The objective of this article is to make the analysis of the muscular force response to optimize electrical pulses train using Ding et al. force-fatigue model. A geometric analysis of the dynamics is provided and very preliminary results are presented in the frame of optimal control using a simplified input-output model. In parallel, to take into account the physical constraints of the problem, partial state observation and input restrictions, an optimized pulses train is computed with a model predictive control, where a non-linear observer is used to estimate the state-variables.
Citation: Toufik Bakir, Bernard Bonnard, Jérémy Rouot. A case study of optimal input-output system with sampled-data control: Ding et al. force and fatigue muscular control model[J]. Networks and Heterogeneous Media, 2019, 14(1): 79-100. doi: 10.3934/nhm.2019005
[1] | Sheza. M. El-Deeb, Gangadharan Murugusundaramoorthy, Kaliyappan Vijaya, Alhanouf Alburaikan . Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial. AIMS Mathematics, 2022, 7(2): 2989-3005. doi: 10.3934/math.2022165 |
[2] | F. Müge Sakar, Arzu Akgül . Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator. AIMS Mathematics, 2022, 7(4): 5146-5155. doi: 10.3934/math.2022287 |
[3] | Pinhong Long, Huo Tang, Wenshuai Wang . Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073 |
[4] | Erhan Deniz, Hatice Tuǧba Yolcu . Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order. AIMS Mathematics, 2020, 5(1): 640-649. doi: 10.3934/math.2020043 |
[5] | Shuhai Li, Lina Ma, Huo Tang . Meromorphic harmonic univalent functions related with generalized (p, q)-post quantum calculus operators. AIMS Mathematics, 2021, 6(1): 223-234. doi: 10.3934/math.2021015 |
[6] | Mohammad Faisal Khan . Certain new applications of Faber polynomial expansion for some new subclasses of $ \upsilon $-fold symmetric bi-univalent functions associated with $ q $-calculus. AIMS Mathematics, 2023, 8(5): 10283-10302. doi: 10.3934/math.2023521 |
[7] | Khadeejah Rasheed Alhindi, Khalid M. K. Alshammari, Huda Ali Aldweby . Classes of analytic functions involving the q-Ruschweyh operator and q-Bernardi operator. AIMS Mathematics, 2024, 9(11): 33301-33313. doi: 10.3934/math.20241589 |
[8] | İbrahim Aktaş . On some geometric properties and Hardy class of q-Bessel functions. AIMS Mathematics, 2020, 5(4): 3156-3168. doi: 10.3934/math.2020203 |
[9] | Ala Amourah, B. A. Frasin, G. Murugusundaramoorthy, Tariq Al-Hawary . Bi-Bazilevič functions of order $ \vartheta +i\delta $ associated with $ (p, q)- $ Lucas polynomials. AIMS Mathematics, 2021, 6(5): 4296-4305. doi: 10.3934/math.2021254 |
[10] | Zeya Jia, Nazar Khan, Shahid Khan, Bilal Khan . Faber polynomial coefficients estimates for certain subclasses of $ q $-Mittag-Leffler-Type analytic and bi-univalent functions. AIMS Mathematics, 2022, 7(2): 2512-2528. doi: 10.3934/math.2022141 |
The objective of this article is to make the analysis of the muscular force response to optimize electrical pulses train using Ding et al. force-fatigue model. A geometric analysis of the dynamics is provided and very preliminary results are presented in the frame of optimal control using a simplified input-output model. In parallel, to take into account the physical constraints of the problem, partial state observation and input restrictions, an optimized pulses train is computed with a model predictive control, where a non-linear observer is used to estimate the state-variables.
In his survey-cum-expository review article, Srivastava [35] included also a brief overview of the classical $ q $-analysis versus the so-called $ (p, q) $-analysis with an obviously redundant additional parameter $ p $ (see, for details, [35,p. 340]). The present sequel to Srivastava's widely-cited review article [35], we apply the concept of $ q $-convolution in order to introduce and study the general Taylor-Maclaurin coefficient estimates for functions belonging to a new class of normalized analytic and bi-close-to-convex functions in the open unit disk, which we have defined here.
Let $ \mathcal{A} $ denote the class of analytic functions of the form:
$ f(z)=z+∞∑n=2anzn(z∈Δ), $ | (1.1) |
where $ \Delta $ denotes the open unit disk in the complex $ z $-plane given by
$ \Delta: = \{z: z\in \mathbb{C}\qquad \text{and} \qquad |z| \lt 1\}. $ |
Also let $ \mathcal{S}\subset \mathcal{A} $ consist of functions which are also univalent in $ \Delta $.
If the function $ f $ is given by (1.1) and the function $ \Upsilon \in \mathcal{A} $ is given by
$ Υ(z)=z+∞∑n=2ψnzn(z∈Δ), $ | (1.2) |
then the Hadamard product (or convolution) of the functions $ f $ and $ \Upsilon $ is defined by defined by
$ (f∗Υ)(z):=z+∞∑n=2anψnzn=:(Υ∗f)(z)(z∈Δ). $ |
For $ 0\leqq \alpha < 1, $ we let $ S^{\ast}\left(\alpha \right) $ denote the class of functions $ g\in \mathcal{S} $ which are starlike of order $ \alpha $ in $ \Delta $ such that
$ ℜ(zg′(z)g(z))>α(z∈Δ). $ |
We denote by $ \mathcal{C}\left(\alpha \right) $ the class of functions $ f\in \mathcal{S} $ which are close-to-convex of order $ \alpha $ in $ \Delta $ such that (see [10,24])
$ ℜ(zf′(z)g(z))>α(z∈Δ), $ |
where
$ g∈S∗(0)=:S∗. $ |
We note that
$ S^{\ast}\left(\alpha \right) \subset \mathcal{C}\left( \alpha \right) \subset \mathcal{S}\qquad \text{and} \qquad \left\vert a_{n}\right\vert \lt n \qquad (\forall\; f\in \mathcal{S};\; n\in \mathbb{N}\setminus \{1\}) $ |
by the Bieberbach conjecture or the De Branges Theorem (see [3,10]), $ \mathbb{N} $ being the set of natural numbers (or the positive integers).
In the above-cited review article, Srivastava [35] made use of various operators of $ q $-calculus and fractional $ q $-calculus. We begin by recalling the definitions and notations as follows (see also [33] and [45,pp. 350–351]).
The $ q $-shifted factorial is defined, for $ \lambda, q\in \mathbb{C} $ and $ n \in \mathbb{N}_{0} = \mathbb{N}\cup \{0\} $, by
$ (λ;q)n={1(n=0)(1−λ)(1−λq)⋯(1−λqn−1)(n∈N). $ |
By using the $ q $-gamma function $ \Gamma_{q}(z), $ we get
$ (qλ;q)n=(1−q)n Γq(λ+n)Γq(λ)(n∈N0), $ |
$ Γq(z)=(1−q)1−z(q;q)∞(qz;q)∞(|q|<1). $ |
We note also that
$ (λ;q)∞=∞∏n=0(1−λqn)(|q|<1), $ |
and that the $ q $-gamma function $ \Gamma_{q}(z) $ satisfies the following recurrence relation:
$ Γq(z+1)=[z]qΓq(z), $ |
where $ \left[\lambda\right]_{q} $ denotes the basic (or $ q $-) number defined as follows:
$ [λ]q:={1−qλ1−q(λ∈C)1+ℓ−1∑j=1qj(λ=ℓ∈N). $ | (1.3) |
Using the definition in (1.3), we have the following consequences:
(ⅰ) For any non-negative integer $ n\in \mathbb{N}_0 $, the $ q $-shifted factorial is given by
$ [n]q!:={1(n=0)n∏k=1[k]q(n∈N). $ |
(ⅱ) For any positive number $ r $, the generalized $ q $-Pochhammer symbol is defined by
$ [r]q,n:={1(n=0)r+n−1∏k=r[k]q(n∈N). $ |
In terms of the classical (Euler's) gamma function $ \Gamma\left(z\right) $, it is easily seen that
$ limq→1−{Γq(z)}=Γ(z). $ |
We also observe that
$ limq→1−{(qλ;q)n(1−q)n}=(λ)n, $ |
where $ \left(\lambda\right)_{n} $ is the familiar Pochhammer symbol defined by
$ (λ)n={1(n=0)λ(λ+1)⋯(λ+n−1)(n∈N). $ |
For $ 0 < q < 1 $, the $ q $-derivative operator (or, equivalently, the $ q $-difference operator) $ D_{q} $ is defined by (see [22]; see also [14,16,21])
$ Dq(f∗Υ)(z)=Dq(z+∞∑n=2anψnzn):=(f∗Υ)(z)−(f∗Υ)(qz)z(1−q)=1+∞∑n=2[n]qanψnzn−1(z∈Δ), $ |
where, as in the definition (1.3),
$ [n]q={1−qn1−q=1+n−1∑j=1qj(n∈N)0(n=0). $ | (1.4) |
Remark 1. Whereas a $ q $-extension of the class of starlike functions was introduced in $ 1990 $ in [20] by means of the $ q $-derivative operator $ D_q $, a firm footing of the usage of the $ q $-calculus in the context of Geometric Function Theory was actually provided and the generalized basic (or $ q $-) hypergeometric functions were first used in Geometric Function Theory in an earlier book chapter published in 1989 by Srivastava (see, for details, [34]; see also the recent works [25,27,32,36,37,39,40,46,51,52,53,55,56,57]).
For $ \lambda > -1 $ and $ 0 < q < 1 $, El-Deeb et al. [14] defined the linear operator $ \mathcal{H}_{\Upsilon}^{\lambda, q}:\mathcal{A}\rightarrow \mathcal{A} $ by
$ Hλ,qΥf(z)∗Mq,λ+1(z)=zDq(f∗Υ)(z)(z∈Δ), $ |
where the function $ \mathcal{M}_{q, \lambda}(z) $ is given by
$ Mq,λ(z)=z+∞∑n=2[λ]q,n−1[n−1]q!zn(z∈Δ). $ |
A simple computation shows that
$ Hλ,qΥf(z)=z+∞∑n=2[n]q![λ+1]q,n−1anψnzn(λ>−1;0<q<1;z∈Δ). $ | (1.5) |
From the defining relation (1.5), we can easily verify that the following relations hold true for all $ f\in \mathcal{A} $:
$ (i)[λ+1]qHλ,qΥf(z)=[λ]qHλ+1,qΥf(z)+qλz Dq(Hλ+1,qΥf(z))(z∈Δ);(ii)IλΥf(z):=limq→1−Hλ,qΥf(z)=z+∞∑n=2n!(λ+1)n−1anψnzm(z∈Δ). $ | (1.6) |
Remark 2. If we take different particular cases for the coefficients $ \psi_{n}, $ we obtain the following special cases for the operator $ \mathcal{H}_{h}^{\lambda, q} $:
(ⅰ) For $ \psi_{n} = 1 $, we obtain the operator $ \mathfrak{J}_{q}^{\lambda} $ defined by Arif et al. [2] as follows (see also Srivastava [47]):
$ Jλqf(z):=z+∞∑n=2[n]q![λ+1]q,n−1anzn(z∈Δ); $ | (1.7) |
(ⅱ) For
$ \psi_{n} = \dfrac{(-1)^{n-1}\;\Gamma(\upsilon+1)}{ 4^{n-1}\; (n-1)! \;\Gamma(n+\upsilon)} \qquad \text{and} \qquad \upsilon \gt 0, $ |
we obtain the operator $ \mathcal{N}_{\upsilon, q}^{\lambda} $ defined by El-Deeb and Bulboacǎ [12] and El-Deeb [11] as follows (see also [16]):
$ Nλυ,qf(z):=z+∞∑n=2(−1)n−1Γ(υ+1)4n−1(n−1)!Γ(n+υ)⋅[n]q![λ+1]q,n−1anzn=z+∞∑n=2[n]q![λ+1]q,n−1ϕnanzn $ | (1.8) |
$ (\upsilon \gt 0;\;\lambda \gt -1;\;0 \lt q \lt 1;\ z\in \Delta), $ |
where
$ ϕn:=(−1)n−1Γ(υ+1)4n−1(n−1)!Γ(n+υ)(n∈N∖{1}); $ | (1.9) |
(ⅲ) For
$ \psi_{n} = \left(\dfrac{n+1}{m+n}\right)^{\alpha}, \quad \alpha \gt 0 \qquad \text{and} \qquad n \in \mathbb{N}_0, $ |
we obtain the operator $ \mathcal{M}_{m, q}^{\lambda, \alpha} $ defined by El-Deeb and Bulboacǎ (see [13,43]) as follows:
$ Mλ,αm,qf(z):=z+∞∑n=2(m+1m+n)α⋅[n]q![λ+1]q,n−1anzn(z∈Δ); $ | (1.10) |
(ⅳ) For
$ \psi_{n} = \dfrac{\rho^{n-1}}{(n-1)!}\;e^{-\rho} \qquad \text{and} \qquad \rho \gt 0, $ |
we obtain a $ q $-analogue of the Poisson operator defined in [30] by
$ Iλ,ρqf(z):=z+∞∑n=2ρn−1(n−1)!e−ρ⋅[n]q![λ+1]q,n−1anzn(z∈Δ); $ | (1.11) |
(ⅴ) For
$ \psi_{n} = \binom{m+n-2}{n-1}\; \theta^{n-1}\left(1-\theta \right)^{m}\qquad \left(m\in \mathbb{N};\; 0\leqq \theta \leqq 1\right), $ |
we get a $ q $-analogue $ \Psi_{q, \theta}^{\lambda, m} $ of the Pascal distribution operator as follows (see [15]):
$ Ψλ,mq,θf(z):=z+∞∑n=2(m+n−2n−1)θn−1(1−θ)m⋅[n]q![λ+1]q,n−1anzn $ | (1.12) |
$ (z\in \Delta). $ |
If $ f $ and $ F $ are analytic functions in $ \Delta $, we say that the function $ f $ is subordinate to the function $ F $, written as $ f(z)\prec F(z) $, if there exists a Schwarz function $ s $, which is analytic in $ \Delta $ with $ s(0) = 0 $ and $ \left\vert s(z)\right\vert < 1 $ for all $ z\in \Delta $, such that
$ f(z) = F\big(s(z)\big) \qquad (z\in \Delta). $ |
Furthermore, if the function $ F $ is univalent in $ \Delta $, then we have the following equivalence (see, for example, [7,28])
$ f(z)≺F(z)⟺f(0)=F(0)andf(Δ)⊂F(Δ). $ |
The Koebe one-quarter theorem (see [10]) asserts that the image of $ \Delta $ under every univalent function $ f\in \mathcal{S} $ contains the disk of radius $ \dfrac{1}{4} $. Therefore, every function $ f\in \mathcal{S} $ has an inverse $ f^{-1} $ which satisfies the following inequality:
$ f(f−1(w))=w(|w|<r0(f);r0(f)≧14), $ |
where
$ g(w)=f−1(w)=w−a2w2+(2a22−a3)w3−(5a32−5a2a3+a4)w4+⋯=w+∞∑n=2Anwn. $ |
A function $ f\in \mathcal{A} $ is said to be bi-univalent in $ \Delta $ if both $ f $ and $ f^{-1} $ are univalent in $ \Delta $. Let $ \Sigma $ denote the class of normalized analytic and bi-univalent functions in $ \Delta $ given by (1.1). The class $ \Sigma $ of analytic and bi-univalent functions was introduced by Lewin [26], where it was shown that
$ f\in \Sigma \;\Longrightarrow\;\left\vert a_{2}\right\vert \lt 1.51. $ |
Brannan and Clunie [4] improved Lewin's result to the following form:
$ f\in \Sigma \;\Longrightarrow\; \left\vert a_{2}\right\vert \lt \sqrt{2} $ |
and, subsequently, Netanyahu [29] proved that
$ f\in \Sigma \;\Longrightarrow\;\left\vert a_{2}\right\vert \lt \frac{4}{3}. $ |
It should be noted that the following functions:
$ f_{1}(z) = \dfrac{z}{1-z},\quad f_{2}(z) = \dfrac{1}{2}\log\left(\dfrac{1+z}{1-z}\right) \qquad \text{and} \qquad f_{3}(z) = -\log (1-z), $ |
together with their corresponding inverses given by
$ f_{1}^{-1}(w) = \dfrac{w}{1+w}, \quad f_{2}^{-1}(w) = \dfrac{e^{2w}-1}{e^{2w}+1} \qquad \text{and} \qquad f_{3}^{-1}(w) = \dfrac{e^{w}-1}{e^{w}}, $ |
are elements of the analytic and bi-univalent function class $ \Sigma $ (see [14,48]). A brief history and interesting examples of the analytic and bi-univalent function class $ \Sigma $ can be found in (for example) [5,48].
Brannan and Taha [6] (see also [48]) introduced certain subclasses of the bi-univalent function class $ \Sigma $ similar to the familiar subclasses $ S^{\ast }\left(\alpha \right) $ and $ K\left(\alpha \right) $ of starlike and convex functions of order $ \alpha \; \left(0\leqq \alpha < 1\right) $, respectively (see [5]). Indeed, following Brannan and Taha [6], a function $ f\in \mathcal{A} $ is said to be in the class $ S_{\Sigma}^{\ast }\left(\alpha \right) $ of bi-starlike functions of order $ \alpha \; \left(0 < \alpha \leqq 1\right) $, if each of the following conditions is satisfied:
$ f∈Σand|arg(zf′(z)f(z))|<απ2(z∈Δ) $ |
and
$ |arg(zF′(w)F(w)|)<απ2(w∈Δ), $ |
where the function $ \mathcal{F} $ is the analytic extension of $ f^{-1} $ to $ \Delta $, given by
$ F(w)=w−a2w2+(2a22−a3)w3−(5a32−5a2a3+a4)w4+⋯(w∈Δ). $ | (1.13) |
A function $ f\in A $ is said to be in the class $ K_{\Sigma}^{\ast }\left(\alpha \right) $ of bi-convex functions of order $ \alpha \; \left(0 < \alpha \leqq 1\right) $, if each of the following conditions is satisfied:
$ f∈Σ,with|arg(1+zf′′(z)f′(z))|<απ2(z∈Δ) $ |
and
$ |arg(1+zg′′(w)g′(w))|<απ2(w∈Δ). $ |
The classes $ S_{\Sigma}^{\ast}\left(\alpha \right) $ and $ K_{\Sigma}\left(\alpha \right) $ of bi-starlike functions of order $ \alpha $ in $ \Delta $ and bi-convex functions of order $ \alpha \; \left(0 < \alpha \leqq 1\right) $ in $ \Delta $, corresponding to the function classes $ S^{\ast}\left(\alpha \right) $ and $ K\left(\alpha \right) $, were also introduced analogously. For each of the function classes $ S_{\Sigma}^{\ast}\left(\alpha \right) $ and $ K_{\Sigma}\left(\alpha \right) $, non-sharp estimates on the first two Taylor-Maclaurin coefficients $ \left\vert a_{2}\right\vert $ and $ \left\vert a_{3}\right\vert $ are known (see [6,35,48]). In fact, this pioneering work by Srivastava et al. [48] happens to be one of the most important studies of the bi-univalent function class $ \Sigma $. It not only revived the study of the bi-univalent function class $ \Sigma $ in recent years, but it has also inspired remarkably many investigations in this area including the present paper. Some of these many recent papers dealing with problems involving the analytic and bi-univalent functions such as those considered in this article include [1,9,17,23,48], and indeed also many other works (see, for example, [38,44,54]).
Sakar and Güney [31] introduced and studied the following class:
$ \mathcal{T}_{\Sigma}\left( \lambda,\beta \right) \;\; \left(0\leqq \lambda \leqq 1;\; 0\leqq \beta \lt 1\right). $ |
In the same way, we define the following subclass of bi-close-to-convex functions $ \mathcal{H}_{\Sigma}^{q, \lambda }\left(\eta, \beta, \Upsilon \right) $ as follows.
Definition 1. For $ 0\leqq \eta < 1 $ and $ 0\leqq \beta \leqq 1, \; $ a function $ f\in \Sigma $ has the form (1.1) and the function $ \Upsilon $ given by (1.2), the function $ f $ is said to be in the class $ \mathcal{H}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \Upsilon\right) $ if there exists a function $ g \in \mathcal{S}^{\ast} $ such that
$ ℜ(z(Hλ,qΥf(z))′+βz2(Hλ,qΥf(z))′′(1−β)Hλ,qΥg(z)+βz(Hλ,qΥg(z))′)>η(z∈Δ) $ | (1.14) |
and
$ ℜ(z(Hλ,qΥF(w))′+βz2(Hλ,qΥF(w))′′(1−β)Hλ,qΥG(w)+βz(Hλ,qΥG(w))′)>η(w∈Δ), $ | (1.15) |
where the function $ \mathcal{F} $ is the analytic extension of $ f^{-1} $ to $ \Delta $, and is given by (1.13), and $ \mathcal{G} $ is the analytic extension of $ g^{-1} $ to $ \Delta $ as follows:
$ G(w)=w−b2w2+(2b22−b3)w3−(5b32−5b2b3+b4)w4+⋯(w∈Δ). $ | (1.16) |
We note that, if $ b_{n} = a_{n}\; \; (n\in \mathbb{N}\setminus\{1\}) $, $ \mathcal{S}_{\Sigma }^{q, \lambda}\left(\eta, \beta, \Upsilon\right) $ becomes the class of bi-starlike functions satisfying the following inequalities:
$ ℜ(z(Hλ,qΥf(z))′+βz2(Hλ,qΥf(z))′′(1−β)Hλ,qΥf(z)+βz(Hλ,qΥf(z))′)>η(z∈Δ). $ | (1.17) |
and
$ ℜ(z(Hλ,qΥF(w))′+βz2(Hλ,qΥF(w))′′(1−β)Hλ,qΥF(w)+βz(Hλ,qΥF(w))′)>η(w∈Δ). $ | (1.18) |
Remark 3. Each of the following limit cases when $ q\rightarrow 1{-} $ is worthy of note.
(ⅰ) Putting $ q\rightarrow 1{-} $, we obtain
$ \lim\limits_{q\rightarrow 1{-}}\mathcal{H}_{\Sigma }^{q,\lambda}\left(\eta,\beta,h\right) = : \mathcal{P}_{\Sigma}^{\lambda}\left(\eta,\beta,h\right), $ |
where $ \mathcal{P}_{\Sigma}^{\lambda }\left(\eta, \beta, \Upsilon \right) $ represents the functions $ f\in \Sigma $ that satisfy (1.14) and (1.15) with $ \mathcal{H}_{\Upsilon}^{\lambda, q} $ replaced by $ \mathcal{I}_{\Upsilon}^{\lambda} $ as in (1.6).
(ⅱ) Putting
$ \psi_{n} = \dfrac{(-1)^{n-1}\Gamma(\upsilon+1)}{ 4^{n-1}\; (n-1)! \;\Gamma(m+\upsilon)}\qquad (\upsilon \gt 0), $ |
we obtain the class $ \mathcal{B}_{\Sigma}^{q, \lambda} \left(\eta, \beta, \upsilon\right) $ representing the functions $ f\in \Sigma $ that satisfy (1.14) and (1.15) with $ \mathcal{H}_{\Upsilon}^{\lambda, q} $ replaced by $ \mathcal{N}_{\upsilon, q}^{\lambda} $ as in (1.8).
(ⅲ) Putting
$ \psi_{n} = \left(\dfrac{n+1}{m+n}\right)^{\alpha}\qquad (\alpha \gt 0;\; m\geqq \mathbb{N}_0), $ |
we obtain the class $ \mathcal{L}_{\Sigma}^{\lambda, q} \left(\eta, \beta, m, \alpha \right) $ consisting of the functions $ f\in \Sigma $ that satisfy (1.14) and (1.15) with $ \mathcal{H} _{\Upsilon}^{\lambda, q} $ replaced by $ \mathcal{M}_{m, q}^{\lambda, \alpha } $ as in (1.10).
(ⅳ) Putting
$ \psi_{n} = \dfrac{\rho^{n-1}}{(n-1)!}\;e^{-\rho }\qquad (\rho \gt 0), $ |
we obtain the class $ \mathcal{M}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \rho \right) $ representing the functions $ f\in \Sigma $ which satisfy the inequalities in (1.14) and (1.15) with $ \mathcal{H}_{\Upsilon}^{\lambda, q} $ replaced by $ \mathcal{I}_{q}^{\lambda, \rho} $ as in (1.11).
(ⅴ) Putting
$ \psi_{n} = \binom{m+n-2}{n-1}\; \theta^{n-1}\left(1-\theta \right)^{m}\qquad \left(m\in \mathbb{N};\; 0\leqq \theta \leqq 1\right), $ |
we get the class $ \mathcal{W}_{\Sigma}^{q, \lambda}\left(\eta, \beta, m, \theta \right) $ of the functions $ f\in \Sigma $ which satisfy the inequalities in (1.14) and (1.15) with $ \mathcal{H}_{\Upsilon}^{\lambda, q} $ replaced by $ \Psi_{q, \theta}^{\lambda, m} $ occurring in (1.12).
Using the Faber polynomial expansion of functions $ f\in \mathcal{A} $ which have the normalized form (1.1), the coefficients of its inverse map may be expressed as follows (see [18]):
$ F(w)=f−1(w)=w+∞∑n=21nK−nn−1(a2,a3,⋯)wn=w+∞∑n=2Anwn, $ | (1.19) |
where
$ K−nn−1(a2,a3,⋯)=(−n)!(−2n+1)!(n−1)!an−12+(−n)!(2(−n+1))!(n−3)!an−32a3+(−n)!(−2n+3)!(n−4)!an−42a4+(−n)!(2(−n+2))!(n−5)!an−52[a5+(−n+2)a23]+(−n)!(−2n+5)!(n−6)!an−62[a6+(−2n+5)a3a4]+∑j≧7an−j2Uj $ | (1.20) |
such that $ U_{j} $ with $ 7\leqq j\leqq n $ is a homogeneous polynomial in the variables $ a_{2}, a_{3}, \cdots, a_{n} $. Here such expressions as (for example) $ (-n)! $ are to be interpreted symbolically by
$ (−n)!≡Γ(1−n):=(−n)(−n−1)(−n−2)⋯(n∈N0). $ |
In particular, the first three terms of $ \mathcal{K}_{n-1}^{-n} $ are given by
$ K−21=−2a2, $ |
$ K−32=3(2a22−a3) $ |
and
$ K−43=−4(5a32−5a2a3+a4). $ |
In general, an expansion of $ \mathcal{K}_{m}^{-n} \; (n\in \mathbb{N}) $ is given by (see [1,8,41,42,47,49,50])
$ K−nm=nam+n(n−1)2D2m+n!3!(n−3)!D3m+⋯+n!m!(n−m)!Dmm, $ |
where
$ \mathcal{D}_{m}^{n} = \mathcal{D}_{m}^{n}(a_{2},a_{3},a_{4},\cdots) $ |
and, alternatively,
$ Dnm(a2,a3,⋯,am+1)=∑i1,⋯,im(n!i1!⋯im!)ai12⋯aimm+1, $ |
where $ a_{1} = 1 $ and the sum is taken over all non-negative integers $ i_{1}, \cdots, i_{m} $ satisfying the following constraints:
$ i_{1}+i_{2}+\cdots+i_{m} = n $ |
and
$ i_{1}+2i_{2}+\cdots+mi_{m} = m. $ |
Evidently, we have
$ Dmm(a2,a3,⋯,am+1)=am2. $ |
The following Lemma will be needed to prove our results.
The Carathéodory Lemma. (see [10]) If $ \phi \in \mathfrak{P} $ and
$ \phi(z) = 1+\sum\limits_{n = 1}^{\infty}c_{n}\;z^{n}, $ |
then
$ |c_{n}|\leqq 2 \qquad (n \in \mathbb{N}). $ |
This inequality is sharp for all positive integers $ n $. Here $ \mathfrak{P} $ is the family of all functions $ \phi, $ which analytic and have positive real part in $ \Delta, $ with $ \phi(0) = 1 $.
In this section, we apply the above-described Faber polynomial expansion method, we derive bounds for the general Taylor-Maclaurin coefficients of functions in $ \mathcal{H}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \Upsilon \right) $.
Theorem 1. Let the function $ f $ given by (1.1) belong to the class $ \mathcal{H}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \Upsilon \right) $. Suppose also that
$ 0\leqq \eta \lt 1,\quad 0\leqq \beta \leqq 1,\quad \lambda \gt -1 \qquad \mathit{\text{and}} \qquad 0 \lt q \lt 1. $ |
If $ a_{k} = 0 $ for $ 2\leqq k\leqq n-1, $ then
$ |an|≦2(1−η)[λ+1]q,n−1n[1+(n−1)β] [n]q!ψn+1. $ |
Proof. If $ f\in \mathcal{H}_{\Sigma }^{q, \lambda }\left(\eta, \beta, \Upsilon \right) $, then there exists a function $ g(z) $, given by
$ g(z): = z+\sum\limits_{n = 2}^{\infty}b_{n}\;z^{n}\in S^{\ast}, $ |
such that
$ ℜ(z(Hλ,qΥf(z))′+βz2(Hλ,qΥf(z))′′(1−β)Hλ,qΥg(z)+βz(Hλ,qΥg(z))′)>η(z∈Δ). $ |
Moreover, by using the Faber polynomial expansion, we have
$ z(Hλ,qΥf(z))′+βz2(Hλ,qΥf(z))′′(1−β)Hλ,qΥg(z)+βz(Hλ,qΥg(z))′=1+∞∑n=2([1+β(n−1)][n]q![λ+1]q,n−1ψn(nan−bn)+n−2∑t=1[n,q]![λ+1,q]n−1ψn[1+(n−t−1)β]⋅K−1t[(1+β)b2,(1+2β)b3,⋯,(1+tβ)bt+1]⋅[(n−t) an−t−bn−t])zn−1(z∈Δ). $ | (2.1) |
Also, for the inverse map $ \mathcal{F} = f^{-1}, $ there exists a function $ \mathcal{G}(w) $, given by
$ \mathcal{G}(w) = w+\sum\limits_{n = 2}^{\infty}B_{n}\;w^{n}\in S^{\ast}, $ |
such that
$ ℜ(z(Hλ,qΥF(w))′+βz2(Hλ,qΥF(w))′′(1−β)Hλ,qΥG(w)+βz(Hλ,qΥG(w))′)>η(w∈Δ), $ |
the Faber polynomial expansion of the inverse map $ \mathcal{F} = f^{-1} $ is given by
$ \mathcal{F}(w) = w+\sum\limits_{n = 2}^{\infty}A_{n}\;w^{n}, $ |
so we have
$ z(Hλ,qΥF(w))′+βz2(Hλ,qΥF(w))′′(1−β)Hλ,qΥG(w)+βz(Hλ,qΥG(w))′=1+∞∑n=2([1+β(n−1)][n]q![λ+1]q,n−1ψn(nAn−Bn)+n−2∑t=1[n]q![λ+1]q,n−1ψn[1+(n−t−1)β]⋅K−1t[(1+β)B2,(1+2β)B3,⋯,(1+tβ)Bt+1]⋅[(n−t)An−t−Bn−t])wn−1(w∈Δ). $ | (2.2) |
Now, since
$ f∈Hq,λΣ(η,β,Υ)andF=f−1∈Hq,λΣ(η,β,Υ), $ |
there are the following two positive real part functions:
$ U(z)=1+∞∑n=1cnzn $ |
and
$ V(w)=1+∞∑n=1dnwn, $ |
for which
$ ℜ(U(z))>0andℜ(V(w))>0(z,w∈Δ), $ |
so that
$ z(Hλ,qΥF(w))′+βz2(Hλ,qΥF(w))′′(1−β)Hλ,qΥG(w)+βz(Hλ,qΥG(w))′=η+(1−η)U(z)=1+(1−η)∞∑n=1cnzn $ | (2.3) |
and
$ z(Hλ,qΥF(w))′+βz2(Hλ,qΥF(w))′′(1−β)Hλ,qΥG(w)+βz(Hλ,qΥG(w))′=η+(1−η)V(w)=1+(1−η)∞∑n=1dnwn. $ | (2.4) |
Now, under the assumption that $ a_{k} = 0 $ for $ 0\leqq k\leqq n-1, $ we obtain $ A_{n} = -a_{n}. $ Then, by using (2.1) and comparing the corresponding coefficients in (2.3), we obtain
$ [1+β(n−1)][n]q![λ+1]q,n−1ψn(nan−bn)=(1−η)cn−1. $ | (2.5) |
Similarly, by using (2.2) in the Eq (2.4), we find that
$ [1+β(n−1)][n]q![λ+1]q,n−1ψn(nAn−Bn)=(1−η)dn−1, $ | (2.6) |
$ [1+β(n−1)][n]q![λ+1]q,n−1ψn(nan−bn)=(1−η)cn−1 $ | (2.7) |
and
$ −[1+β(n−1)][n]q![λ+1]q,n−1ψn(−nan−Bn)=(1−η)dn−1. $ | (2.8) |
Taking the moduli of both members of (2.7) and (2.8) for
$ \left\vert b_{n}\right\vert \leqq n\qquad \text{and} \qquad \left\vert B_{n}\right\vert \leqq n, $ |
and applying the Carathéodory Lemma, we conclude that
$ |an|≦2(1−η)[λ+1]q,n−1n[1+(n−1)β][n]q!ψn+1, $ |
which completes the proof of Theorem 1.
If we set
$ \psi_{n} = \dfrac{(-1)^{n-1}\Gamma (\upsilon+1)}{4^{n-1}\;(n-1)!\;\Gamma (n+\upsilon)}\qquad (\upsilon \gt 0) $ |
in Theorem 1, we obtain the following special case.
Corollary 1. Let the function $ f $ given byt (1.1) belong to the class $ \mathcal{B}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \upsilon \right) $. Suppose also tha
$ 0\leqq \eta \lt 1,\quad 0\leqq \beta \leqq 1,\quad \lambda \gt -1,\quad \upsilon \gt 0\qquad \mathit{\text{and}} \qquad 0 \lt q \lt 1. $ |
If $ a_{k} = 0 $ for $ 2\leqq k\leqq n-1, $ then
$ |an|≦2(1−η)[λ+1]q,n−1n[1+(n−1)β][n]q!ϕn+1, $ |
where $ \phi_{n} $ is given by (1.9).
Upon putting
$ \psi_{n} = \left(\dfrac{n+1}{m+n}\right)^{\alpha} \qquad (\alpha \gt 0;\; m\in \mathbb{N}_0) $ |
in Theorem 1, we obtain the following result.
Corollary 2. Let the function $ f $ given by (1.1) belong to the class $ \mathcal{L}_{\Sigma}^{q, \lambda}\left(\eta, \beta, m, \alpha \right) $. Suppose also that
$ 0\leqq \eta \lt 1,\quad 0\leqq \beta \leqq 1,\quad \lambda \gt -1,\quad \alpha \gt 0,\quad m\in \mathbb{N}_0 \qquad \mathit{\text{and}} \qquad 0 \lt q \lt 1. $ |
If $ a_{k} = 0 $ for $ 2\leqq k\leqq n-1, $ then
$ |an|≦2(1−η)(m+n)α[λ+1]q,n−1n[1+(n−1)β][n]q!(n+1)α+1. $ |
If we take
$ \psi_{n} = \dfrac{\rho^{n-1}}{(n-1)!}\;e^{-\rho}\qquad (\rho \gt 0) $ |
in Theorem 1, we obtain the following special case.
Corollary 3. Let the function $ f $ given by (1.1) belong to the class $ \mathcal{M}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \rho \right) $. Suppose also that
$ 0\leqq \eta \lt 1,\quad 0\leqq \beta \leqq 1,\quad\lambda \gt -1,\quad \rho \gt 0 \qquad \mathit{\text{and}} \qquad 0 \lt q \lt 1. $ |
If $ a_{k} = 0 $ for $ 2\leqq k\leqq n-1, $ then
$ |an|≦2(1−η)(n−1)![λ+1]q,n−1n[1+(n−1)β][n]q!ρn−1e−ρ+1. $ |
Upon setting
$ \psi_{n} = \binom{m+n-2}{n-1}\ \theta^{n-1}\;\left(1-\theta \right)^{m}\qquad \left(m\in\mathbb{N};\; 0\leqq \theta \leqq 1\right) $ |
in Theorem 1, we are led to the following result for the above-defined class $ \mathcal{W}_{\Sigma}^{q, \lambda}\left(\eta, \beta, m, \theta\right) $.
Corollary 4. Let the function $ f $ given by (1.1) belong to the following class$ : $
$ \mathcal{W}_{\Sigma}^{q,\lambda}\left(\eta,\beta,m,\theta \right) $ |
$ (0\leqq \eta \lt 1;\; 0\leqq \beta \leqq 1;\;\lambda \gt -1;\; 0 \lt q \lt 1;\; m\in \mathbb{N};\; 0\leqq\theta \leqq 1). $ |
If $ a_{k} = 0 $ for $ 2\leqq k\leqq n-1, $ then
$ \left\vert a_{n}\right\vert \leqq \frac{2\left(1-\eta\right) [\lambda +1]_{q,n-1}}{n\left[1+\left(n-1\right)\beta \right] \; [n]_{q}!\; \binom{m+n-2}{n-1}\; \theta^{n-1}\;\left(1-\theta \right)^{m}}+1. $ |
In particular, if we let $ g(z) = f(z) $, we obtain the class $ \mathcal{S}_{\Sigma }^{q, \lambda}\left(\eta, \beta, \Upsilon \right) $, which is a subclass of $ \mathcal{H}_{\Sigma }^{q, \lambda}\left(\eta, \beta, \Upsilon\right) $. We then give the next theorem, which involves the coefficients of this subclass of the analytic and bi-starlike functions in $ \Delta $.
Theorem 2. Let the function $ f $ given by (1.1) belong to the class $ \mathcal{S}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \Upsilon \right) $. Suppose also that
$ \gamma \geqq 1,\quad \eta \geqq 0,\quad \lambda \gt -1, \quad 0\leqq\beta \lt 1 \qquad \mathit{\text{and}} \qquad 0 \lt q \lt 1. $ |
Then
$ |a2|≦{2(1−η)[λ+1]q(1+β) [2]q!ψ2(0≦η<1−(1+β)2 ([2]q!)2[λ+2]q ψ222(1+2β−β2) [3]q![λ+1]q ψ3)√2(1−η)[λ+1]q,2(1+2β−β2) [3]q!ψ3(1−(1+β)2 ([2]q!)2[λ+2]q ψ222(1+2β−β2) [3]q![λ+1]qψ3≦η<1) $ | (2.9) |
and
$ |a3|≦{2(1−η)[λ+1]q,2(1+2β−β2) [3]q!ψ3(0≦η<1−(1+β)2 ([2]q!)2[λ+2]q ψ222(1+2β−β2) [3]q![λ+1]q ψ3)(1−η)(1+2β)([λ+1]q,2[3]q!ψ3+2(1−η)[λ+1]2q([2]q!)2 ψ22)(1−(1+β)2 ([2]q!)2[λ+2]q ψ222(1+2β−β2) [3]q![λ+1]q ψ3≦η<1). $ | (2.10) |
Proof. Putting $ n = 2 $ and $ n = 3 $ in (2.5) and (2.6), we have
$ (1+β) [2]q![λ+1]qψ2a2=(1−η)c1, $ | (2.11) |
$ [2(1+2β) a3−(1+β)2a22][3]q![λ+1]q,2ψ3=(1−η)c2, $ | (2.12) |
$ −(1+β) [2]q![λ+1]qψ2a2=(1−η)d1 $ | (2.13) |
and
$ [−2(1+2β) a3+(3+6β−β2)a22][3]q![λ+1]q,2ψ3=(1−η)d2. $ | (2.14) |
From (2.11) and (2.13), by using the Carathéodory Lemma, we obtain
$ |a2|=(1−η)[λ+1]q|c1|(1+β)[2]q!ψ2=(1−β)[λ+1]q|d1|(1+γ+2η)[2]q!ψ2≤2(1−η)[λ+1]q(1+β)[2]q!ψ2. $ | (2.15) |
Also, from (2.12) and (2.14), we have
$ 2(1+2β−β2) [3]q![λ+1]q,2ψ3a22=(1−β)(c2+d2). $ |
Thus, by using the Carathéodory Lemma, we obtain
$ |a2|≦√2(1−β)[λ+1]q,2(1+2β−β2) [3]q!ψ3. $ | (2.16) |
From (2.15) and (2.16), we obtain the desired estimate on the coefficient $ \left\vert a_{2}\right\vert $ as asserted in (2.9).
In order to find the bound on the coefficient $ \left\vert a_{3}\right\vert, $ we subtract (2.14) from (2.12), so that
$ 4(1+2β) [3]q![λ+1]q,2ψ3(a3−a22)=(1−η)(c2−d2), $ |
that is,
$ a3=a22+(1−η)(c2−d2)[λ+1]q,24(1+2β)[3]q!ψ3. $ | (2.17) |
Now, upon substituting the value of $ a_{2}^{2} $ from (2.16) into (2.17) and using the Carathéodory Lemma, we find that
$ |a3|≦2(1−β)[λ+1]q,2(1+2β−β2) [3]q!ψ3. $ | (2.18) |
Moreover, upon substituting the value of $ a_{2}^{2} $ from (2.11) into (2.12), we have
$ a3=(1−η)2(1+2β)([λ+1]q,2 c2[3]q!ψ3+(1−η)[λ+1]2qc21([2]q!)2ψ22). $ |
Applying the Carathéodory Lemma, we obtain
$ |a3|≦(1−η)(1+2β)([λ+1]q,2 [3]q!ψ3+2(1−η)[λ+1]2q([2]q!)2ψ22). $ | (2.19) |
Finally, by combining (2.18) and (2.19), we have the desired estimate on the coefficient $ \left\vert a_{3}\right\vert $ as asserted in (2.10). The proof of Theorem 2 is thus completed.
In our present investigation, we have made use of the concept of $ q $-convolution with a view to introducing a new class of analytic and bi-close-to-convex functions in the open unit disk. For functions belonging to this analytic and bi-univalent function class, we have derived estimates for the general coefficients in their Taylor-Maclaurin series expansions in the open unit disk. Our methodology is based essentially upon the Faber polynomial expansion method. We have also presented a number of corollaries and consequences of our main results.
In his recently-published review-cum-expository review article, in addition to applying the $ q $-analysis to Geometric Function Theory of Complex Analysis, Srivastava [35] pointed out the fact that the results for the $ q $-analogues can easily (and possibly trivially) be translated into the corresponding results for the $ (p, q) $-analogues (with $ 0 < q < p \leqq 1 $) by applying some obvious parametric and argument variations, the additional parameter $ p $ being redundant. Of course, this exposition and observation of Srivastava [35,p. 340] would apply also to the results which we have considered in our present investigation for $ 0 < q < 1 $.
The authors received no funding for the investigation leading to the completion of this article.
The authors declare that there is no conflict of interest in respect of this article.
1. | Abbas Kareem Wanas, Horadam polynomials for a new family of λ-pseudo bi-univalent functions associated with Sakaguchi type functions, 2021, 1012-9405, 10.1007/s13370-020-00867-1 | |
2. | Hari Mohan Srivastava, Ahmad Motamednezhad, Safa Salehian, Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion, 2021, 10, 2075-1680, 27, 10.3390/axioms10010027 | |
3. | H. M. Srivastava, T. M. Seoudy, M. K. Aouf, A generalized conic domain and its applications to certain subclasses of multivalent functions associated with the basic (or $ q $-) calculus, 2021, 6, 2473-6988, 6580, 10.3934/Math.2021388 | |
4. | H. M. Srivastava, T. M. Seoudy, M. K. Aouf, A generalized conic domain and its applications to certain subclasses of multivalent functions associated with the basic (or $ q $-) calculus, 2021, 6, 2473-6988, 6580, 10.3934/math.2021388 | |
5. | Likai Liu, Rekha Srivastava, Jin-Lin Liu, Applications of Higher-Order q-Derivative to Meromorphic q-Starlike Function Related to Janowski Function, 2022, 11, 2075-1680, 509, 10.3390/axioms11100509 | |
6. | Wali Khan Mashwan, Bakhtiar Ahmad, Muhammad Ghaffar Khan, Saima Mustafa, Sama Arjika, Bilal Khan, A. M. Bastos Pereira, Pascu-Type Analytic Functions by Using Mittag-Leffler Functions in Janowski Domain, 2021, 2021, 1563-5147, 1, 10.1155/2021/1209871 | |
7. | Sheza. M. El-Deeb, Gangadharan Murugusundaramoorthy, Kaliyappan Vijaya, Alhanouf Alburaikan, Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial, 2022, 7, 2473-6988, 2989, 10.3934/math.2022165 | |
8. | Ebrahim Analouei Adegani, Nak Eun Cho, Davood Alimohammadi, Ahmad Motamednezhad, Coefficient bounds for certain two subclasses of bi-univalent functions, 2021, 6, 2473-6988, 9126, 10.3934/math.2021530 | |
9. | Jie Zhai, Rekha Srivastava, Jin-Lin Liu, Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions, 2022, 10, 2227-7390, 3073, 10.3390/math10173073 | |
10. | Mohammad Faisal Khan, Certain new applications of Faber polynomial expansion for some new subclasses of $ \upsilon $-fold symmetric bi-univalent functions associated with $ q $-calculus, 2023, 8, 2473-6988, 10283, 10.3934/math.2023521 | |
11. | Daniel Breaz, Sheza El-Deeb, Seher Aydoǧan, Fethiye Sakar, The Yamaguchi–Noshiro Type of Bi-Univalent Functions Connected with the Linear q-Convolution Operator, 2023, 11, 2227-7390, 3363, 10.3390/math11153363 | |
12. | Sheza M. El-Deeb, Luminita-Ioana Cotîrlă, Coefficient Estimates for Quasi-Subordination Classes Connected with the Combination of q-Convolution and Error Function, 2023, 11, 2227-7390, 4834, 10.3390/math11234834 | |
13. | Ala Amourah, Abdullah Alsoboh, Daniel Breaz, Sheza M. El-Deeb, A Bi-Starlike Class in a Leaf-like Domain Defined through Subordination via q̧-Calculus, 2024, 12, 2227-7390, 1735, 10.3390/math12111735 | |
14. | Bilal Khan, H. M. Srivastava, Muhammad Tahir, Maslina Darus, Qazi Zahoor Ahmad, Nazar Khan, Applications of a certain $q$-integral operator to the subclasses of analytic and bi-univalent functions, 2021, 6, 2473-6988, 1024, 10.3934/math.2021061 | |
15. | Serap Bulut, Coefficient bounds for q-close-to-convex functions associated with vertical strip domain, 2024, 38, 0354-5180, 6003, 10.2298/FIL2417003B | |
16. | Gangadharan Murugusundaramoorthy, Alina Alb Lupas, Alhanouf Alburaikan, Sheza M. El-Deeb, Coefficient functionals for Sakaguchi-type-Starlike functions subordinated to the three-leaf function, 2025, 58, 2391-4661, 10.1515/dema-2025-0123 |
Time evolution of the permanent control (thin continuous line) and sampled-data control for several values of the sampling period
Evolution of
Relative error of the force for a well known and erroneous
General MPC strategy diagram
(left half plane)
Evolution of
Evolution of
Evolution of
Evolution of
Evolution of
Evolution of the force for a reference force of
Evolution of the interpulse (control) for a reference force of
Evolution of the amplitude (control) for a reference force of
Evolution of the interpulse (control) for a reference force of 425N and a preditive horizon of 10
Evolution of the amplitude (control) for a reference force of 425N and a preditive horizon of 3