinetic models for optimal control of wealth inequalities, 2018, 91, 1434-6028, 10.1140/epjb/e2018-90138-1
    12. Yan Ma, Minyi Huang, Linear quadratic mean field games with a major player: The multi-scale approach, 2020, 113, 00051098, 108774, 10.1016/j.automatica.2019.108774
    13. Michael Herty, Mattia Zanella, Performance bounds for the mean-field limit of constrained dynamics, 2017, 37, 1553-5231, 2023, 10.3934/dcds.2017086
    14. Aylin Aydoğdu, Marco Caponigro, Sean McQuade, Benedetto Piccoli, Nastassia Pouradier Duteil, Francesco Rossi, Emmanuel Trélat, 2017, Chapter 3, 978-3-319-49994-9, 99, 10.1007/978-3-319-49996-3_3
    15. Giacomo Albi, Lorenzo Pareschi, Mattia Zanella, Boltzmann Games in Heterogeneous Consensus Dynamics, 2019, 175, 0022-4715, 97, 10.1007/s10955-019-02246-y
    16. Michael Herty, Lorenzo Pareschi, Sonja Steffensen, 2019, Chapter 5, 978-3-030-20296-5, 149, 10.1007/978-3-030-20297-2_5
    17. A. Medaglia, G. Colelli, L. Farina, A. Bacila, P. Bini, E. Marchioni, S. Figini, A. Pichiecchio, M. Zanella, Uncertainty quantification and control of kinetic models of tumour growth under clinical uncertainties, 2022, 141, 00207462, 103933, 10.1016/j.ijnonlinmec.2022.103933
    18. Giacomo Albi, Federica Ferrarese, Chiara Segala, 2021, Chapter 5, 978-3-030-91645-9, 97, 10.1007/978-3-030-91646-6_5
    19. Minyi Huang, Mengjie Zhou, Linear Quadratic Mean Field Games: Asymptotic Solvability and Relation to the Fixed Point Approach, 2020, 65, 0018-9286, 1397, 10.1109/TAC.2019.2919111
    20. Eva Zerz, Michael Herty, Collision-Free Dynamical Systems , 2019, 52, 24058963, 72, 10.1016/j.ifacol.2019.11.029
    21. Giacomo Albi, Michael Herty, Chiara Segala, Robust Feedback Stabilization of Interacting Multi-agent Systems Under Uncertainty, 2024, 89, 0095-4616, 10.1007/s00245-023-10078-2
    22. Xiaoqian Gong, Michael Herty, Benedetto Piccoli, Giuseppe Visconti, Crowd Dynamics: Modeling and Control of Multiagent Systems, 2023, 6, 2573-5144, 261, 10.1146/annurev-control-060822-123629
    23. Christian Fiedler, Michael Herty, Sebastian Trimpe, Mean-Field Limits for Discrete-Time Dynamical Systems via Kernel Mean Embeddings, 2023, 7, 2475-1456, 3914, 10.1109/LCSYS.2023.3341280
    24. Martin Gugat, Michael Herty, Jiehong Liu, Chiara Segala, The turnpike property for high‐dimensional interacting agent systems in discrete time, 2024, 45, 0143-2087, 2557, 10.1002/oca.3172
    25. Michael Herty, Yizhou Zhou, Exponential turnpike property for particle systems and mean-field limit, 2025, 0956-7925, 1, 10.1017/S0956792524000871
    26. Giacomo Albi, Sara Bicego, Michael Herty, Yuyang Huang, Dante Kalise, Chiara Segala, 2025, Chapter 2, 978-3-031-85255-8, 29, 10.1007/978-3-031-85256-5_2
    27. Giacomo Albi, Sara Bicego, Dante Kalise, Control of high-dimensional collective dynamics by deep neural feedback laws and kinetic modelling, 2025, 539, 00219991, 114229, 10.1016/j.jcp.2025.114229
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2339) PDF downloads(392) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog