A conservation law with multiply discontinuous flux modelling a flotation column

  • Flotation is a unit operation extensively used in the recovery of valuable minerals in mineral processing and related applications. Essential insight to the hydrodynamics of a flotation column can be obtained by studying just two phases: gas and fluid. To this end, the approach based on the drift-flux theory, proposed in similar form by several authors, is reformulated as a one-dimensional non-linear conservation law with a multiply discontinuous flux. The unknown is the gas volume fraction as a function of height and time, and the flux function depends discontinuously on spatial position due to several feed inlets. The resulting model is similar, but not equivalent, to previously studied clarifier-thickener models for solid-liquid separation and therefore adds a new real-world application to the field of conservation laws with discontinuous flux. Steady-state solutions are studied in detail, including their construction by applying an appropriate entropy condition across each flux discontinuity. This analysis leads to operating charts and tables collecting all possible steady states along with some necessary conditions for their feasibility in each case. Numerical experiments show that the transient model recovers the steady states, depending on the feed rates of the different inlets.

    Citation: Raimund Bürger, Stefan Diehl, María Carmen Martí. A conservation law with multiply discontinuous flux modelling a flotation column[J]. Networks and Heterogeneous Media, 2018, 13(2): 339-371. doi: 10.3934/nhm.2018015

    Related Papers:

    [1] Wahidullah Hussainzada, Han Soo Lee . Impact of land surface model schemes in snow-dominated arid and semiarid watersheds using the WRF-hydro modeling systems. AIMS Geosciences, 2024, 10(2): 312-332. doi: 10.3934/geosci.2024018
    [2] Firoz Ahmad, Laxmi Goparaju . Soil and Water Conservation Prioritization Using Geospatial Technology – a Case Study of Part of Subarnarekha Basin, Jharkhand, India. AIMS Geosciences, 2017, 3(3): 375-395. doi: 10.3934/geosci.2017.3.375
    [3] Kyle Whalley, Wei Luo . The Pressure of Society on Water Quality: A Land Use Impact Study of Lake Ripley in Oakland, Wisconsin. AIMS Geosciences, 2017, 3(1): 14-36. doi: 10.3934/geosci.2017.1.14
    [4] Maryam Khal, Abdellah Algouti, Ahmed Algouti, Nadia Akdim, Sergey A. Stankevich, Massimo Menenti . Evaluation of open Digital Elevation Models: estimation of topographic indices relevant to erosion risk in the Wadi M’Goun watershed, Morocco. AIMS Geosciences, 2020, 6(2): 231-257. doi: 10.3934/geosci.2020014
    [5] Quentin Fiacre Togbévi, Luc Ollivier Sintondji . Hydrological response to land use and land cover changes in a tropical West African catchment (Couffo, Benin). AIMS Geosciences, 2021, 7(3): 338-354. doi: 10.3934/geosci.2021021
    [6] Shailesh Kumar Singh, Nelly Marcy . Comparison of Simple and Complex Hydrological Models for Predicting Catchment Discharge Under Climate Change. AIMS Geosciences, 2017, 3(3): 467-497. doi: 10.3934/geosci.2017.3.467
    [7] Chibuike Chiedozie Ibebuchi, Itohan-Osa Abu . Relationship between synoptic circulations and the spatial distributions of rainfall in Zimbabwe. AIMS Geosciences, 2023, 9(1): 1-15. doi: 10.3934/geosci.2023001
    [8] Margherita Bufalini, Farabollini Piero, Fuffa Emy, Materazzi Marco, Pambianchi Gilberto, Tromboni Michele . The significance of recent and short pluviometric time series for the assessment of flood hazard in the context of climate change: examples from some sample basins of the Adriatic Central Italy. AIMS Geosciences, 2019, 5(3): 568-590. doi: 10.3934/geosci.2019.3.568
    [9] David W. Schwartzman . Life’s Critical Role in the Long-term Carbon Cycle: the Biotic Enhancement of Weathering. AIMS Geosciences, 2017, 3(2): 216-238. doi: 10.3934/geosci.2017.2.216
    [10] Ana Casado, Natalia C López . Comparison of synthetic unit hydrograph methods for flood assessment in a dryland, poorly gauged basin (Napostá Grande, Argentina). AIMS Geosciences, 2025, 11(1): 27-46. doi: 10.3934/geosci.2025003
  • Flotation is a unit operation extensively used in the recovery of valuable minerals in mineral processing and related applications. Essential insight to the hydrodynamics of a flotation column can be obtained by studying just two phases: gas and fluid. To this end, the approach based on the drift-flux theory, proposed in similar form by several authors, is reformulated as a one-dimensional non-linear conservation law with a multiply discontinuous flux. The unknown is the gas volume fraction as a function of height and time, and the flux function depends discontinuously on spatial position due to several feed inlets. The resulting model is similar, but not equivalent, to previously studied clarifier-thickener models for solid-liquid separation and therefore adds a new real-world application to the field of conservation laws with discontinuous flux. Steady-state solutions are studied in detail, including their construction by applying an appropriate entropy condition across each flux discontinuity. This analysis leads to operating charts and tables collecting all possible steady states along with some necessary conditions for their feasibility in each case. Numerical experiments show that the transient model recovers the steady states, depending on the feed rates of the different inlets.



    Interactions between the predators and the preys are diverse and complex in ecology. The predators increase the mortality rate of preys by direct predation. In existing literatures, many predator-prey models only involve direct predation for predator-prey interactions [1,2,3,4]. However, besides the population loss caused by direct predation, the prey will modify their behavior, psychology and physiology in response to the predation risk. This is defined as the fear effect by Cannon [5]. Zanette et al. [6] investigated the variation of song sparrows offspring reproduction when the sounds and calls of predators were broadcasted to simulate predation risk. They discovered that the fear effect alone can cause a significant reduction of song sparrows offspring reproduction. Inspired by this experimental result, Wang et al. [7] incorporated the fear effect into the predator-prey model. In their theoretical analysis, linear and Holling type Ⅱ functional response are chosen respectively. According to their results, the structure of the equilibria will not be affected by the fear effects, but the stability of equilibria and Hopf bifurcation are slightly different from models with no fear effects.

    Soon afterward, Wang and Zou [8] considered a model with the stage structure of prey (juvenile prey and adult prey) and a maturation time delay. Additionally, Wang and Zou [9] pointed out anti-predation behaviors will not only decrease offspring reproduction of prey but also increase the difficulty of the prey being caught. Based on this assumption, they derived an anti-predation strategic predator-prey model.

    Recently, the aforementioned ordinary or delayed differential equation models were extended to reaction diffusion equation [10,11,12]. Wang et al. [11] used several functional responses to study the effect of the degree of prey sensitivity to predation risk on pattern formation. Following this work, Wang et al. [10] introduced spatial memory delay and pregnancy delay into the model. Their numerical simulation presented the effect of some biological important variables, including the level of fear effect, memory-related diffusion, time delay induced by spatial memory and pregnancy on pattern formation. Moreover, Dai and Sun [13] incorporated chemotaxis and fear effect into predator-prey model, and investigated the Turing-Hopf bifurcation by selecting delay and chemotaxis coefficient as two analysis parameters.

    Denote by $ u_1(x, t) $ and $ u_2(x, t) $, the population of the prey and adult predator at location $ x $ and time $ t $, respectively. We suppose juvenile predators are unable to prey on. By choosing simplest linear functional response in the model of Wang and Zou [7], the equation for prey population is given by

    $ tu1d1Δu1=u1(rg(K,u2)μ1mu1)pu1u2,
    $

    where $ d_1 $ is a diffusion coefficient for prey, $ \mu_1 $ is the mortality rate for prey, $ m $ is the intraspecies competition coefficient, $ p $ is predation rate, $ r $ is reproduction rate for prey and $ g(K, u_2) $ represents the cost of anti-predator defense induced by fear with $ K $ reflecting response level. We assume $ g(K, u_2) $ satisfies the following conditions.

    ($ \mathbf{H}_1 $) $ g(0, u_2) = g(K, 0) = 1 $, $ \lim\limits_{u_2\to\infty}g(K, u_2) = \lim\limits_{K\to\infty}g(K, u_2) = 0 $, $ \frac{\partial g(K, u_2)}{\partial K} < 0 $ and $ \frac{\partial g(K, u_2)}{\partial u_2} < 0 $.

    Considering the maturation period of the predator, we set $ b(x, t, a_1) $ be the density of the predator at age $ a_1 $, location $ x $ and time $ t $. Establish the following population model with spatial diffusion and age-structure

    $ (a1+t)b(x,t,a1)=d(a1)Δb(x,t,a1)μ(a1)b(x,t,a1),b(x,t,0)=cpu1(x,t)u2(x,t),
    $
    (1.1)

    where $ x\in\Omega $, a bounded spatial habitat with the smooth boundary $ \partial\Omega $, $ t, a_1 > 0 $, $ c $ is the conversion rate of the prey to predators, $ \tau > 0 $ be the maturation period of predator and age-specific functions

    $ d(a1)={d0, a1τ,d2, a1>τ,  μ(a1)={γ, a1τ,μ2, a1>τ,
    $

    represent the diffusion rate and mortality rate at age $ a_1 $, respectively. We introduce the total population of the matured predator as $ u_2 = \int_\tau^\infty b(x, t, a_1)da_1 $. Thus, (1.1) together with $ b(x, t, \infty) = 0 $ yields

    $ tu2=d2Δu2+b(x,t,τ)μ2u2.
    $
    (1.2)

    Let $ s_1 = t-a_1 $ and $ w(x, t, s_1) = b(x, t, t-s_1) $. Along the characteristic line, solving (1.1) yields

    $ tw(x,t,s1)={d0Δw(x,t,s1)γw(x,t,s1),  xΩ, 0ts1τ,d2Δw(x,t,s1)μ2w(x,t,s1), xΩ, ts1>τ,w(x,s1,s1)=b(x,s1,0)=cpu1(x,s1)u2(x,s1), s10;  w(x,0,s1)=b(x,0,s1), s1<0.
    $

    Assume linear operator $ d_0\Delta-\gamma $ with Neumann boundary conditions yields the $ C_0 $ semigroups $ T_1(t) $. Therefore,

    $ b(x,t,τ)=w(x,t,tτ)={T1(τ)b(,tτ,0), t>τ,T1(t)b(,0,τt), tτ.
    $

    In particular, $ \mathcal{G}(x, y, t) $ denotes the kernel function corresponding to $ T_1(t) $. Thus

    $ b(x,t,τ)=T1(τ)b(,tτ,0)=cpΩG(x,y,τ)u1(y,tτ)u2(y,tτ)dy, t>τ.
    $

    The above equation together with (1.2) yields a nonlocal diffusive predator-prey model with fear effect and maturation period of predators

    $ u1t=d1Δu1+u1(x,t)[rg(K,u2(x,t))μ1mu1(x,t)]pu1(x,t)u2(x,t),u2t=d2Δu2+cpΩG(x,y,τ)u1(y,tτ)u2(y,tτ)dyμ2u2(x,t).
    $
    (1.3)

    Since the spatial movement of mature predators is much bigger than that of juvenile predators, we assume that diffusion rate of juvenile predators $ d_0 $ approaches zero. Hence, the kernel function becomes $ \mathcal{G} = e^{-\gamma\tau}f(x-y) $ with a Dirac-delta function $ f $. Thus, the equation of $ u_2(x, t) $ in (1.3) becomes

    $ u2t=d2Δu2+cpeγτΩf(xy)u1(y,tτ)u2(y,tτ)dyμ2u2(x,t).
    $

    It follows from the properties of Dirac-delta function that

    $ Ωf(xy)u1(y,tτ)u2(y,tτ)dy=limϵ0Bϵ(x)f(xy)u1(y,tτ)u2(y,tτ)dy=u1(x,tτ)u2(x,tτ)limϵ0Bϵ(x)f(xy)dy=u1(x,tτ)u2(x,tτ)
    $

    where $ B_\epsilon(x) $ is the open ball of radius $ \epsilon $ centered at $ x $. Therefore, model (1.3) equipped with nonnegative initial conditions and Neumann boundary conditions is

    $ u1(x,t)t=d1Δu1(x,t)+u1(x,t)[rg(K,u2(x,t))μ1mu1(x,t)]pu1(x,t)u2(x,t), xΩ,t>0,u2(x,t)t=d2Δu2(x,t)+cpeγτu1(x,tτ)u2(x,tτ)μ2u2(x,t), xΩ,t>0,u1(x,t)ν=u2(x,t)ν=0,xΩ,t>0,u1(x,ϑ)=u10(x,ϑ)0,u2(x,ϑ)=u20(x,ϑ)0,xΩ, ϑ[τ,0].
    $
    (1.4)

    If $ r\le \mu_1 $, then as $ t\rightarrow \infty $, we have $ (u_1, u_2)\to(0, 0) $ for $ x\in\Omega $, namely, two species will extinct. Throughout this paper, suppose $ r > \mu_1 $, which ensures that the prey and predator will persist.

    This paper is organized as follows. We present results on well-posedness and uniform persistence of solutions and prove the global asymptotic stability of predator free equilibrium in Section 2. The nonexistence of nonhomogeneous steady state and steady state bifurcation are proven in Section 3. Hopf bifurcation analysis is carried out in Section 4. In Section 5, we conduct numerical exploration to illustrate some theoretical conclusions and further explore the dynamics of the nonlocal model numerically. We sum up our paper in Section 6.

    Denote by $ \mathbf{C}: = C([-\tau, 0], X^2) $ the Banach space of continuous maps from $ [-\tau, 0] $ to $ X^2 $ equipped with supremum norm, where $ X = L^2(\Omega) $ is the Hilbert space of integrable function with the usual inner product. $ \mathbf{C}_+ $ is the nonnegative cone of $ \mathbf{C} $. Let $ u_1(x, t) $ and $ u_2(x, t) $ be a pair of continuous function on $ \Omega\times[-\tau, \infty) $ and $ (u_{1t}, u_{2t})\in\mathcal{C} $ as $ (u_{1t}(\vartheta), u_{2t}(\vartheta)) = (u_1(\cdot, t+\vartheta), u_2(\cdot, t+\vartheta)) $ for $ \vartheta\in[-\tau, 0] $. By using [14,Corollary 4], we can prove model (1.4) exists a unique solution. Note (1.4) is mixed quasi-monotone [15], together with comparison principle implies that the solution of (1.4) is nonnegative.

    Lemma 2.1. For any initial condition $ (u_{10}(x, \vartheta), u_{20}(x, \vartheta))\in \mathbf{C}_+ $, model (1.4) possesses a unique solution $ (u_1(x, t), u_2(x, t)) $ on the maximal interval of existence $ [0, t_{max}) $. If $ t_{max} < \infty $, then $ \limsup\limits_{t\rightarrow t_{max}^{-}}(\|u_1(\cdot, t)\|+\|u_2(\cdot, t)\|) = \infty $. Moreover, $ u_1 $ and $ u_2 $ are nonnegative for all $ (x, t)\in \overline\Omega\times[-\tau, t_{max}) $.

    We next prove $ u_1 $ and $ u_2 $ are bounded which implies that $ t_{max} = \infty $.

    Theorem 2.2. For any initial condition $ \varphi = (u_{10}(x, \vartheta), u_{20}(x, \vartheta))\in \mathbf{C}_+ $, model (1.4) possesses a global solution $ (u_1(x, t), u_2(x, t)) $ which is unique and nonnegative for $ (x, t)\in \overline\Omega\times[0, \infty) $. If $ u_{10}(x, \vartheta)\ge 0(\not\equiv0), u_{20}(x, \vartheta)\ge 0(\not\equiv0) $, then this solution remains positive for all $ (x, t)\in \overline\Omega\times(0, \infty) $. Moreover, there exists a positive constant $ \xi $ independent of $ \varphi $ such that $ \limsup\limits_{t\rightarrow \infty}u_1\le \xi, \ \limsup\limits_{t\rightarrow \infty}u_2\le \xi $ for all $ x\in\Omega. $

    Proof. Consider

    $ w1t=d1Δw1+rw1μ1w1mw21, xΩ,t>0,w1ν=0, xΩ,t>0,  w1(x,0)=supϑ[τ,0]u10(x,ϑ), xΩ.
    $
    (2.1)

    Clearly, $ w_1(x, t) $ of (2.1) is a upper solution to (1.4) due to $ {\partial u_1/\partial t}\le d_1 \Delta u_1+ru_1-\mu_1 u_1-m u_1^2 $. By using Lemma 2.2 in [16], $ (r-\mu_1)/m $ of (2.1) is globally asymptotically stable in $ C(\overline\Omega, \mathbb{R}^+) $. This together with comparison theorem indicates

    $ lim suptu1limtw1=rμ1m  uniformly for  x¯Ω.
    $
    (2.2)

    Thus, there exists $ \widetilde{\xi} > 0 $ which is not dependent on initial condition, such that $ \|u_1\|\le \widetilde{\xi} $ for all $ t > 0 $. $ T_2(t) $ denotes the $ C_0 $ semigroups yielded by $ d_2\Delta-\mu_2 $ with the Neumann boundary condition. Then from (1.4),

    $ u2=T2(t)u20(,0)+cpeγτtττT2(tτa)u1(,a)u2(,a)da.
    $

    Let $ -\delta < 0 $ be the principle eigenvalue of $ d_2\Delta-\mu_2 $ with the Neumann boundary condition. Then, $ \|T_2(t)\|\le e^{-\delta t} $. The above formula yields

    $ u2(,t)eδtu20(,0)+cpeγτ˜ξtττeδ(tτa)u2(,a)da,˜B1+t0˜B2u2(,a)da,
    $

    by choosing constants $ \widetilde{B}_1\ge\|u_2(\cdot, 0)\|+ cp\tau \widetilde{\xi}\sup\limits_{a\in[-\tau, 0]}\|u_2(\cdot, a)\| $ and $ \widetilde{B}_2\ge cp\widetilde{\xi} $. Using Gronwall's inequality yields $ \|u_2(\cdot, t)\|\le \widetilde{B}_1 e^{\widetilde{B}_2t} $ for all $ 0\le t < t_{max} $. Lemma 2.1 implies $ t_{max} = \infty $. So $ (u_1, u_2) $ is a global solution. Moreover, if $ u_{10}(x, \vartheta)\ge 0(\not\equiv0), u_{20}(x, \vartheta)\ge 0(\not\equiv0) $, then by [17,Theorem 4], this solution is positive for all $ t > 0 $ and $ x\in\overline\Omega $.

    We next prove $ (u_1, u_2) $ is ultimately bounded by a constant which is not dependent on the initial condition. Due to (2.2), there exist $ t_0 > 0 $ and $ \xi_0 > 0 $ such that $ u_1(x, t)\le \xi_0 $ for any $ t > t_0 $ and $ x\in\overline\Omega $. Let $ z(x, t) = c u_1(x, t-\tau)+u_2(x, t) $, $ \mu = \min\{\mu_1, \mu_2\} $ and $ I_1 = \int_\Omega z(x, t)dx $. We integrate both sides of (1.4) and add up to obtain

    $ I'_1(t)\le \int_\Omega \left(c(r-\mu_1)u_1(x,t-\tau)-\mu_2 u_2(x,t)\right)dx\le cr\xi_0|\Omega|-\mu I_1(t),\ t\ge t_0+\tau. $

    Comparison principle implies

    $ \limsup\limits_{t\to\infty}\|u_2\|_1\le\limsup\limits_{t\to\infty}I_1\le cr\xi_0|\Omega|/\mu. $

    Especially, there exist $ t_1 > t_0 $ and $ \xi_1 > 0 $ such that $ \|u_2\|_{1}\le \xi_1 $ for all $ t\ge t_1 $.

    Now, we define $ V_{l}(t) = \int_{\Omega}(u_2(x, t))^ldx $ with $ l\ge1 $, and estimate the upper bound of $ V_{2}(t) $. For $ t > t_1 $, the second equation of (1.4) and Young's inequality yield

    $ 12V2(t)d2Ω|u2|2dx+cpξ0Ωu2(x,tτ)u2(x,t)dxμ2V2(t)d2u222+cpξ02V2(tτ)+cpξ02V2(t).
    $

    The Gagliardo-Nirenberg inequality states:

    $  ϵ>0, ˆc>0, s.t. P22ϵP22+ˆcϵn/2P21,  PW1,2(Ω).
    $

    We obtain

    $ V'_2(t)\le C_1+C_2 V_2(t-\tau)-(C_2+C_3)V_2(t), $

    where $ C_1 = \hat c\epsilon^{-n/2-1}2d_2\xi_1^2 > 0 $, $ C_2 = cp\xi_0 > 0 $ and $ C_3 = 2(d_2/\epsilon-C_2) > 0 $ with small $ \epsilon\in(0, d_2/C_2) $. Using comparison principle again yields $ \limsup\limits_{t\to\infty}V_2(t)\le C_1/C_3 $, which implies there exist $ t_2 > t_1 $ and $ \xi_2 > 0 $ such that $ V_2\le \xi_2 $ for $ t\ge t_2 $.

    Let $ L_l = \limsup\limits_{t\to\infty} V_l(t) $ with $ l\ge1 $, we want to estimate $ L_{2l} $ with the similar method of estimation for $ L_2 $. Multiply the second equation in (1.4) by $ 2lv^{2l-1} $ and integrate on $ \Omega $. Young's inequality implies

    $ V'_{2l}(t)\le -2d_2\int_{\Omega}|\nabla u_2^l|^2dx+cp\xi_0 V_{2l}(t-\tau)+(2l-1)cp\xi_0 V_{2l}(t). $

    Then

    $ V'_{2l}(t)\le 2 d_2 \hat c\epsilon^{-n/2-1} V^2_{l}(t)-{2 d_2\over \epsilon}V_{2l}(t)+cp\xi_0 (V_{2l}(t-\tau)+(2l-1)V_{2l}(t)), $

    via Gagliardo-Nirenberg inequality. Since $ L_l = \limsup\limits_{t\to\infty}V_{l}(t) $, there exists $ t_l > 0 $ such that $ V_{l}\le 1+L_l $ when $ t > t_l $. Hence,

    $ V'_{2l}(t)\le 2 d_2 \hat c\epsilon^{-(n/2+1)} (1+L_l)^2-{2 d_2\over \epsilon}V_{2l}(t)+lC_4 (V_{2l}(t)+V_{2l}(t-\tau)) $

    with $ C_4 = 2cp\xi_0 $. We choose $ \epsilon^{-1} = (2C_4+1)l/(2d_2) $ and $ C_5 = 2d_2\hat c[(2 C_4+1)/(2d_2)]^{n/2+1} $. Then for $ t > t_l $, we obtain

    $ V'_{2l}(t)\le C_5 l^{n/2+1}(1+L_l)^2+ l C_4 V_{2l}(t-\tau)-(l C_4+l)V_{2l}(t). $

    By comparison principle, the above inequality yields $ L_{2l}\le C_5 l^{n/2}(1+L_l)^2 $, with a constant $ C_5 $ which is not dependent on $ l $ and initial conditions. Finally, prove $ L_{2^s} < \infty $ for all $ s\in\mathbb{N}_0 $. Let $ B = 1+C_5 $ and $ \{b_s\}_{s = 0}^\infty $ be an infinite sequence denoted by $ b_{s+1} = B^{(1/2)^{(s+1)}}2^{sn((1/2)^{(s+2)})}b_s $ with the first term $ b_0 = L_1+1 $. Clearly, $ L_{2^s}\le(b_s)^{2^s} $ and

    $ \lim\limits_{s\to\infty}\ln b_s = \ln b_0+\ln B+\frac{n}{2}\ln 2. $

    Therefore,

    $ \limsup\limits_{s\to\infty}(L_{2^s})^{(1/2)^{s}}\le \lim\limits_{s\to\infty}b_s = B(1+L_1)2^{n/2}\le B(1+\xi_1)2^{n/2}\le \xi: = \max\{B(\xi_1+1)2^{n/2}, (r-\mu_1)/m\}. $

    The above inequality leads to $ \limsup\limits_{t\rightarrow \infty}u_1\le \xi $ and $ \limsup\limits_{t\rightarrow \infty}u_2\le \xi $ for all $ x\in\Omega $.

    In Theorem 2.2, we proved that the solution of model (1.4) is uniformly bounded for any nonnegative initial condition, this implies the boundedness of the population of two species. Clearly model (1.4) exists two constant steady states $ E_0 = (0, 0) $ and $ E_1 = ((r-\mu_1)/m, 0) $, where $ E_0 $ is a saddle. Define the basic reproduction ratio [18] by

    $ R0=cpeγτ(rμ1)mμ2.
    $
    (2.3)

    Thus model (1.4) possesses exactly one positive constant steady state $ E_2 = (u_1^*, u_2^*) $ if and only if $ {R}_0 > 1 $, which is equivalent to $ cp(r-\mu_1) > m\mu_2 $ and $ 0\le\tau < \tau_{max}: = {1\over \gamma}\ln {cp(r-\mu_1)\over m\mu_2} $. Here,

    $ u_1^* = {\mu_2 e^{\gamma\tau}\over pc}, \ \ u_2^* \ \ \text{satisfies} \ \ rg(K,u_2)-p u_2 = \mu_1+mu_1^*. $

    The linearization of (1.4) at the positive constant steady state $ (\tilde u_1, \tilde u_2) $ gives

    $ W/t=DΔW+L(Wt),
    $
    (2.4)

    where domain $ Y: = \{(u_1, u_2)^T:u_1, u_2\in C^2(\Omega)\cap C^1(\bar\Omega), (u_1)_\nu = (u_2)_\nu = 0\ \text{on}\ \partial\Omega\} $, $ W = (u_1(x, t), u_2(x, t))^T $, $ \mathcal{D} = \text{diag}(d_1, d_2) $ and a bounded linear operator $ \mathcal{L}:\mathbf{C}\to X^2 $ is

    $ \mathcal{L}(\varphi) = M\varphi(0)+M_\tau\varphi(-\tau),\ \text{for}\ \varphi\in\mathbf{C}, $

    with

    $ M=(rg(K,˜u2)μ12m˜u1p˜u2˜u1(rgu2(K,˜u2)p)0μ2), Mτ=(00cpeγτ˜u2cpeγτ˜u1).
    $

    The characteristic equation of (2.4) gives

    $ \rho \eta-\mathcal{D}\Delta \eta-\mathcal{L}(e^{\rho\cdot}\eta) = 0,\ \text{for some}\ \eta\in Y\backslash\{0\}, $

    or equivalently

    $ det(ρI+σnDMeρτMτ)=0, for nN0.
    $
    (2.5)

    Here, $ \sigma_n $ is the eigenvalue of $ -\Delta $ in $ \Omega $ with Neumann boundary condition with respect to eigenfunction $ \psi_n $ for all $ n\in\mathbb{N}_0 $, and

    $ 0=σ0<σ1σ2σnσn+1  and  limnσn=.
    $
    (2.6)

    Theorem 2.3. (i) The trivial constant steady state $ E_0 = (0, 0) $ is always unstable.

    (ii) If $ R_0 > 1 $, then $ E_1 = ((r-\mu_1)/m, 0) $ is unstable, and model (1.4) possesses a unique positive constant steady state $ E_2 = (u_1^*, u_2^*) $.

    (iii) If $ R_0\le1 $, then $ E_1 $ is globally asymptotically stable in $ \mathbf{C}_+ $.

    Proof. (ⅰ) Note, (2.5) at $ E_0 $ takes form as $ (\rho+\sigma_n d_1-r+\mu_1)(\rho+\sigma_n d_2+\mu_2) = 0 $ for all $ n\in\mathbb{N}_0 $. Then $ r-\mu_1 > 0 $ is a positive real eigenvalue, namely, $ E_0 $ is always unstable.

    (ⅱ) The characteristic equation at $ E_1 $ gives

    $ (ρ+σnd1+rμ1)(ρ+σnd2+μ2cpeγτrμ1meρτ)=0  for nN0.
    $
    (2.7)

    Note that one eigenvalue $ \rho_1 = -\sigma_n d_1-r+\mu_1 $ remains negative. Hence, we only need to consider the root distribution of the following equation

    $ ρ+σnd2+μ2cpeγτrμ1meρτ=0  for nN0.
    $
    (2.8)

    According to [19,Lemma 2.1], we obtain that (2.8) exists an eigenvalue $ \rho > 0 $ when $ R_0 > 1 $, namely, $ E_1 $ is unstable when $ R_0 > 1 $.

    (ⅲ) By using [19,Lemma 2.1] again, any eigenvalue $ \rho $ of (2.8) satisfies $ Re(\rho) < 0 $ when $ R_0 < 1 $, namely, $ E_1 $ is locally asymptotically stable when $ R_0 < 1 $. Now, consider $ R_0 = 1 $. $ 0 $ is an eigenvalue of (2.7) for $ n = 0 $ and all other eigenvalues satisfy $ Re(\rho) < 0 $. To prove the stability of $ E_1 $, we shall calculate the normal forms of (1.4) by the algorithm introduced in [20]. Set

    $ \Upsilon = \{\rho\in\mathbb{C},\rho\ \text{is the eigenvalue of equation (2.7) and}\ Re\rho = 0\}. $

    Obviously, $ \Upsilon = \{0\} $ when $ R_0 = 1 $. System (1.4) satisfies the non-resonance condition relative to $ \Upsilon $. Denote $ \overline{u}_1 = (r-\mu_1)/m $, and let $ \mathbf{w} = ({w}_1, {w}_2)^T = (\overline{u}_1-u_1, u_2)^T $ and (1.4) can be written as

    $ \dot{\mathbf{w}}_t = \mathcal{A}_0 \mathbf{w}_t+\mathcal{F}_0(\mathbf{w}_t) \ \ \text{on} \ \ \mathbf{C}. $

    Here linear operator $ \mathcal{A}_0 $ is given by $ (\mathcal{A}_0 \varphi)(\vartheta) = (\varphi(\vartheta))' $ when $ \vartheta\in[-\tau, 0) $ and

    $ (A0φ)(0)=(d1Δ00d2Δ)φ(0)+(r+μ1(prgu2(K,0))¯u10μ2)φ(0)+(000μ2)φ(τ),
    $

    and the nonlinear operator $ \mathcal{F}_0 $ satisfies $ [\mathcal{F}_0(\varphi)](\vartheta) = 0 $ for $ -\tau\le\vartheta < 0 $. By Taylor expansion, $ [\mathcal{F}_0(\varphi)](0) $ can be written as

    $ [F0(φ)](0)=(mφ21(0)r¯u1gu2(K,0)φ22(0)/2+(rgu2(K,0)p)φ1(0)φ2(0)cpeγτφ1(τ)φ2(τ))+h.o.t.
    $
    (2.9)

    Define a bilinear form

    $ β,α=Ω[α1(0)β1(0)+α2(0)β2(0)+μ20τβ2(ϑ+τ)α2(ϑ)dϑ]dx, βC([0,τ],X2), αC.
    $

    Select $ \alpha = (1, m/(p-r g'_{u_2}(K, 0)) $ and $ \beta = (0, 1)^T $ to be the right and left eigenfunction of $ \mathcal{A}_0 $ relative to eigenvalue $ 0 $, respectively. Decompose $ \mathbf{w}_t $ as $ \mathbf{w}_t = h\alpha+\delta $ and $ \langle\beta, \delta\rangle = 0 $. Notice $ \mathcal{A}_0\alpha = 0 $ and $ \langle\beta, \mathcal{A}_0\delta\rangle = 0 $. Thus,

    $ \langle \beta, \dot{\mathbf{w}}_t\rangle = \langle \beta, \mathcal{A}_0 \mathbf{w}_t\rangle+\langle \beta, \mathcal{F}_0(\mathbf{w}_t)\rangle = \langle \beta, \mathcal{F}_0(\mathbf{w}_t)\rangle. $

    Moreover,

    $ \langle \beta, \dot{\mathbf{w}}_t\rangle = \dot{h}\langle \beta, \alpha\rangle+\langle \beta, \dot{\delta}\rangle = \dot{h}\langle \beta, \alpha\rangle. $

    It follows from the above two equations that

    $ \dot{h}\frac{m(1+\mu_2\tau)|\Omega|}{p-rg'_{u_2}(K,0)} = \langle\beta,\mathcal{F}_0(h\alpha+\delta)\rangle = \int_{\Omega}\beta^T[\mathcal{F}_0(h\alpha+\delta)](0)dx = \int_{\Omega}[\mathcal{F}_0(h\alpha+\delta)]_2(0)dx. $

    When the initial value is a small perturbation of $ E_1 $, then $ \delta = O(h^2) $, together with Taylor expansion yields

    $ [F0(hα+δ)]2(0)=cpeγτ(hα1(τ)+δ1(τ))(hα2(τ)+δ2(τ))=cpeγτmprgu2(K,0)h2+O(h3).
    $

    Therefore, we obtain the norm form of (1.4) as follows

    $ ˙h=cpeγτ1+μ2τh2+O(h3).
    $
    (2.10)

    Then for any positive initial value, the stability of zero solution of (2.10) implies $ E_1 $ is locally asymptotically stable when $ R_0 = 1 $.

    Next, it suffices to show the global attractivity of $ E_1 $ in $ \mathbf{C}_+ $ when $ R_0\le1 $. Establish a Lyapunov functional $ V:\mathbf{C}_+\to\mathbb{R} $ as

    $ V(\phi_1,\phi_2) = \int_{\Omega}\phi_2(0)^2 dx+cpe^{-\gamma\tau}{r-\mu_1 \over m}\int_{\Omega}\int_{-\tau}^0 \phi_2(\theta)^2d\theta dx \ \ \text{for} \ \ (\phi_1,\phi_2)\in\mathbf{C}_+. $

    Along solutions of (1.4), taking derivative of $ V(\phi_1, \phi_2) $ with respect to $ t $ yields

    $ dVdt2d2Ω|u2|2dx+Ω2cpeγτrμ1mu2(x,tτ)u2(x,t)2μ2u22(x,t)+cpeγτrμ1m[u22(x,t)u22(x,tτ)]dxΩ2μ2(R01)u22(x,t)dx0  if  R01.
    $

    Note $ \{E_1\} $ is the maximal invariant subset of $ dV/dt = 0 $, together with LaSalle-Lyapunov invariance principle [21,22] implies $ E_1 $ is globally asymptotically stable if $ R_0\le1 $.

    In Theorem 2.3, $ E_0 $ is always unstable which suggests that at leat one species will persist eventually. Moreover, if $ R_0\le1 $, then $ E_1 $ is globally asymptotically stable in $ \mathbf{C}_+ $, which implies that when the basic reproduction ratio is no more than one, the predator species will extinct and only the prey species can persist eventually. Next, we will prove the solution is uniformly persistent. $ \Theta_t $ denotes the solution semiflow of (1.4) mapping $ \mathbf{C}_+ $ to $ \mathbf{C}_+ $; namely, $ \Theta_t\varphi: = (u_1(\cdot, t+\cdot), u_2(\cdot, t+\cdot))\in \mathbf{C}_+ $. Set $ \zeta^+(\varphi) = \cup_{t\ge0}\{\Theta_t\varphi\} $ be the positive orbit and $ \varpi(\varphi) $ be the omega limit set of $ \zeta^+(\varphi) $. Denote

    $ Z: = \{(\varphi_1,\varphi_2)\in\mathbf{C}_+:\varphi_1\not\equiv0\ \text{and}\ \varphi_2\not\equiv0\},\ \partial Z: = \mathbf{C}_+\backslash Z = \{(\varphi_1,\varphi_2)\in\mathbf{C}_+:\varphi_1\equiv0\ \text{or}\ \varphi_2\equiv0\}, $

    $ \Gamma_{\partial} $ as the largest positively invariant set in $ \partial Z $, and $ W^s((\tilde u_1, \tilde u_2)) $ as the stable manifold associated with $ (\tilde u_1, \tilde u_2) $. We next present persistence result of model (1.4).

    Theorem 2.4. Suppose $ R_0 > 1 $. Then there exists $ \kappa > 0 $ such that $ \liminf\limits_{t\to\infty} u_1(x, t)\ge\kappa $ and $ \liminf\limits_{t\to\infty} u_2(x, t)\ge\kappa $ for any initial condition $ \varphi\in Z $ and $ x\in\overline\Omega $.

    Proof. Note $ \Theta_t $ is compact, and Theorem 2.2 implies $ \Theta_t $ is point dissipative. Then $ \Theta_t $ possesses a nonempty global attractor in $ \mathbf{C}_+ $ [23]. Clearly, $ \Gamma_{\partial} = \{(\varphi_1, \varphi_2)\in\mathbf{C}_+: \varphi_2\equiv0\} $, and $ \varpi(\varphi) = \{E_0, E_1\} $ for all $ \varphi\in \Gamma_{\partial} $. Define a generalized distance function $ \psi $ mapping $ \mathbf{C}_+ $ to $ \mathbb{R}^+ $ by

    $ \psi(\varphi) = \min\limits_{x\in\bar\Omega}\{\varphi_1(x,0),\varphi_2(x,0)\},\ \forall \varphi = (\varphi_1,\varphi_2)\in\mathbf{C}_+. $

    Following from strong maximum principle [24], $ \psi(\Theta_t\varphi) > 0 $ for all $ \varphi\in Z $. Due to $ \psi^{-1}(0, \infty)\subset Z $, assumption $ (P) $ in [25,Section 3] holds. Then verify rest conditions in [25,Theorem 3].

    First, prove $ W^s(E_0)\cap \psi^{-1}(0, \infty) = \emptyset $. Otherwise, there exists an initial condition $ \varphi\in \mathbf{C}_+ $ with $ \psi(\varphi) > 0 $, such that $ (u_1, u_2)\to E_0 $ as $ t\to\infty $. Thus, for any sufficiently small $ \varepsilon_1 > 0 $ satisfying $ r g(K, \varepsilon_1)-\mu_1 > p\varepsilon_1 $, there exists $ t_1 > 0 $ such that $ 0 < u_1, u_2 < \varepsilon_1 $ for all $ x\in \Omega $ and $ t > t_1 $. Note that $ rg(K, 0)-\mu_1 > 0 $ and $ \partial g(K, u_2)/\partial u_2 < 0 $ ensure the existence of small $ \varepsilon_1 > 0 $. Then the first equation in (1.4) and $ (\mathbf{H}_1) $ lead to

    $ \partial_t u_1 > d_1\Delta u_1+u_1 \left[(r g(K,\epsilon_1)-\mu_1-p\epsilon_1)-mu_1\right],t > t_1. $

    Notice

    $ tˆu1d1Δˆu1=ˆu1[(rg(K,ϵ1)pϵ1μ1)mˆu1], xΩ,t>t1,νˆu1=0, xΩ,t>t1,
    $

    has a globally asymptotically stable positive steady state $ (r g(K, \epsilon_1)-\mu_1-p\epsilon_1)/m $ due to [16,Lemma 2.2], together with comparison principle yields $ \lim\limits_{t\to\infty}u_1\ge \lim\limits_{t\to\infty}\hat u_1 > 0 $. A contradiction is derived, so $ W^s(E_0)\cap \psi^{-1}(0, \infty) = \emptyset $.

    Next check $ W^s(E_1)\cap\psi^{-1}(0, \infty) = \emptyset $. If not, there exists $ \varphi\in\mathbf{C}_+ $ with $ \psi(\varphi) > 0 $ such that $ (u_1, u_2) $ converges to $ E_1 $ as $ t\to\infty $. According to (2.2), for any small $ \varepsilon_2 > 0 $ satisfying $ cpe^{-\gamma\tau}((r-\mu_1)/m-\epsilon_2) > \mu_2 $, there exists $ t_2 > 0 $ such that $ u_1 > (r-\mu_1)/m-\varepsilon_2 $ for all $ x\in\overline\Omega $ and $ t > t_2-\tau $. Note that $ R_0 > 1 $ ensures the existence of $ \varepsilon_2 > 0 $. Thus, the second equation of (1.4) yields

    $ \partial_t u_2 > d_2\Delta u_2+cpe^{-\gamma\tau}({r-\mu_1 \over m}-\varepsilon_2)u_2(x,t-\tau)-\mu_2u_2(x,t), \ t > t_2. $

    In a similar manner, we derive $ \lim\limits_{t\to\infty}u_2(x, t) > 0 $ by above inequality, $ cpe^{-\gamma\tau}((r-\mu_1)/m-\epsilon_2) > \mu_2 $ and comparison principle. A contradiction yields again. Hence, it follows from Theorem 3 in [25] that, for any $ \varphi\in \mathbf{C}_+ $, there exists $ \kappa > 0 $ such that $ \liminf\limits_{t\to\infty}\psi(\Theta_t \varphi)\ge\kappa $ uniformly for any $ x\in\overline\Omega $.

    Theorem 2.4 implies that when the basic reproduction ratio is bigger than one, both the predator species and prey species will persist eventually. We next investigate the stability of $ E_2 $. The corresponding characteristic equation at $ E_2 $ gives

    $ ρ2+a1,nρ+a0,n+(b1,nρ+b0,n)eρτ=0, nN0,
    $
    (2.11)

    with

    $ a1,n=σn(d1+d2)+μ2+mu1>0, a0,n=(σnd1+au1)(σnd2+μ2)>0,b1,n=μ2<0,  b0,n=μ2(σnd1+mu1+u2(rgu2(K,u2)p)).
    $

    Characteristic equation (2.11) with $ \tau = 0 $ is

    $ ρ2+(a1,n+b1,n)ρ+a0,n+b0,n=0, nN0.
    $
    (2.12)

    We observe that $ a_{0, n}+b_{0, n} = \sigma_nd_2(\sigma_nd_1+mu_1^*)-\mu_2 u_2^*(rg'_{u_2}(K, u_2^*)-p) > 0 $, and $ a_{1, n}+b_{1, n} = \sigma_n(d_1+d_2)+mu_1^* > 0 $ for all integer $ n\ge0 $, which yields that any eigenvalue $ \rho $ of (2.12) satisfies $ Re(\rho) < 0 $. Then, local asymptotic stability of $ E_2 $ is derived when $ \tau = 0 $ which implies Turing instability can not happen for the non-delay system of (1.4). In addition, $ a_{0, n}+b_{0, n} > 0 $ for any $ n\in\mathbb{N}_0 $ leads to that (2.11) can not have an eigenvalue $ 0 $ for any $ \tau\ge0 $. This suggests we look for the existence of simple $ \rho = \pm i\delta $ ($ \delta > 0 $) for some $ \tau > 0 $. Substitute $ \rho = i\delta $ into (2.11) and then

    $ Gn(δ,τ)=δ4+(a21,n2a0,nb21,n)δ2+a20,nb20,n=0,  nN0,
    $
    (2.13)

    with

    $ a21,n2a0,nb21,n=(σnd1+mu1)2+(σnd2)2+2μ2σnd2>0,a0,n+b0,n=σnd2(σnd1+mu1)μ2u2(rgu2(K,u2)p)>0,a0,nb0,n=σ2nd1d2+σn(2μ2d1+mu1d2)+μ2(2mu1+u2(rgu2(K,u2)p)).
    $

    Thus, $ a_{0, n}-b_{0, n}\ge 0 $ for all $ n\in\mathbb{N}_0 $ is equivalent to

    $ (\mathbf{A}_0): \ 2mu_1^*\ge u_2^*(p-rg'_{u_2}(K,u_2^*)). $

    If $ (\mathbf{A}_0) $ holds, then (2.13) admits no positive roots, together with for $ \tau = 0 $, any eigenvalues $ \rho $ of (2.11) satisfies $ Re(\rho) < 0 $, yields the next conclusion.

    Theorem 2.5. Suppose $ R_0 > 1 $. Then, $ E_2 $ is locally asymptotically stable provided that $ (\mathbf{A}_0) $ holds.

    Now, we consider positive nonhomogeneous steady states. The steady state $ (u_1(x), u_2(x)) $ of (1.4) satisfies the elliptic equation

    $ d1Δu1=rg(K,u2)u1μ1u1mu21pu1u2, xΩ,d2Δu2=cpeγτu1u2μ2u2, xΩ,νu1=νu2=0, xΩ.
    $
    (3.1)

    From Theorem 2.3, all the solutions converge to $ E_1 $ when $ R_0\le1 $ and the positive nonhomogeneous steady state may exist only if $ R_0 > 1 $. Throughout this section, we assume that $ R_0 > 1 $. In what follows, the positive lower and upper bounds independent of steady states for all positive solutions to (3.1) are derived.

    Theorem 3.1. Assume that $ R_0 > 1 $. Then any nonnegative steady state of (3.1) other than $ (0, 0) $, and $ ((r-\mu_1)/m, 0) $ should be positive. Moreover, there exist constants $ \overline{\mathcal{B}}, \underline{\mathcal{B}} > 0 $ which depend on all parameters of (3.1) and $ \Omega $, such that $ \underline{\mathcal{B}}\le u_1(x), u_2(x)\le\overline{\mathcal{B}} $ for any positive solution of (3.1) and $ x\in\overline\Omega $.

    Proof. We first show any nonnegative solution $ (u_1, u_2) $ other than $ E_0 $ and $ E_1 $, should be $ u_1 > 0 $ and $ u_2 > 0 $ for all $ x\in\overline\Omega $. To see this, suppose $ u_2(x_0) = 0 $ for some $ x_0\in\overline\Omega $, then $ u_2(x)\equiv0 $ via strong maximum principle and

    $ 0\le d_1\int_{\Omega}|\nabla(u_1-{{r-\mu_1}\over m})|^2dx = \int_{\Omega}-mu_1(x)(u_1(x)-{{r-\mu_1}\over m})^2dx\le0. $

    Thus the above inequality implies $ u_1(x)\equiv0 $ or $ u_1(x)\equiv (r-\mu_1)/m $. Now, we assume $ u_2 > 0 $ for all $ x\in\overline \Omega $. Strong maximum principle yields $ u_1 > 0 $ for all $ x\in\overline \Omega $. Hence, $ u_1 > 0 $ and $ u_2 > 0 $ for all $ x\in\overline\Omega $.

    We now prove $ u_1 $ and $ u_2 $ have a upper bound which is a positive constant. Since $ -d_1\Delta u_1(x)\le (r-\mu_1-mu_1(x))u_1(x) $, we then obtain from Lemma 2.3 in [26] that $ u_1(x)\le (r-\mu_1)/m $ for any $ x\in\overline\Omega $.

    By two equations in (3.1), we obtain

    $ -\Delta(d_1cu_1+d_2u_2)\le rc (r-\mu_1)/m -\min\{{\mu_1\over d_1}, {\mu_2\over d_2}\}(d_1cu_1+d_2u_2). $

    By using [26,Lemma 2.3] again, we conclude

    $ u_1(x),u_2(x)\le \overline{\mathcal{B}} = {rc (r-\mu_1)\over{m\min\{c\mu_1,\mu_2,{\mu_1d_2/d_1}, {\mu_2d_1c/d_2}\}}}. $

    Next, we only need to prove $ \|u_1(x)\| $ and $ \|u_2(x)\| $ have a positive lower bound which is not dependent on the solution. Otherwise, there exists a positive steady states sequence $ (u_{1, n}(x), u_{2, n}(x)) $ such that either $ \lim\limits_{n\to\infty}\|u_{1, n}\|_{\infty} = 0 $ or $ \lim\limits_{n\to\infty}\|u_{2, n}\|_{\infty} = 0 $. Integrating second equation of (3.1) gives

    $ 0=Ωu2,n(cpeγτu1,nμ2)dx.
    $
    (3.2)

    If $ \|u_{1, n}(x)\|_\infty\to0 $ as $ n\to\infty $, then $ cpe^{-\gamma\tau}u_{1, n}(x)-\mu_2 < -\mu_2/2 $ for sufficiently large $ n $, which yields $ u_{2, n}(cpe^{-\gamma\tau}u_{1, n}-\mu_2) < 0 $, a contradiction derived. Thus, $ \|u_{2, n}(x)\|_{\infty}\to0 $ as $ n\to\infty $ holds. We then assume that $ (u_{1, n}, u_{2, n})\to(u_{1, \infty}, 0) $, as $ n\to\infty $ where $ u_{1, \infty}\ge0 $. Similarly, we obtain that either $ u_{1, \infty}\equiv0 $ or $ u_{1, \infty}\equiv (r-\mu_1)/m $. Obviously, $ u_{1, \infty}\not\equiv0 $ based on the above argument, thus $ u_{1, \infty}\equiv (r-\mu_1)/m $ and $ \lim\limits_{n\to \infty}cpe^{-\gamma\tau}u_{1, n}(x)-\mu_2 = \mu_2(R_0-1) > 0 $. This again contradicts (3.2). Hence, we have shown $ \|u_1(x)\|_\infty $ and $ \|u_2(x)\|_\infty $ have a positive constant lower bound independent on the solution. Therefore, $ u_1(x) $ and $ u_2(x) $ have a uniform positive constant lower bound independent on the solution of (3.1) via Harnack's inequality [26,Lemma 2.2]. This ends the proof.

    Theorem 3.2. Suppose $ R_0 > 1 $. There exists a constant $ \chi > 0 $ depending on $ r, \mu_1, p, c, \gamma, \tau, \mu_2, g $ and $ \sigma_1 $, such that if $ \min\{d_1, d_2\} > \chi $ then model (1.4) admits no positive spatially nonhomogeneous steady states, where $ \sigma_1 $ is defined in (2.6).

    Proof. Denote the averages of the positive solution $ (u_1, u_2) $ of system (3.1) on $ \Omega $ by

    $ \widetilde{u_1} = \frac{\int_{\Omega}u_1(x)dx}{|\Omega|} \ \ \text{and} \ \ \widetilde{u_2} = \frac{\int_{\Omega}u_2(x)dx}{|\Omega|}. $

    By (2.2), we have $ u_1(x)\le \overline u_1 $, where $ \overline u_1 = (r-\mu_1)/m $, which implies $ \widetilde{u_1}\le \overline u_1 $. Multiplying the first equation by $ ce^{-\gamma\tau} $ and adding two equations of (3.1) lead to

    $ -(d_1ce^{-\gamma\tau}\Delta u_1+d_2\Delta u_2) = ce^{-\gamma\tau}\left(r g(K,u_2)u_1-\mu_1 u_1-mu_1^2\right)-\mu_2 u_2. $

    The integration of both sides for the above equation yields

    $ \widetilde{u_2} = {ce^{-\gamma\tau} \over \mu_2|\Omega|}\int_{\Omega}\left(rg(K,u_2)u_1-\mu_1 u_1-mu_1^2\right) dx\le (r-\mu_1)\overline u_1{ce^{-\gamma\tau}\over \mu_2}: = M_v. $

    It is readily seen that $ \int_{\Omega}(u_1-\widetilde{u_1})dx = \int_{\Omega}(u_2-\widetilde{u_2})dx = 0 $. Note $ u_1 $ and $ u_2 $ are bounded by two constants $ \overline u_1 > 0 $ and $ \overline u_2: = rc \overline u_1/\min\{\mu_1d_2/d_1, \mu_2\} > 0 $ by Theorem 3.1. Denote $ M_f = \max\limits_{u_2\in[0, \overline u_2]}|g'_{u_2}(K, u_2)| $ and we then obtain

    $ d1Ω|(u1~u1)|2dx=Ω(u1~u1)(rg(K,u2)u1μ1u1mu21)dxΩpu1u2(u1~u1)dx=Ω(u1~u1)(rg(K,u2)u1μ1u1mu21(rg(K,~u2)~u1μ1~u1m~u12))dx+Ωp(~u1~u2u1u2)(u1~u1)dx(rμ1+(rMf+p)¯u12)Ω(u1~u1)2dx+(rMf+p)¯u12Ω(u2~u2)2dx,
    $
    $ d2Ω|(u2~u2)|2dx=Ω(cpeγτu1u2μ2u2)(u2~u2)dx=cpeγτΩ(u1u2~u1~u2)(u2~u2)dxΩμ2(u2~u2)2dxcpeγτΩMv2(u1~u1)2dx+cpeγτ(¯u1+Mv2)Ω(u2~u2)2dx.
    $

    Set $ A_1 = (r-\mu_1)+\left((r M_f+p)\overline u_1+cpe^{-\gamma\tau} M_v\right)/2, $ and $ A_2 = \left((r M_f+p)\overline u_1+cpe^{-\gamma\tau}(2\overline u_1+M_v)\right)/2. $ Then, the above inequalities and Poincar$ \acute{e} $ inequality yield that

    $ d1Ω|(u1~u1)|2dx+d2Ω|(u2~u2)|2dxχΩ(|(u1~u1)|2+|(u2~u2)|2)dx,
    $

    with a positive constant $ \chi = \max\{A_1/\sigma_1, A_2/\sigma_1\} $ depending on $ r, f, \mu_1, p, c, \gamma, \tau, \mu_2 $ and $ \sigma_1 $. Hence, if $ \chi < \min\{d_1, d_2\} $, then $ \nabla(u_1-\widetilde{u_1}) = \nabla(u_2-\widetilde{u_2}) = 0 $, which implies $ (u_1, u_2) $ is a constant solution.

    Select $ u_1^*: = \nu $ as the bifurcation parameter and study nonhomogeneous steady state bifurcating from $ E^* $. Let $ u_{2, \nu} $ satisfy $ rg(K, u_2)-pu_2 = \mu_1+m\nu $, $ E_2 = (\nu, u_{2, \nu}) $, and $ (\widehat u_1, \widehat u_2) = (u_1-\nu, u_2-u_{2, \nu}) $. Drop $ \widehat\cdot $. System (3.1) becomes

    $ H(ν,u1,u2)=(d1Δu1+(u1+ν)(rg(K,u2+u2,ν)μ1m(u1+ν)p(u2+u2,ν))d2Δu2+cpeγτ(u1+ν)(u2+u2,ν)μ2(u2+u2,ν))=0,
    $

    for $ (\nu, u_1, u_2)\in\mathbb{R}^+\times \mathcal{Y} $ with $ \mathcal{Y} = \{(u_1, u_2): u_1, u_2\in H^2(\Omega), (u_1)_{\nu} = (u_2)_{\nu} = 0, \ \text{on}\ \partial\Omega\} $. Calculating Fr$ \acute{e} $chet derivative of $ \mathcal{H} $ gives

    $ D(u1,u2)H(ν,0,0)=(d1Δmνν(rgu2(K,u2,ν)p)cpeγτu2,νd2Δ).
    $

    Then the characteristic equation follows

    $ ρ2+Pi(ν)ρ+Qi(ν)=0  for  iN0,
    $
    (3.3)

    where

    $ P_i(\nu) = m\nu+(d_1+d_2)\sigma_i, \ \ Q_i(\nu) = d_1d_2\sigma_i^2+d_2 m\nu\sigma_i-\mu_2u_{2,\nu}(rg'_{u_2}(K,u_{2,\nu})-p). $

    Obviously, $ Q_i > 0 $ and $ P_i > 0 $ for all $ \nu\in\mathbb{R}^+ $ and $ i\in\mathbb{N}_0 $. Therefore, (3.3) does not have a simple zero eigenvalue. According to [4], we obtain the nonexistence of steady state bifurcation bifurcating at $ E_2 $.

    Theorem 3.3. Model (1.4) admits no positive nonhomogeneous steady states bifurcating from $ E_2 $.

    Next, the stability switches at $ E_2 $ and existence of periodic solutions of (1.4) bifurcating from $ E_2 $ are studied. Suppose $ R_0 > 1 $, namely, $ cp(r-\mu_1) > m\mu_2 $ and $ 0\le\tau < \tau_{max}: = {1\over \gamma}\ln {cp(r-\mu_1)\over m\mu_2} $ to guarantee the existence of $ E_2 $.

    Recall the stability of $ E_2 $ for $ \tau = 0 $ is proved and $ 0 $ is not the root of (2.11) for $ \tau\ge0 $. So, we only consider eigenvalues cross the imaginary axis to the right which corresponds to the stability changes of $ E_2 $. Now, we shall consider the positive root of $ G_n(\delta, \tau) $. Clearly, there exists exactly one positive root of $ G_n(\delta, \tau) = 0 $ if and only if $ a_{0, n} < b_{0, n} $ for $ n\in\mathbb{N}_0 $. More specifically,

    $ (\mathbf{A}_1): \ 2mu_1^* < u_2^*(p-rg'_{u_2}(K,u_2^*)) $

    is the sufficient and necessary condition to ensure $ G_0(\delta, \tau) $ has exactly one positive zero. For some integer $ n\ge1 $, the assumption $ (\mathbf{A}_1) $ is a necessary condition to guarantee $ G_n(\delta, \tau) $ exists positive zeros. Set

    $ Jn={τ:τ[0,τmax) satisfies a0,n(τ)<b0,n(τ)},  nN0.
    $
    (4.1)

    Implicit function theorem implies $ G_n(\delta, \tau) $ has a unique zero

    $ \delta_n(\tau) = \sqrt{\left(\left[b_{1,n}^2+2a_{0,n}-a_{1,n}^2+\sqrt{(b_{1,n}^2+2a_{0,n}-a_{1,n}^2)^2-4(a_{0,n}^2-b_{0,n}^2)}\right]/2\right)} $

    which is a $ C^1 $ function for $ \tau\in J_n $. Hence, $ i\delta_n(\tau) $ is an eigenvalue of (2.11), and $ \delta_n(\tau) $ satisfies

    $ sin(δn(τ)τ)=δn(μ2δ2n+μ2a0,n+b0,na1,n)μ22δ2n+b20,n:=h1,n(τ),cos(δn(τ)τ)=b0,n(δ2na0,n)+a1,nμ2δ2nμ22δ2n+b20,n:=h2,n(τ),
    $
    (4.2)

    for $ n\in\mathbb{N}_0 $. Let

    $ ϑn(τ)={arccosh2,n(τ), if δ2n<a0,n+b0,na1,n/μ2,2πarccosh2,n(τ), if δ2na0,n+b0,na1,n/μ2,
    $

    which is the unique solution of $ \sin\vartheta_n = h_{1, n} $ and $ \cos\vartheta_n = h_{2, n} $ and satisfies $ \vartheta_n(\tau)\in(0, 2\pi] $ for $ \tau\in I_n $.

    According to [3,27], we arrive at the next properties.

    Lemma 4.1. Suppose that $ R_0 > 1 $ and $ (\mathbf{A}_1) $ holds.

    (i) There exists a nonnegative integer $ M_1 $ such that $ J_{n}\ne\emptyset $ for $ 0\le n\le M_1 $, with $ J_{M_1}\subset J_{M_1-1}\subset\cdots\subset J_1\subset J_0 $, and $ J_n = \emptyset $ for $ n\ge 1+M_1 $, where $ J_n $ is defined in (4.1).

    (ii) Define

    $ Skn(τ)=δn(τ)τϑn(τ)2kπ  for integer 0nM1, kN0, and τJn.
    $
    (4.3)

    Then, $ \mathcal{S}_0^0(0) < 0 $; for $ 0\le n\le M_1 $ and $ k\in\mathbb{N}_0 $, we have $ \lim\limits_{\tau\rightarrow \widehat\tau_n^-}\mathcal{S}_n^k(\tau) = -(2k+1)\pi $, where $ \widehat\tau_n = \sup J_n $; $ \mathcal{S}_n^{k+1}(\tau) < \mathcal{S}_n^{k}(\tau) $ and $ \mathcal{S}_n^k(\tau) > \mathcal{S}_{n+1}^{k}(\tau) $.

    (iii) For each integer $ n\in[0, N_1] $ and some $ k\in\mathbb{N}_0 $, $ \mathcal{S}_n^k(\tau) $ has one positive zero $ \overline\tau_n\in J_n $ if and only if (2.11) has a pair of eigenvalues $ \pm i\delta_n(\overline\tau_n) $. Moreover,

    $ Sign(Reλ(¯τn))=Sign((Skn)(¯τn)).
    $
    (4.4)

    When $ (\mathcal{S}_n^k)'(\overline\tau_n) < 0 $, $ \pm i\delta_n(\overline\tau_n) $ cross the imaginary axis from right to left at $ \tau = \overline\tau_n $; when $ (\mathcal{S}_n^k)'(\overline\tau_n) > 0 $, $ \pm i\delta_n(\overline\tau_n) $ cross the imaginary axis from left to right.

    If $ \sup\limits_{\tau\in I_0}\mathcal{S}_0^0\le0 $, then $ \mathcal{S}_n^k < 0 $ in $ J_n $ holds for any $ 0\le n\le M_1 $ and $ k\in\mathbb{N}_0 $; or only $ \mathcal{S}_0^0 $ has a zero with even multiplicity in $ J_0 $ and $ \mathcal{S}_n^k < 0 $ for any positive integers $ n $ and $ k $. Therefore, $ E_2 $ is locally asymptotically stable for $ \tau\in[0, \tau_{max}) $. The following assumption ensures Hopf bifurcation may occur at $ E_2 $.

    $ (\mathbf{A}_2) $ $ \sup\limits_{\tau\in J_0}\mathcal{S}_0^0(\tau) > 0 $ and $ \mathcal{S}_n^k(\tau) $ has at most two zeros (counting multiplicity) for integer $ 0\le n\le M_1 $ and $ k\in \mathbb{N}_0 $.

    Note $ \sup\limits_{\tau\in J_n} \mathcal{S}_n^0 $ is strictly decreasing in $ n $ due to Lemma 4.1. It then follows from $ (\mathbf{A}_2) $, and $ \mathcal{S}_n^k(0) < \mathcal{S}_0^0(0) < 0 $, $ \lim\limits_{\tau\rightarrow \widehat\tau_n^-}\mathcal{S}_n^k(\tau) < 0 $ for any integer $ 0\le n\le M_1 $ and $ k\in\mathbb{N}_0 $, that we can find two positive integers

    $ M={n[0,M1]: supS0n>0 and supS0n+10}0,
    $
    (4.5)

    and

    $ Kn={j1: supSj1n>0 and supSjn0}1, for any integer 0nM.
    $
    (4.6)

    Then $ \mathcal{S}_n^k(\tau) $ admits two simple zeros $ \tau_n^k $ and $ \tau_n^{2K_n-k-1} $ for $ k\in[0, K_n-1] $ and no zeros for $ k\ge K_n $. The above analysis, together with Lemma 4.1(ⅲ), yields the next result.

    Lemma 4.2. Suppose $ R_0 > 1 $ and $ (\mathbf{A}_1) $ and $ (\mathbf{A}_2) $ hold. Let $ \mathcal{S}_n^k(\tau) $, $ M $ and $ K_n $ be defined in (4.3), (4.5) and (4.6).

    (i) For integer $ n\in[0, M] $, there are $ 2K_n $ simple zeros $ \tau_n^j \ (0\le j\le 2K_n-1) $ of $ \mathcal{S}_n^i(\tau) \ (0\le i\le K_n-1) $, $ 0 < \tau_n^0 < \tau_n^1 < \tau_n^2 < \cdots < \tau_n^{2K_n-1} < \widehat\tau_n $, and $ d\mathcal{S}_n^i(\tau_n^i)/d\tau > 0 $ and $ d\mathcal{S}_n^{i}(\tau_n^{2K_n-i-1})/d\tau < 0 $ for each $ 0\le i\le K_n-1 $.

    (ii) If there exist exactly two bifurcation values $ \tau_{n_1}^j = \tau_{n_2}^i: = \tau_* $ with $ n_1\ne n_2 $ and $ (n_1, j), (n_2, i)\in[0, M]\times[0, 2K_n-1] $, then the double Hopf bifurcation occurs at $ E_2 $ when $ \tau = \tau_* $.

    Collect all values $ \tau_n^j $ with $ 0\le n\le M $ and $ 0\le j\le 2K_n-1 $ in a set. To ensure Hopf bifurcation occurs, remove values which appear more than once. The new set becomes

    $ Σ={τ0,τ1,,τ2L1}, with τi<τj if i<j and 1LMn=0Kn.
    $
    (4.7)

    Lemma 4.1(ⅱ) implies $ \mathcal{S}_0^0(\tau) $ exists two simple zeros $ \tau_0 < \tau_{2L-1} $. When $ \tau = \tau_i $ with $ 0\le i\le 2L-1 $, the Hopf bifurcation occurs at $ E_2 $. Moreover, $ E_2 $ is locally asymptotically stable for $ \tau\in[0, \tau_0)\cup(\tau_{2L-1}, \tau_{max}) $ and unstable for $ \tau\in(\tau_0, \tau_{2L-1}) $. Define

    $ Σ0={τΣ:Sj0(τ)=0 for integer 0jK0}.
    $
    (4.8)

    Theorem 4.3. Suppose $ R_0 > 1 $. Let $ J_n $, $ \mathcal{S}_n^k(\tau) $, $ \Sigma $ and $ \Sigma_0 $ be defined in (4.1), (4.3), (4.7) and (4.8), respectively.

    (i) $ E_2 $ is locally asymptotically stable for all $ \tau\in[0, \tau_{max}) $ provided that either $ J_0 = \emptyset $ or $ \sup\limits_{\tau\in J_0} \mathcal{S}_0^0(\tau)\le0 $.

    (ii) If $ (\mathbf{A}_1) $ and $ (\mathbf{A}_2) $ hold, then a Hopf bifurcation occurs at $ E_2 $ when $ \tau\in \Sigma $. $ E_2 $ is locally asymptotically stable for $ \tau\in[0, \tau_0)\cup(\tau_{2L-1}, \tau_{max}) $, and unstable for $ \tau\in(\tau_0, \tau_{2L-1}) $. Further, for $ \tau\in\Sigma\backslash \Sigma_0 $, the bifurcating periodic solution is spatially nonhomogeneous; for $ \tau\in\Sigma_0 $, the bifurcating periodic solution is spatially homogeneous.

    Next investigate the properties of bifurcating periodic solutions by global Hopf bifurcation theorem [28]. Set $ y(t) = (y_1(t), y_2(t))^T = (u_1(\cdot, \tau t)-u_1^*, u_2(\cdot, \tau t)-u_2^*)^T $ and write (1.4) as

    $ y(t)=Ay(t)+Z(yt,τ,Q), (t,τ,Q)R+×[0,τmax)×R+, ytC([1,0],X2),
    $
    (4.9)

    where $ y_t(\nu) = y(t+\nu) $ for $ \nu\in[-1, 0] $, $ A = \text{diag}(\tau d_1\Delta-\tau \mu_1, \tau d_2\Delta-\tau \mu_2) $ and

    $ Z(yt)=τ((y1t(0)+u1)(rg(K,y2t(0)+u2)m(y1t(0)+u1)p(y2t(0)+u2))μ1u1cpeγτ(y1t(1)+u1)(y2t(1)+u2)μ2u2).
    $

    $ \{\Psi(t)\}_{t\ge0} $ denotes the semigroup yielded by $ A $ in $ \Omega $, with Neumann boundary condition. Clearly, $ \lim\limits_{t\to\infty}\Psi(t) = 0 $. The solution of (4.9) can be denoted by

    $ y(t)=Ψ(t)y(0)+t0Ψ(tσ)Z(yσ)dσ.
    $
    (4.10)

    If $ y(t) $ is a $ a- $periodic solution of (4.9), then (4.10) yields

    $ y(t)=tΨ(ts)Z(yσ)dσ,
    $
    (4.11)

    since $ \Psi(t+na)y(0)\to0 $ as $ n\to\infty $. Hence we only need to consider (4.11). The integral operator of (4.11) is differentiable, completely continuous, and G-equivariant by [24,Chapter 6.5]. The condition $ \min\{d_1, d_2\} > \chi $ ensures (1.4) admits exactly one positive steady state $ E_2 $. Using a similar argument as in [29,Section 4.2], $ (H1) $–$ (H4) $ in [24,Chapter 6.5] hold and we shall study the periodic solution.

    Lemma 4.4. Suppose $ R_0 > 1 $, then all nonnegative periodic solutions of (4.9) satisfies $ \kappa\le u_1(x, t), u_2(x, t) \le \xi $ for all $ (x, t)\in\overline\Omega\times\mathbb{R}^+ $, where $ \xi $ and $ \kappa $ are defined in Theorems 2.2 and 2.4, respectively.

    Lemma 4.4 can be obtained by Theorems 2.2 and 2.4. We further assume

    $ (\mathbf{A}_3): \ {g(K,u_2)-g(K,u_2^*) \over u_1-u_1^*}-{m\over r}\le0 \ \ \text{for} \ \ u_1\in[\kappa, {r-\mu_1 \over m}] \ \ \text{and} \ \ u_2\in[\kappa,\xi]. $

    This technical condition is used to exclude the $ \tau- $periodic solutions. Note assumption $ (\mathbf{A}_3) $ holds when $ K = 0 $. This, together with that $ (g(K, u_2)-g(K, u_2^*))/(u_1-u_1^*) $ is continuous in $ K $, implies there exists $ \varepsilon > 0 $ such that $ (\mathbf{A}_3) $ holds for $ 0\le K < \varepsilon $, that is, $ (\mathbf{A}_3) $ holds for the model (1.4) with weak fear effect.

    Lemma 4.5. Assume that $ R_0 > 1 $ and $ (\mathbf{A}_3) $ holds, then model (1.4) admits no nontrivial $ \tau- $periodic solution.

    Proof. Otherwise, let $ (u_1, u_2) $ be the nontrivial $ \tau- $periodic solution, that is, $ (u_1(x, t-\tau), u_2(x, t-\tau)) = (u_1(x, t), u_2(x, t)) $. Thus, we have

    $ tu1=d1Δu1+u1(rg(K,u2)μ1mu1pu2), xΩ,t>0,tu2=d2Δu2+cpeγτu1u2μ2u2, xΩ,t>0,νu1=νu2=0,xΩ,t>0,u1(x,ϑ)=u10(x,ϑ)0,u2(x,ϑ)=u20(x,ϑ)0,xΩ,ϑ[τ,0].
    $
    (4.12)

    Claim

    $ (u_1,u_2)\to E_2 \ \ \text{as} \ \ t\to\infty. $

    To see this, establish the Lyapunov functional $ \mathbb{L}_1: C(\bar\Omega, \mathbb{R}^+\times\mathbb{R}^+)\to\mathbb{R} $,

    $ \mathbb{L}_1(\phi_1,\phi_2) = \int_{\Omega}\left(ce^{-\gamma\tau}(\phi_1-u_1^*\ln\phi_1)+(\phi_2-u_2^*\ln\phi_2)\right)dx \ \text{for} \ (\phi_1,\phi_2)\in C(\bar\Omega,\mathbb{R}^+\times\mathbb{R}^+). $

    Along the solution of system (4.12), the time derivative of $ \mathbb{L}_1(\phi_1, \phi_2) $ is

    $ {d\mathbb{L}_1 \over dt} = \int_{\Omega}\left[-{d_1 \mu_2|\nabla u_1|^2 \over pu_1^2}-d_2 u_2^*{|\nabla u_2|^2 \over u_2^2} +r(u_1-u_1^*)^2\left({g(K,u_2)-g(K,u_2^*) \over u_1-u_1^*}-{m \over r}\right)\right]dx. $

    The assumption ($ \mathbf{A}_3 $) ensures $ d\mathbb{L}_1/dt\le0 $ for all $ (u_1, u_2)\in C(\bar\Omega, \mathbb{R}^+\times\mathbb{R}^+) $. The maximal invariant subset of $ d\mathbb{L}_1/dt = 0 $ is $ \{E_2\} $. Therefore, $ E_2 $ attracts all positive solution of (4.12) by LaSalle-Lyapunov invariance principle [21,22] which excludes the nonnegative nontrivial $ \tau- $periodic solution.

    To obtain the nonexistence of $ \tau- $periodic solution for model (1.4), we must use the condition $ (\mathbf{A}_3) $ which is very restrictive. However, in numerical simulations, Lemma 4.5 remains true even $ (\mathbf{A}_3) $ is violated. Thus, we conjecture the nonexistence of $ \tau $-periodic solution for (1.4).

    In the beginning of this section, when $ \tau = \tau_i $ with $ 0\le i\le 2L-1 $, $ \pm i \delta_n(\tau_i) $ are a pair of eigenvalues of (2.11). Give the next standard notations:

    $ (i) $ For $ 0\le i\le 2L-1 $, $ (E_2, \tau_i, 2\pi/(\delta_n(\tau_i)\tau_i)) $ is an isolated singular point.

    $ (ii) $ $ \Gamma = \mathcal{C}l\{(y, \tau, Q)\in X^2\times\mathbb{R}^+\times\mathbb{R}^+:\ y\ \text{is the nontrivial Q-periodic solution of (4.9)}\} $ is a closed subset of $ X^2\times\mathbb{R}^+\times\mathbb{R}^+ $.

    $ (iii) $ For $ 0\le i\le 2L-1 $, $ \mathcal{C}_i(E_2, \tau_i, Q_i) $ is the connected component of $ (E_2, \tau_i, Q_i) $ in $ \Gamma $.

    $ (iv) $ For integer $ 0\le k\le \max\limits_{n\in[0, M]} K_n-1 $, let $ \Sigma_H^k = \{\tau\in\Sigma: \mathcal{S}_n^k(\tau) = 0\ \text{for integer}\ 0\le n\le M\}. $

    We are ready to present a conclusion on the global Hopf branches by a similar manner in [30,Theorem 4.12].

    Theorem 4.6. Assume $ R_0 > 1 $, $ \min\{d_1, d_2\} > \chi $ and $ (\mathbf{A}_1) $–$ (\mathbf{A}_3) $ hold. Then we have the following results.

    (i) The global Hopf branch $ \mathcal{C}_i(E_2, \tau_i, Q_i) $ is bounded for $ \tau_i\in\Sigma_H^k $ with $ k\ge1 $ and $ i\in[0, 2L-1] $.

    (ii) For any $ \tau\in(\min\limits_{k}\Sigma_H^k, \max\limits_{k}\Sigma_H^k) $, model (1.4) possesses at least one periodic solution.

    (iii) For $ \tau_{i_1}\in\Sigma_H^{k_1} $, $ \tau_{i_2}\in\Sigma_H^{k_2} $ with $ i_1, i_2\in[0, 2L-1] $ and $ k_1, k_2\in[0, \max\limits_{n\in[0, M]} K_n-1] $, we have $ \mathcal{C}_{i_1}(E_2, \tau_{i_1}, Q_{i_1})\cap\mathcal{C}_{i_2}(E_2, \tau_{i_2}, Q_{i_2}) = \emptyset $ if $ k_1\ne k_2 $.

    To verify obtained theoretical results, the numerical simulation is presented in this part. We choose the fear effect function as $ g(K, u_2) = e^{-K u_2} $ and let

    $ Ω=(0,2π),d1=d2=1,r=8,μ1=0.1,a=0.2,p=1,γ=0.3,μ2=0.2,c=0.1.
    $

    Figure 1 shows the existence and stability of $ E_0 $, $ E_1 $ and $ E_2 $, and Hopf bifurcation curve of model (1.4) in $ K-\tau $ plane. Above the line $ \tau = \tau_{max} $, $ E_2 $ does not exist, $ E_1 $ is globally asymptotically stable and $ E_0 $ is unstable; Below the line $ \tau = \tau_{max} $, there exist three constant steady states $ E_0, E_1 $ and $ E_2 $. In the region which is bounded by $ \tau = \tau_{max} $ and $ 2mu_1^*+u_2^*(rg'_{u_2}(K, u_2^*)-p) = 0 $, no Hopf bifurcation occurs and $ E_2 $ is stable. In the region which is bounded by $ \tau = \tau_0 $ and $ \tau = \tau_1 $, there exist periodic solutions through Hopf bifurcation bifurcating at $ E_2 $

    Figure 1.  Basic dynamics of model (1.4) in different regions with $ K-\tau $ plane.

    Fix $ K = 1.07 $, then by simple calculation, we have $ \tau_{max}\approx9.944 $, $ \tau_0\approx0.85 $, $ \tau_1\approx3.55 $, $ J_0 = [0, 5.25] $, $ J_1 = [0, 3.05] $, $ J_n = \emptyset $ for $ n\ge2 $, $ \sup\limits_{\tau\in J_0} \mathcal{S}_0^0 > 0 $ and $ \sup\limits_{\tau\in J_1}\mathcal{S}_1^0 < 0 $. Thus, all Hopf bifurcation values $ \tau_0 $ and $ \tau_1 $ are the all zeros of $ S_0^k(\tau) $ for integer $ k\ge0 $. We summarize the dynamics of model (1.4) as follows.

    $ (i) $ For $ \tau\in[\tau_{max}, \infty) $, we obtain $ E_1 $ is globally asymptotically stable and $ E_0 $ is unstable, see Figure 2(a).

    Figure 2.  (a) $ \tau = 10 > \tau_{max} $, $ E_1 $ is globally asymptotically stable. (b) $ \tau = 0.5\in(0, \tau_0) $, $ E_2 $ is locally asymptotically stable. (c) $ \tau = 2\in(\tau_0, \tau_1) $, a homogeneous periodic solution emerges.

    $ (ii) $ For $ \tau\in(0, \tau_0)\cup(\tau_1, \tau_{max}) $, we obtain $ E_2 $ is locally asymptotically stable, and two constant steady state $ E_0 $ and $ E_1 $ are unstable, as shown in Figure 2(b).

    $ (iii) $ For $ \tau\in(\tau_0, \tau_1) $, we obtain $ E_0, E_1 $ and $ E_2 $ are unstable, a periodic solution bifurcates from $ E_2 $, as shown in Figure 2(c). Further, a Hopf bifurcation occurs at $ E_2 $ when $ \tau = \tau_0, \text{and}\ \tau_1 $.

    Next, we explore the global Hopf branches by choosing $ \Omega = (0, 4\pi) $ and

    $ d1=1,d2=1,r=10,μ1=5,a=0.4,p=1,γ=0.05,μ2=4.75,c=2.5,K=0.4.
    $
    (5.1)

    As shown in Figure 3, we collect all zeros of $ \mathcal{S}_n^k(\tau) $ for nonnegative $ n, k $ in set $ B_i $ with $ i = 0, 1, 2, 3 $, namely,

    $ B0={0.06,1.88,3.86,6.14,9.54,11.8,13.36,13.8,13.98,14.04},B1={0.08,1.96,4.04,6.56,12.36,13.01,13.25,13.35},B2={0.15,2.31,4.96,10.16,10.85,11.07}, B3={0.39,6.45}.
    $
    Figure 3.  The graphs of $ \mathcal{S}_n^k(\tau) $ with integers $ 0\le n\le 3 $ and $ 0\le k\le 4 $.

    From Theorem 4.3, $ E_2 $ is locally asymptotically stable when $ \tau\in(0, 0.06)\cup(14.04, \tau_{max}) $ and unstable when $ \tau\in(0.06, 14.04) $, at least one periodic solution emerges for $ \tau\in(0.06, 14.04) $. Moreover, a spatially homogeneous periodic solution bifurcates from $ \tau\in B_0 $, see Figure 4(a); a spatially nonhomogeneous periodic solution bifurcates from $ \tau\in B_1\cup B_2\cup B_3 $, see Figure 4(b).

    Figure 4.  (a) $ \tau = 1.88\in B_0 $, the bifurcating periodic solution is spatially homogeneous. (b) $ \tau = 2.68\in(\tau_4, \tau_5) $, the bifurcating periodic solution is spatially nonhomogeneous.

    In model (1.3), the kernel function takes form as $ \mathcal{G} = e^{-\gamma\tau}f(x-y) $ by reasonable assumptions and our theoretical results are derived by choosing $ f(x-y) $ as Dirac-delta function. Next, we choose

    $ f=e2|xy|2Ωe2|xy|2dy.
    $
    (5.2)

    Here, $ f $ is the truncated normal distribution. Clearly, $ \int_\Omega f(x-y) dy = 1 $. Let $ \Omega = (0, 4\pi) $ and the parameter values chosen according to (5.1). As shown in Figure 5, when $ \tau = 1.03 $, a stable nonhomogeneous periodic solution emerges; when $ \tau = 1.5 $, a homogeneous periodic solution emerges; when $ \tau = 16 $, the positive constant steady state is stable. Numerical simulation suggests nonlocal interaction can produce more complex dynamics.

    Figure 5.  For the nonlocal model (1.3) with $ \mathcal{G} $ defined in (5.2), delay $ \tau $ induces different dynamics.

    We formulate an age-structured predator-prey model with fear effect. For $ R_0\le1 $, the global asymptotic stability for predator-free constant steady state is proved via Lyapunov-LaSalle invariance principle. For $ R_0 > 1 $, we prove the nonexistence of spatially nonhomogeneous steady states and exclude steady state bifurcation. Finally, we carry out Hopf bifurcation analyses and prove global Hopf branches are bounded.

    Our theoretical results are obtained by choosing a special kernel function in model (1.3). However, in numerical results, we explore rich dynamics when the nonlocal interaction is incorporated into the delayed term. The theoretical results concerning the nonlocal model are left as an open problem.

    H. Shu was partially supported by the National Natural Science Foundation of China (No. 11971285), the Fundamental Research Funds for the Central Universities (No. GK202201002), the Natural Science Basic Research Program of Shaanxi (No. 2023-JC-JQ-03), and the Youth Innovation Team of Shaanxi Universities. W. Xu was partially supported by a scholarship from the China Scholarship Council while visiting the University of New Brunswick. P. Jiang was partially supported by the National Natural Science Foundation of China (No. 72274119).

    The authors declare no conflicts of interest in this paper.

    [1] A theory of \begin{document} $L^1$ \end{document}
    -dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Rational Mech. Anal. (2011) 201: 27-86.
    [2] O. A. Bascur, Example of a dynamic flotation framework, In: Centenary of Flotation Symposium, Brisbane, QLD, 6-9 June 2005, Australasian Institute of Mining and Metallurgy Publication Series, 2005, 85-91.
    [3] A consistent modelling methodology for secondary settling tanks: A reliable numerical method. Water Sci. Technol. (2013) 68: 192-208.
    [4] R. Bürger, S. Diehl and C. Mejías, A difference scheme for a degenerating convection-diffusion-reaction system modelling continuous sedimentation, ESAIM: Math. Model. Numer. Anal., to appear.
    [5] Conservation laws with discontinuous flux: A short introduction. J. Eng. Math. (2008) 60: 241-247.
    [6] On an extended clarifier-thickener model with singular source and sink terms. Eur. J. Appl. Math. (2006) 17: 257-292.
    [7] A family of numerical schemes for kinematic flows with discontinuous flux. J. Eng. Math. (2008) 60: 387-425.
    [8] Well-posedness in \begin{document} $BV_t$ \end{document}
    and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units. Numer. Math. (2004) 97: 25-65.
    [9] Second-order schemes for conservation laws with discontinuous flux modelling clarifier-thickener units. Numer. Math. (2010) 116: 579-617.
    [10] A model of continuous sedimentation of flocculated suspensions in clarifier-thickener units. SIAM J. Appl. Math. (2005) 65: 882-940.
    [11] On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Netw. Heterog. Media (2010) 5: 461-485.
    [12] J. M. Coulson, J. F. Richardson, J. R. Backhurst and J. H. Harker, Coulson and Richardson's Chemical Engineering. Volume 2: Particle Technology and Separation Processes, Fourth Ed., Butterworth-Heinemann, Oxford, 2000.
    [13] Fluidized bed desliming in fine particle flotation, Part Ⅰ. Chem. Eng. Sci. (2014) 108: 283-298.
    [14] On scalar conservation laws with point source and discontinuous flux function. SIAM J. Math. Anal. (1995) 26: 1425-1451.
    [15] A conservation law with point source and discontinuous flux function modelling continuous sedimentation. SIAM J. Appl. Math. (1996) 56: 388-419.
    [16] Operating charts for continuous sedimentation Ⅰ: Control of steady states. J. Eng. Math. (2001) 41: 117-144.
    [17] Operating charts for continuous sedimentation Ⅱ: Step responses. J. Eng. Math. (2005) 53: 139-185.
    [18] A uniqueness condition for nonlinear convection-diffusion equations with discontinuous coefficients. J. Hyperbolic Differential Equations (2009) 6: 127-159.
    [19] Numerical identification of constitutive functions in scalar nonlinear convection-diffusion equations with application to batch sedimentation. Appl. Numer. Math. (2015) 95: 154-172.
    [20] Fast reliable simulations of secondary settling tanks in wastewater treatment with semi-implicit time discretization. Comput. Math. Appl. (2015) 70: 459-477.
    [21] J. A. Finch and G. S. Dobby, Column Flotation, Pergamon Press, London, 1990.
    [22] bed desliming in fine particle flotation Part Ⅱ: Flotation of a model feed. Chem. Eng. Sci. (2014) 108: 299-309.
    [23] Finite difference methods for numerical computation of discontinuous solutions of equations of fluid dynamics. Mat. Sb. (1959) 47: 271-306.
    [24] H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Second Edition, Springer Verlag, Berlin, 2015. doi: 10.1007/978-3-662-47507-2
    [25] Liquid transport in multi-layer froths. J. Colloid Interf. Sci. (2007) 314: 207-213.
    [26] First order quasilinear equations in several independent variables. Math. USSR-Sb. (1970) 10: 217-243.
    [27] The coexistence of the froth and liquid phases in a flotation column. Chem. Eng. Sci. (1992) 47: 4345-4355.
    [28] S. Mishra, Numerical methods for conservation laws with discontinuous coefficients, Chapter 18 in R. Abgrall and C.-W. Shu (eds.), Handbook of Numerical Methods for Hyperbolic Problems: Applied and Modern Issues, North Holland, 18 (2017), 479-506.
    [29] Analysis of creaming and formation of foam layer in aerated liquid. J. Colloid Interface Sci. (2010) 345: 566-572.
    [30] O. A. Oleinik, Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation Uspekhi Mat. Nauk., 14 (1959), 165-170. Amer. Math. Soc. Trans. Ser. 2, 33 (1964), 285-290.
    [31] Flow characterization of a flotation column. Canad. J. Chem. Eng. (1989) 67: 916-923.
    [32] Oil recovery from oil in water emulsions using a flotation column. Canad. J. Chem. Eng. (1990) 68: 959-967.
    [33] Amenability testing of fine coal beneficiation using laboratory flotation column. Materials Transactions (2015) 56: 766-773.
    [34] Sedimentation and fluidisation: Part Ⅰ. Chemical Engineering Research and Design (1997) 75: 82-100.
    [35] Science and technology of dispersed two-phase systems—Ⅰ and Ⅱ. Chem. Eng. Sci. (1982) 37: 1125-1150.
    [36] A. Rushton, A. S. Ward and R. G. Holdich, Solid-Liquid Filtration and Separation Technology, Wiley Online Library, 2008. doi: 10.1002/9783527614974
    [37] Convective-dispersive gangue transport in flotation froth. Chem. Eng. Sci. (2007) 62: 5736-5744.
    [38] On the drift-flux analysis of flotation and foam fractionation processes. Canad. J. Chem. Eng. (2008) 86: 635-642.
    [39] Drift flux modelling for a two-phase system in a flotation column. Canad. J. Chem. Eng. (2005) 83: 169-176.
    [40] G. B. Wallis, One-Dimensional two-Phase Flow, McGraw-Hill, New York, 1969.
    [41] The terminal speed of single drops or bubbled in an infinite medium. Int. J. Multiphase Flow (1974) 1: 491-511.
    [42] B. A. Wills and T. J. Napier-Munn, Wills' Mineral Processing Technology, Seventh Edition, Butterworth-Heinemann, Oxford, 2006.
    [43] Bubble size estimation in a bubble swarm. J. Colloid Interf. Sci. (1988) 126: 37-44.
    [44] A gas-liquid drift-flux model for flotation columns. Minerals Eng. (1993) 6: 199-205.
  • This article has been cited by:

    1. Helani Perera, Shalinda Fernando, Miyuru B. Gunathilake, T. A. J. G. Sirisena, Upaka Rathnayake, Antonio Donateo, Evaluation of Satellite Rainfall Products over the Mahaweli River Basin in Sri Lanka, 2022, 2022, 1687-9317, 1, 10.1155/2022/1926854
    2. Miyuru B. Gunathilake, M. N. M. Zamri, Tharaka P. Alagiyawanna, Jayanga T. Samarasinghe, Pavithra K. Baddewela, Mukand S. Babel, Manoj K. Jha, Upaka S. Rathnayake, Hydrologic Utility of Satellite-Based and Gauge-Based Gridded Precipitation Products in the Huai Bang Sai Watershed of Northeastern Thailand, 2021, 8, 2306-5338, 165, 10.3390/hydrology8040165
    3. Yan Li, Teng Ma, Yan Wang, 2022, Chapter 107, 978-3-031-05483-9, 822, 10.1007/978-3-031-05484-6_107
    4. Jingjing Huang, Rahim Khan, Personalized College English Learning Based on Deep Learning under the Background of Big Data, 2022, 2022, 1687-5273, 1, 10.1155/2022/7361746
    5. Juhar Mohammed, Yenesew Mengiste, Vijay P. Singh, Improving spatio-temporal precipitation estimates in data scarce river basins: an application of machine learning-based multi-source data merging, 2022, 1436-3240, 10.1007/s00477-022-02346-4
    6. Sanjana De Zoysa, Helani Perera, Miyuru B. Gunathilake, Upaka Rathnayake, Development of rainfall intensity-duration-frequency curves for the Fiji Islands: integrating TRMM-3B42 and measured gauge data with future projections, 2023, 35, 2766-9645, 361, 10.1080/27669645.2023.2278827
    7. Paul Muñoz, David F. Muñoz, Johanna Orellana-Alvear, Rolando Célleri, Enhancing runoff forecasting through the integration of satellite precipitation data and hydrological knowledge into machine learning models, 2024, 0921-030X, 10.1007/s11069-024-06939-w
    8. Fuzeng Wang, Xuejiao An, Qiusong Wang, Zixin Li, Lin Han, Debin Su, Research on a Rainfall Prediction Model in Guizhou Based on Raindrop Spectra, 2024, 15, 2073-4433, 495, 10.3390/atmos15040495
    9. Sanjana De Zoysa, Jeewanthi Sirisena, Helani Perera, Shalinda Fernando, Miyuru Gunathilake, Upaka Rathnayake, Development of intensity-duration-frequency curves for Sri Lanka using satellite-based precipitation products – Understanding environmental conditions and concerns, 2024, 9, 26660164, 100713, 10.1016/j.cscee.2024.100713
    10. Gilbert Hinge, Swati Sirsant, Amandeep Kumar, Ruchika Gupta, Mohamed A. Hamouda, Enhancing flood prediction in Southern West Bengal, India using ensemble machine learning models optimized with symbiotic organisms search algorithm, 2024, 1436-3240, 10.1007/s00477-024-02712-4
    11. Lorenza Ceferino-Hernández, Francisco Magaña-Hernández, Enrique Campos-Campos, Gabriela Adina Morosanu, Carlos E. Torres-Aguilar, René Sebastián Mora-Ortiz, Sergio A. Díaz, Assessment of PERSIANN Satellite Products over the Tulijá River Basin, Mexico, 2024, 16, 2072-4292, 2596, 10.3390/rs16142596
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8324) PDF downloads(363) Cited by(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog