On gradient structures for Markov chains and the passage to Wasserstein gradient flows

  • Received: 01 March 2014 Revised: 01 October 2014
  • 35K10, 35K20, 37L05, 49M25, 60F99, 65M08, 60J27, 70G75, 82B35.

  • We study the approximation of Wasserstein gradient structures by their finite-dimensional analog. We show that simple finite-volume discretizations of the linear Fokker-Planck equation exhibit the recently established entropic gradient-flow structure for reversible Markov chains. Then we reprove the convergence of the discrete scheme in the limit of vanishing mesh size using only the involved gradient-flow structures. In particular, we make no use of the linearity of the equations nor of the fact that the Fokker-Planck equation is of second order.

    Citation: Karoline Disser, Matthias Liero. On gradient structures for Markov chains and the passage to Wasserstein gradient flows[J]. Networks and Heterogeneous Media, 2015, 10(2): 233-253. doi: 10.3934/nhm.2015.10.233

    Related Papers:

    [1] Guy Bouchitté, Ben Schweizer . Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings. Networks and Heterogeneous Media, 2013, 8(4): 857-878. doi: 10.3934/nhm.2013.8.857
    [2] Grégoire Allaire, Tuhin Ghosh, Muthusamy Vanninathan . Homogenization of stokes system using bloch waves. Networks and Heterogeneous Media, 2017, 12(4): 525-550. doi: 10.3934/nhm.2017022
    [3] Vivek Tewary . Combined effects of homogenization and singular perturbations: A bloch wave approach. Networks and Heterogeneous Media, 2021, 16(3): 427-458. doi: 10.3934/nhm.2021012
    [4] Mohamed Belhadj, Eric Cancès, Jean-Frédéric Gerbeau, Andro Mikelić . Homogenization approach to filtration through a fibrous medium. Networks and Heterogeneous Media, 2007, 2(3): 529-550. doi: 10.3934/nhm.2007.2.529
    [5] Luca Placidi, Julia de Castro Motta, Rana Nazifi Charandabi, Fernando Fraternali . A continuum model for the tensegrity Maxwell chain. Networks and Heterogeneous Media, 2024, 19(2): 597-610. doi: 10.3934/nhm.2024026
    [6] Mengjun Yu, Kun Li . A data-driven reduced-order modeling approach for parameterized time-domain Maxwell's equations. Networks and Heterogeneous Media, 2024, 19(3): 1309-1335. doi: 10.3934/nhm.2024056
    [7] Maksym Berezhnyi, Evgen Khruslov . Non-standard dynamics of elastic composites. Networks and Heterogeneous Media, 2011, 6(1): 89-109. doi: 10.3934/nhm.2011.6.89
    [8] Tom Freudenberg, Michael Eden . Homogenization and simulation of heat transfer through a thin grain layer. Networks and Heterogeneous Media, 2024, 19(2): 569-596. doi: 10.3934/nhm.2024025
    [9] Hiroshi Matano, Ken-Ichi Nakamura, Bendong Lou . Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit. Networks and Heterogeneous Media, 2006, 1(4): 537-568. doi: 10.3934/nhm.2006.1.537
    [10] Hirofumi Notsu, Masato Kimura . Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks and Heterogeneous Media, 2014, 9(4): 617-634. doi: 10.3934/nhm.2014.9.617
  • We study the approximation of Wasserstein gradient structures by their finite-dimensional analog. We show that simple finite-volume discretizations of the linear Fokker-Planck equation exhibit the recently established entropic gradient-flow structure for reversible Markov chains. Then we reprove the convergence of the discrete scheme in the limit of vanishing mesh size using only the involved gradient-flow structures. In particular, we make no use of the linearity of the equations nor of the fact that the Fokker-Planck equation is of second order.


    [1] S. Adams, N. Dirr, M. A. Peletier and J. Zimmer, From a large-deviations principle to the Wasserstein gradient flow: A new micro-macro passage, Communications in Mathematical Physics, 307 (2011), 791-815. doi: 10.1007/s00220-011-1328-4
    [2] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005.
    [3] S. Arnrich, A. Mielke, M. A. Peletier, G. Savaré and M. Veneroni, Passing to the limit in a Wasserstein gradient flow: From diffusion to reaction, Calc. Var. Part. Diff. Eqns., 44 (2012), 419-454. doi: 10.1007/s00526-011-0440-9
    [4] J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), 375-393. doi: 10.1007/s002110050002
    [5] M. Bessemoulin-Chatard, A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme, Numer. Math., 121 (2012), 637-670. doi: 10.1007/s00211-012-0448-x
    [6] A. Bradji and J. Fuhrmann, Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes, Appl. Math., 58 (2013), 1-38. doi: 10.1007/s10492-013-0001-y
    [7] C. Chainais-Hillairet, M. Gisclon and A. Jüngel, A finite-volume scheme for the multidimensional quantum drift-diffusion model for semiconductors, Numer. Methods Partial Differential Equations, 27 (2011), 1483-1510. doi: 10.1002/num.20592
    [8] S.-N. Chow, W. Huang, Y. Li and H. Zhou, Fokker-Planck equations for a free energy functional or Markov process on a graph, Arch. Rational Mech. Anal., 203 (2012), 969-1008. doi: 10.1007/s00205-011-0471-6
    [9] M. Erbar and J. Maas, Ricci curvature of finite Markov chains via convexity of the entropy, Arch. Rational Mech. Anal., 206 (2012), 997-1038. doi: 10.1007/s00205-012-0554-z
    [10] M. Erbar and J. Maas, Gradient flow structures for discrete porous medium equations, Discrete Contin. Dyn. Syst., 34 (2014), 1355-1374. doi: 10.3934/dcds.2014.34.1355
    [11] R. Eymard, T. Gallouët and R. Herbin, The finite volume method, in Handbook of Numerical Analysis. Vol. VII, North Holland, Amsterdam, 2000, 713-1022.
    [12] R. Eymard and J.-M. Hérard, eds., Finite Volumes for Complex Applications V, ISTE, London, 2008.
    [13] J. Fořt, J. Fürst Jiří, H. R. Herbin and F. Hubert, eds., Finite Volumes for Complex Applications. VI. Problems & perspectives. Volume 1, 2, Springer Proceedings in Mathematics, 4, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-20671-9
    [14] J. Fuhrmann, A. Linke and H. Langmach, A numerical method for mass conservative coupling between fluid flow and solute transport, Appl. Numer. Math., 61 (2011), 530-553. doi: 10.1016/j.apnum.2010.11.015
    [15] K. Gärtner, Charge transport in semiconductors and a finite volume scheme, in Finite volumes for complex applications. VI. Problems & perspectives. Volume 1, 2, Springer Proc. Math., 4, Springer, Heidelberg, 2011, 513-522. doi: 10.1007/978-3-642-20671-9_54
    [16] N. Gigli, On the heat flow on metric measure spaces: Existence, uniqueness and stability, Calc. Var. Partial Differential Equations, 39 (2010), 101-120. doi: 10.1007/s00526-009-0303-9
    [17] N. Gigli and J. Maas, Gromov-Hausdorff convergence of discrete transportation metrics, SIAM J. Math. Anal., 45 (2013), 879-899. doi: 10.1137/120886315
    [18] D. Hilhorst, H. C. V. Do and Y. Wang, A finite volume method for density driven flows in porous media, in CEMRACS'11: Multiscale Coupling of Complex Models in Scientific Computing, ESAIM Proc., 38, EDP Sci., Les Ulis, 2012, 376-386. doi: 10.1051/proc/201238021
    [19] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Analysis, 29 (1998), 1-17. doi: 10.1137/S0036141096303359
    [20] M. Liero, Passing from bulk to bulk-surface evolution in the Allen-Cahn equation, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 919-942. doi: 10.1007/s00030-012-0189-7
    [21] M. Liero and A. Mielke, Gradient structures and geodesic convexity for reaction-diffusion systems, Phil. Trans. Royal Soc. A, 371 (2013), 20120346, 28pp. doi: 10.1098/rsta.2012.0346
    [22] M. Liero and U. Stefanelli, Weighted inertia-dissipation-energy functionals for semilinear equations, Boll. Unione Mat. Ital. (9), 6 (2013), 1-27.
    [23] J. Maas, Gradient flows of the entropy for finite Markov chains, J. Funct. Anal., 261 (2011), 2250-2292. doi: 10.1016/j.jfa.2011.06.009
    [24] P. A. Markowich, The Stationary Semiconductor Device Equations, Computational Microelectronics, Springer-Verlag, Vienna, 1986. doi: 10.1007/978-3-7091-3678-2
    [25] D. Matthes and H. Osberger, Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation, ESAIM Math. Model. Numer. Anal., 48 (2014), 697-726. doi: 10.1051/m2an/2013126
    [26] A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011), 1329-1346. doi: 10.1088/0951-7715/24/4/016
    [27] A. Mielke, Geodesic convexity of the relative entropy in reversible Markov chains, Calc. Var. Part. Diff. Eqns., 48 (2013), 1-31. doi: 10.1007/s00526-012-0538-8
    [28] A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions, Discr. Cont. Dynam. Systems Ser. S, 6 (2013), 479-499. doi: 10.3934/dcdss.2013.6.479
    [29] A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems, Calc. Var. Part. Diff. Eqns., 31 (2008), 387-416. doi: 10.1007/s00526-007-0119-4
    [30] A. Mielke and U. Stefanelli, Weighted energy-dissipation functionals for gradient flows, ESAIM Control Optim. Calc. Var., 17 (2011), 52-85. doi: 10.1051/cocv/2009043
    [31] L. Onsager, Reciprocal relations in irreversible processes, I+II, Physical Review, 37 (1931), 405-426; Part II, 38, 2265-2267.
    [32] F. Otto, Dynamics of labyrinthine pattern formation in magnetic fluids: A mean-field theory, Arch. Rational Mech. Anal., 141 (1998), 63-103. doi: 10.1007/s002050050073
    [33] F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174. doi: 10.1081/PDE-100002243
    [34] E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672. doi: 10.1002/cpa.20046
  • This article has been cited by:

    1. Daniel Peterseim, Barbara Verfürth, Computational high frequency scattering from high-contrast heterogeneous media, 2020, 89, 0025-5718, 2649, 10.1090/mcom/3529
    2. Mario Ohlberger, Barbara Verfürth, Localized Orthogonal Decomposition for two-scale Helmholtz-typeproblems, 2017, 2, 2473-6988, 458, 10.3934/Math.2017.2.458
    3. Klaas Hendrik Poelstra, Ben Schweizer, Maik Urban, The geometric average of curl-free fields in periodic geometries, 2021, 41, 2196-6753, 179, 10.1515/anly-2020-0053
    4. Junshan Lin, Hai Zhang, Scattering by a Periodic Array of Subwavelength Slits II: Surface Bound States, Total Transmission, and Field Enhancement in Homogenization Regimes, 2018, 16, 1540-3459, 954, 10.1137/17M1133786
    5. Patrizia Donato, Agnes Lamacz, Ben Schweizer, Sound absorption by perforated walls along boundaries, 2022, 101, 0003-6811, 4397, 10.1080/00036811.2020.1855329
    6. Agnes Lamacz, Ben Schweizer, Effective acoustic properties of a meta-material consisting of small Helmholtz resonators, 2017, 10, 1937-1179, 815, 10.3934/dcdss.2017041
    7. Mario Ohlberger, Barbara Verfurth, A New Heterogeneous Multiscale Method for the Helmholtz Equation with High Contrast, 2018, 16, 1540-3459, 385, 10.1137/16M1108820
    8. B. Schweizer, M. Urban, Effective Maxwell’s equations in general periodic microstructures, 2018, 97, 0003-6811, 2210, 10.1080/00036811.2017.1359563
    9. B. Schweizer, The low-frequency spectrum of small Helmholtz resonators, 2015, 471, 1364-5021, 20140339, 10.1098/rspa.2014.0339
    10. Hari Shankar Mahato, Upscaling of Helmholtz Equation Originating in Transmission through Metallic Gratings in Metamaterials, 2016, 2016, 2356-6140, 1, 10.1155/2016/7436136
    11. A. Lamacz, B. Schweizer, A Negative Index Meta-Material for Maxwell's Equations, 2016, 48, 0036-1410, 4155, 10.1137/16M1064246
    12. Ben Schweizer, Resonance Meets Homogenization, 2017, 119, 0012-0456, 31, 10.1365/s13291-016-0153-2
    13. Robert Lipton, Ben Schweizer, Effective Maxwell’s Equations for Perfectly Conducting Split Ring Resonators, 2018, 229, 0003-9527, 1197, 10.1007/s00205-018-1237-1
    14. Barbara Verfürth, Numerical Multiscale Methods for Waves in High-Contrast Media, 2024, 126, 0012-0456, 37, 10.1365/s13291-023-00273-z
    15. A. Kirsch, B. Schweizer, Time-Harmonic Maxwell’s Equations in Periodic Waveguides, 2025, 249, 0003-9527, 10.1007/s00205-025-02099-8
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4573) PDF downloads(185) Cited by(20)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog