Citation: Seung-Yeal Ha, Yongduck Kim, Zhuchun Li. Asymptotic synchronous behavior of Kuramoto type models with frustrations[J]. Networks and Heterogeneous Media, 2014, 9(1): 33-64. doi: 10.3934/nhm.2014.9.33
[1] | Tingting Zhu . Synchronization of the generalized Kuramoto model with time delay and frustration. Networks and Heterogeneous Media, 2023, 18(4): 1772-1798. doi: 10.3934/nhm.2023077 |
[2] | Xiaoxue Zhao, Zhuchun Li . Synchronization of a Kuramoto-like model for power grids with frustration. Networks and Heterogeneous Media, 2020, 15(3): 543-553. doi: 10.3934/nhm.2020030 |
[3] | Seung-Yeal Ha, Yongduck Kim, Zhuchun Li . Asymptotic synchronous behavior of Kuramoto type models with frustrations. Networks and Heterogeneous Media, 2014, 9(1): 33-64. doi: 10.3934/nhm.2014.9.33 |
[4] | Tingting Zhu . Emergence of synchronization in Kuramoto model with frustration under general network topology. Networks and Heterogeneous Media, 2022, 17(2): 255-291. doi: 10.3934/nhm.2022005 |
[5] | Seung-Yeal Ha, Se Eun Noh, Jinyeong Park . Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks and Heterogeneous Media, 2015, 10(4): 787-807. doi: 10.3934/nhm.2015.10.787 |
[6] | Seung-Yeal Ha, Hansol Park, Yinglong Zhang . Nonlinear stability of stationary solutions to the Kuramoto-Sakaguchi equation with frustration. Networks and Heterogeneous Media, 2020, 15(3): 427-461. doi: 10.3934/nhm.2020026 |
[7] | Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang . Uniform stability and mean-field limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13(2): 297-322. doi: 10.3934/nhm.2018013 |
[8] | Seung-Yeal Ha, Jaeseung Lee, Zhuchun Li . Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators. Networks and Heterogeneous Media, 2017, 12(1): 1-24. doi: 10.3934/nhm.2017001 |
[9] | Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun . Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks and Heterogeneous Media, 2013, 8(4): 943-968. doi: 10.3934/nhm.2013.8.943 |
[10] | Vladimir Jaćimović, Aladin Crnkić . The General Non-Abelian Kuramoto Model on the 3-sphere. Networks and Heterogeneous Media, 2020, 15(1): 111-124. doi: 10.3934/nhm.2020005 |
[1] |
J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185. doi: 10.1103/RevModPhys.77.137
![]() |
[2] | D. Aeyels and J. A. Rogge, Stability of phase locking and existence of entrainment in networks of globally coupled oscillators, in Proc. 6th IFAC Symposium on Nonlinear Control Systems, 3 (2004), 1031-1036. |
[3] |
P. Ashwin and J. W. Swift, The dynamics of $n$ weakly coupled identical oscillators, J. Nonlinear Sci., 2 (1992), 69-108. doi: 10.1007/BF02429852
![]() |
[4] |
L. L. Bonilla, J. C. Neu and R. Spigler, Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators, J. Stat. Phys., 67 (1992), 313-330. doi: 10.1007/BF01049037
![]() |
[5] | preprint, arXiv:1008.0249. |
[6] |
Y. Choi, S.-Y. Ha and S.-B. Yun, Complete synchronization of Kuramoto oscillators with finite inertia, Physica D, 240 (2010), 32-44. doi: 10.1016/j.physd.2010.08.004
![]() |
[7] |
Y. Choi, S.-Y. Ha, S.-E. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754. doi: 10.1016/j.physd.2011.11.011
![]() |
[8] |
N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Autom. Control, 54 (2009), 353-357. doi: 10.1109/TAC.2008.2007884
![]() |
[9] |
H. Daido, Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions, Phys. Rev. Lett., 68 (1992), 1073-1076. doi: 10.1103/PhysRevLett.68.1073
![]() |
[10] |
F. De Smet and D. Aeyels, Partial entrainment in the finite Kuramoto-Sakaguchi model, Physica D, 234 (2007), 81-89. doi: 10.1016/j.physd.2007.06.025
![]() |
[11] |
J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480. doi: 10.4310/CMS.2013.v11.n2.a7
![]() |
[12] | F. Dörfler and F. Bullo, Synchronization in complex oscillator networks: A survey, submitted, (2013). |
[13] |
F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst., 10 (2011), 1070-1099. doi: 10.1137/10081530X
![]() |
[14] |
F. Dörfler, M. Chertkov and F. Bullo, Synchronization in complex oscillator networks and smart grids, Proceedings of the National Academy of Sciences, 110 (2013), 2005-2010. doi: 10.1073/pnas.1212134110
![]() |
[15] |
G. B. Ermentrout, Synchronization in a pool of mutually coupled oscillators with random frequencies, J. Math. Biol., 22 (1985), 1-9. doi: 10.1007/BF00276542
![]() |
[16] |
S.-Y. Ha and M.-J. Kang, Fast and slow relaxations to bi-cluster configurations for the ensemble of Kuramoto oscillators, Quart. Appl. Math., 71 (2013), 707-728. doi: 10.1090/S0033-569X-2013-01302-0
![]() |
[17] |
S.-Y. Ha, T. Ha and J. H. Kim, On the complete synchronization for the globally coupled Kuramoto model, Physica D, 239 (2010), 1692-1700. doi: 10.1016/j.physd.2010.05.003
![]() |
[18] | S.-Y. Ha, C. Lattanzio, B. Rubino and M. Slemrod, Flocking and synchronization of particle models, Quart. Appl. Math., 69 (2011), 91-103. |
[19] |
S.-Y. Ha, and Z. Li, Complete synchronization of Kuramoto oscillators with hierarchical leadership, Commun. Math. Sci., 12 (2014), 485-508. doi: 10.4310/CMS.2014.v12.n3.a5
![]() |
[20] |
S.-Y. Ha, Z. Li and X. Xue, Formation of phase-locked states in a population of locally interacting Kuramoto oscillators, J. Differential Equations, 255 (2013), 3053-3070. doi: 10.1016/j.jde.2013.07.013
![]() |
[21] |
S.-Y. Ha and M. Slemrod, A fast-slow dynamical systems theory for the Kuramoto phase model, J. Differential Equations, 251 (2011), 2685-2695. doi: 10.1016/j.jde.2011.04.004
![]() |
[22] | A. Jadbabaie, N. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, Proc. American Control Conf., 5 (2004), 4296-4301. |
[23] |
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69689-3
![]() |
[24] | Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, International Symposium on Mathematical Problems in Theoretical Physics, 39 (1975), 420-422. |
[25] |
C. R. Laing, Chimera states in heterogeneous networks, Chaos, 19 (2009), 013113. doi: 10.1063/1.3068353
![]() |
[26] | Z. Levnajić, Emergent multistability and frustration in phase-repulsive networks of oscillators, Phys. Rev. E, 84 (2011), 016231. |
[27] | S. Lück and A. Pikovsky, Dynamics of multi-frequency oscillator ensembles with resonant coupling, Phys. Lett. A, 375 (2011), 2714-2719. |
[28] |
R. E. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model, J. Nonlinear Sci., 17 (2007), 309-347. doi: 10.1007/s00332-006-0806-x
![]() |
[29] |
R. E. Mirollo and S. H. Strogatz, The spectrum of the locked state for the Kuramoto model of coupled oscillator, Physica D, 205 (2005), 249-266. doi: 10.1016/j.physd.2005.01.017
![]() |
[30] |
R. E. Mirollo and S. H. Strogatz, Stability of incoherence in a population of coupled oscillators, J. Stat. Phys., 63 (1991), 613-635. doi: 10.1007/BF01029202
![]() |
[31] |
E. Oh, C. Choi, B. Kahng and D. Kim, Modular synchronization in complex networks with a gauge Kuramoto model, EPL, 83 (2008), 68003. doi: 10.1209/0295-5075/83/68003
![]() |
[32] |
K. Park, S. W. Rhee and M. Y. Choi, Glass synchronization in the network of oscillators with random phase shift, Phys. Rev. E, 57 (1998), 5030-5035. doi: 10.1103/PhysRevE.57.5030
![]() |
[33] |
A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743
![]() |
[34] |
H. Sakaguchi and Y. Kuramoto, A soluble active rotator model showing phase transitions via mutual entrainment, Prog. Theor. Phys., 76 (1986), 576-581. doi: 10.1143/PTP.76.576
![]() |
[35] |
S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20. doi: 10.1016/S0167-2789(00)00094-4
![]() |
[36] | T. Tanaka, T. Aoki and T. Aoyagi, Dynamics in co-evolving networks of active elements, Forma, 24 (2009), 17-22. |
[37] |
J. L. van Hemmen and W. F. Wreszinski, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators, J. Stat. Phys., 72 (1993), 145-166. doi: 10.1007/BF01048044
![]() |
[38] |
A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42. doi: 10.1016/0022-5193(67)90051-3
![]() |
[39] | Z. G. Zheng, Frustration effect on synchronization and chaos in coupled oscillators, Chin. Phys. Soc., 10 (2011), 703-707. |
1. | Seung-Yeal Ha, Dohyun Kim, Hansol Park, Sang Woo Ryoo, Constants of motion for the finite-dimensional Lohe type models with frustration and applications to emergent dynamics, 2021, 416, 01672789, 132781, 10.1016/j.physd.2020.132781 | |
2. | Tingting Zhu, Emergence of synchronization in Kuramoto model with frustration under general network topology, 2022, 17, 1556-1801, 255, 10.3934/nhm.2022005 | |
3. | R. Farhangi, M.T. Beheshti, 2020, Transient Stability Conditions Assessment in Smart Grids via New Lyapunov Approaches, 978-1-6654-1957-4, 1, 10.1109/SGC52076.2020.9335744 | |
4. | Seung-Yeal Ha, Myeongju Kang, Hansol Park, Emergent dynamics of the Lohe Hermitian sphere model with frustration, 2021, 62, 0022-2488, 052701, 10.1063/5.0038769 | |
5. | Seung-Yeal Ha, Hansol Park, Tommaso Ruggeri, Woojoo Shim, Emergent Behaviors of Thermodynamic Kuramoto Ensemble on a Regular Ring Lattice, 2020, 181, 0022-4715, 917, 10.1007/s10955-020-02611-2 | |
6. | Hirotada Honda, Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling, 2017, 12, 1556-181X, 25, 10.3934/nhm.2017002 | |
7. | Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang, Emergence of Phase-Locking in the Kuramoto Model for Identical Oscillators with Frustration, 2018, 17, 1536-0040, 581, 10.1137/17M1112959 | |
8. | Seung-Yeal Ha, Doheon Kim, Jaeseung Lee, Yinglong Zhang, Remarks on the stability properties of the Kuramoto–Sakaguchi–Fokker–Planck equation with frustration, 2018, 69, 0044-2275, 10.1007/s00033-018-0984-z | |
9. | Reza Farhangi, Mohammad Taghi Hamidi Beheshti, The Kuramoto Model: The Stability Conditions in the Presence of Phase Shift, 2021, 53, 1370-4621, 2631, 10.1007/s11063-021-10510-0 | |
10. | Zhuchun Li, Seung-Yeal Ha, Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia, 2016, 26, 0218-2025, 357, 10.1142/S0218202516400054 | |
11. | Seung-Yeal Ha, Myeongju Kang, Hansol Park, Tommaso Ruggeri, Woojoo Shim, Emergent behaviors of the continuum thermodynamic Kuramoto model in a large coupling regime, 2021, 300, 00220396, 519, 10.1016/j.jde.2021.07.047 | |
12. | Reza Farhangi, Mohammad Taghi Hamidi Beheshti, An Analytical Approach for the Stability Analysis of Power Networks Through Kuramoto Oscillators Model, 2023, 1556-5068, 10.2139/ssrn.4350025 | |
13. | Seung-Yeal Ha, Javier Morales, Yinglong Zhang, Kuramoto order parameters and phase concentration for the Kuramoto-Sakaguchi equation with frustration, 2021, 20, 1553-5258, 2579, 10.3934/cpaa.2021013 | |
14. | Seung-Yeal Ha, Dohyun Kim, Emergence of synchronous behaviors for the Schrödinger–Lohe model with frustration, 2019, 32, 0951-7715, 4609, 10.1088/1361-6544/ab3626 | |
15. | Seung-Yeal Ha, Hwa Kil Kim, Jinyeong Park, Remarks on the complete synchronization for the Kuramoto model with frustrations, 2018, 16, 0219-5305, 525, 10.1142/S0219530517500130 | |
16. | Seung-Yeal Ha, Jaeseung Lee, Yinglong Zhang, Robustness in the instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, 2019, 77, 0033-569X, 631, 10.1090/qam/1533 | |
17. | Hangjun Cho, Seung-Yeal Ha, Dohyun Kim, Emergent behaviors of two attractively coupled swarm sphere models with frustration, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023045 | |
18. | Javad Soleimani, Reza Farhangi, Gunes Karabulut Kurt, Fatemeh Mechershavi, 2024, Chapter 5, 978-0-85466-533-4, 10.5772/intechopen.1003734 | |
19. | ||
20. | Reza Farhangi, Mohammad Taghi Hamidi Beheshti, Mohsin Jamil, Ashraf Ali Khan, An analytical approach for the stability analysis of power networks through Kuramoto oscillators model, 2023, 126, 10075704, 107467, 10.1016/j.cnsns.2023.107467 | |
21. | Xiaoxue Zhao, Xiang Zhou, Critical points, stability, and basins of attraction of three Kuramoto oscillators with isosceles triangle network, 2024, 158, 08939659, 109246, 10.1016/j.aml.2024.109246 | |
22. | ||
23. | ||
24. | ||
25. | ||
26. | ||
27. | ||
28. | ||
29. | ||
30. | ||
31. | ||
32. | ||
33. | ||
34. | ||
35. | ||
36. | ||
37. | ||
38. | ||
39. | ||
40. | ||
41. | ||
42. | ||
43. | ||
44. | ||
45. | ||
46. | ||
47. | ||
48. | ||
49. | ||
50. | ||
51. | ||
52. | ||
53. | ||
54. | ||
55. | ||
56. | ||
57. | ||
58. | ||
59. | ||
60. | ||
61. | ||
62. | ||
63. | ||
64. | ||
65. | ||
66. | ||
67. | ||
68. | ||
69. | ||
70. | ||
71. | ||
72. | ||
73. | ||
74. | ||
75. | ||
76. | ||
77. | ||
78. | ||
79. | ||
80. | ||
81. | ||
82. | ||
83. | ||
84. | ||
85. | ||
86. | ||
87. | ||
88. | ||
89. | ||
90. | ||
91. | ||
92. | ||
93. | ||
94. | ||
95. | ||
96. | ||
97. | ||
98. | ||
99. | ||
100. | ||
101. | ||
102. | ||
103. | ||
104. | ||
105. | ||
106. | ||
107. | ||
108. | ||
109. | ||
110. | ||
111. | ||
112. | ||
113. | ||
114. | ||
115. | ||
116. | ||
117. | ||
118. | ||
119. | ||
120. | ||
121. | ||
122. | ||
123. | ||
124. | ||
125. | ||
126. | ||
127. | ||
128. | ||
129. | ||
130. | ||
131. | ||
132. | ||
133. | ||
134. | ||
135. | ||
136. | ||
137. | ||
138. | ||
139. | ||
140. | ||
141. | ||
142. | ||
143. | ||
144. | ||
145. | ||
146. | ||
147. | ||
148. | ||
149. | ||
150. | ||
151. | ||
152. | ||
153. | ||
154. | ||
155. | ||
156. | ||
157. | ||
158. | ||
159. | ||
160. | ||
161. | ||
162. | ||
163. | ||
164. | ||
165. | ||
166. | ||
167. | ||
168. | ||
169. | ||
170. | ||
171. | ||
172. | ||
173. | ||
174. | ||
175. | ||
176. | ||
177. | ||
178. | ||
179. | ||
180. | ||
181. | ||
182. | ||
183. | ||
184. | ||
185. | ||
186. | ||
187. | ||
188. | ||
189. | ||
190. | ||
191. | ||
192. | ||
193. | ||
194. | ||
195. | ||
196. | ||
197. | ||
198. | ||
199. | ||
200. | ||
201. | ||
202. | ||
203. | ||
204. | ||
205. | ||
206. | ||
207. | ||
208. | ||
209. | ||
210. | ||
211. | ||
212. | ||
213. | ||
214. | ||
215. | ||
216. | ||
217. | ||
218. | ||
219. | ||
220. | ||
221. | ||
222. | ||
223. | ||
224. | ||
225. | ||
226. | ||
227. | ||
228. | ||
229. | ||
230. | ||
231. | ||
232. | ||
233. | ||
234. | ||
235. | ||
236. | ||
237. | ||
238. | ||
239. | ||
240. | ||
241. | ||
242. | ||
243. | ||
244. | ||
245. | ||
246. | ||
247. | ||
248. | ||
249. | ||
250. | ||
251. | ||
252. | ||
253. | ||
254. | ||
255. | ||
256. | ||
257. | ||
258. | ||
259. | ||
260. | ||
261. | ||
262. | ||
263. | ||
264. | ||
265. | ||
266. | ||
267. | ||
268. | ||
269. | ||
270. |