Asymptotic synchronous behavior of Kuramoto type models with frustrations

  • Received: 01 September 2013 Revised: 01 February 2014
  • 92D25, 34C15, 76N10.

  • We present a quantitative asymptotic behavior of coupled Kuramoto oscillators with frustrations and give some sufficient conditions for the parameters and initial condition leading to phase or frequency synchronization. We consider three Kuramoto-type models with frustrations. First, we study a general case with nonidentical oscillators; i.e., the natural frequencies are distributed. Second, as a special case, we study an ensemble of two groups of identical oscillators. For these mixture of two identical Kuramoto oscillator groups, we study the relaxation dynamics from the mixed stage to the phase-locked states via the segregation stage. Finally, we consider a Kuramoto-type model that was recently derived from the Van der Pol equations for two coupled oscillator systems in the work of Lück and Pikovsky [27]. In this case, we provide a framework in which the phase synchronization of each group is attained. Moreover, the constant frustration causes the two groups to segregate from each other, although they have the same natural frequency. We also provide several numerical simulations to confirm our analytical results.

    Citation: Seung-Yeal Ha, Yongduck Kim, Zhuchun Li. Asymptotic synchronous behavior of Kuramoto type models with frustrations[J]. Networks and Heterogeneous Media, 2014, 9(1): 33-64. doi: 10.3934/nhm.2014.9.33

    Related Papers:

    [1] Tingting Zhu . Synchronization of the generalized Kuramoto model with time delay and frustration. Networks and Heterogeneous Media, 2023, 18(4): 1772-1798. doi: 10.3934/nhm.2023077
    [2] Xiaoxue Zhao, Zhuchun Li . Synchronization of a Kuramoto-like model for power grids with frustration. Networks and Heterogeneous Media, 2020, 15(3): 543-553. doi: 10.3934/nhm.2020030
    [3] Seung-Yeal Ha, Yongduck Kim, Zhuchun Li . Asymptotic synchronous behavior of Kuramoto type models with frustrations. Networks and Heterogeneous Media, 2014, 9(1): 33-64. doi: 10.3934/nhm.2014.9.33
    [4] Tingting Zhu . Emergence of synchronization in Kuramoto model with frustration under general network topology. Networks and Heterogeneous Media, 2022, 17(2): 255-291. doi: 10.3934/nhm.2022005
    [5] Seung-Yeal Ha, Se Eun Noh, Jinyeong Park . Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks and Heterogeneous Media, 2015, 10(4): 787-807. doi: 10.3934/nhm.2015.10.787
    [6] Seung-Yeal Ha, Hansol Park, Yinglong Zhang . Nonlinear stability of stationary solutions to the Kuramoto-Sakaguchi equation with frustration. Networks and Heterogeneous Media, 2020, 15(3): 427-461. doi: 10.3934/nhm.2020026
    [7] Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang . Uniform stability and mean-field limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13(2): 297-322. doi: 10.3934/nhm.2018013
    [8] Seung-Yeal Ha, Jaeseung Lee, Zhuchun Li . Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators. Networks and Heterogeneous Media, 2017, 12(1): 1-24. doi: 10.3934/nhm.2017001
    [9] Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun . Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks and Heterogeneous Media, 2013, 8(4): 943-968. doi: 10.3934/nhm.2013.8.943
    [10] Vladimir Jaćimović, Aladin Crnkić . The General Non-Abelian Kuramoto Model on the 3-sphere. Networks and Heterogeneous Media, 2020, 15(1): 111-124. doi: 10.3934/nhm.2020005
  • We present a quantitative asymptotic behavior of coupled Kuramoto oscillators with frustrations and give some sufficient conditions for the parameters and initial condition leading to phase or frequency synchronization. We consider three Kuramoto-type models with frustrations. First, we study a general case with nonidentical oscillators; i.e., the natural frequencies are distributed. Second, as a special case, we study an ensemble of two groups of identical oscillators. For these mixture of two identical Kuramoto oscillator groups, we study the relaxation dynamics from the mixed stage to the phase-locked states via the segregation stage. Finally, we consider a Kuramoto-type model that was recently derived from the Van der Pol equations for two coupled oscillator systems in the work of Lück and Pikovsky [27]. In this case, we provide a framework in which the phase synchronization of each group is attained. Moreover, the constant frustration causes the two groups to segregate from each other, although they have the same natural frequency. We also provide several numerical simulations to confirm our analytical results.


    [1] J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185. doi: 10.1103/RevModPhys.77.137
    [2] D. Aeyels and J. A. Rogge, Stability of phase locking and existence of entrainment in networks of globally coupled oscillators, in Proc. 6th IFAC Symposium on Nonlinear Control Systems, 3 (2004), 1031-1036.
    [3] P. Ashwin and J. W. Swift, The dynamics of $n$ weakly coupled identical oscillators, J. Nonlinear Sci., 2 (1992), 69-108. doi: 10.1007/BF02429852
    [4] L. L. Bonilla, J. C. Neu and R. Spigler, Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators, J. Stat. Phys., 67 (1992), 313-330. doi: 10.1007/BF01049037
    [5] preprint, arXiv:1008.0249.
    [6] Y. Choi, S.-Y. Ha and S.-B. Yun, Complete synchronization of Kuramoto oscillators with finite inertia, Physica D, 240 (2010), 32-44. doi: 10.1016/j.physd.2010.08.004
    [7] Y. Choi, S.-Y. Ha, S.-E. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754. doi: 10.1016/j.physd.2011.11.011
    [8] N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Autom. Control, 54 (2009), 353-357. doi: 10.1109/TAC.2008.2007884
    [9] H. Daido, Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions, Phys. Rev. Lett., 68 (1992), 1073-1076. doi: 10.1103/PhysRevLett.68.1073
    [10] F. De Smet and D. Aeyels, Partial entrainment in the finite Kuramoto-Sakaguchi model, Physica D, 234 (2007), 81-89. doi: 10.1016/j.physd.2007.06.025
    [11] J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480. doi: 10.4310/CMS.2013.v11.n2.a7
    [12] F. Dörfler and F. Bullo, Synchronization in complex oscillator networks: A survey, submitted, (2013).
    [13] F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst., 10 (2011), 1070-1099. doi: 10.1137/10081530X
    [14] F. Dörfler, M. Chertkov and F. Bullo, Synchronization in complex oscillator networks and smart grids, Proceedings of the National Academy of Sciences, 110 (2013), 2005-2010. doi: 10.1073/pnas.1212134110
    [15] G. B. Ermentrout, Synchronization in a pool of mutually coupled oscillators with random frequencies, J. Math. Biol., 22 (1985), 1-9. doi: 10.1007/BF00276542
    [16] S.-Y. Ha and M.-J. Kang, Fast and slow relaxations to bi-cluster configurations for the ensemble of Kuramoto oscillators, Quart. Appl. Math., 71 (2013), 707-728. doi: 10.1090/S0033-569X-2013-01302-0
    [17] S.-Y. Ha, T. Ha and J. H. Kim, On the complete synchronization for the globally coupled Kuramoto model, Physica D, 239 (2010), 1692-1700. doi: 10.1016/j.physd.2010.05.003
    [18] S.-Y. Ha, C. Lattanzio, B. Rubino and M. Slemrod, Flocking and synchronization of particle models, Quart. Appl. Math., 69 (2011), 91-103.
    [19] S.-Y. Ha, and Z. Li, Complete synchronization of Kuramoto oscillators with hierarchical leadership, Commun. Math. Sci., 12 (2014), 485-508. doi: 10.4310/CMS.2014.v12.n3.a5
    [20] S.-Y. Ha, Z. Li and X. Xue, Formation of phase-locked states in a population of locally interacting Kuramoto oscillators, J. Differential Equations, 255 (2013), 3053-3070. doi: 10.1016/j.jde.2013.07.013
    [21] S.-Y. Ha and M. Slemrod, A fast-slow dynamical systems theory for the Kuramoto phase model, J. Differential Equations, 251 (2011), 2685-2695. doi: 10.1016/j.jde.2011.04.004
    [22] A. Jadbabaie, N. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, Proc. American Control Conf., 5 (2004), 4296-4301.
    [23] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69689-3
    [24] Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, International Symposium on Mathematical Problems in Theoretical Physics, 39 (1975), 420-422.
    [25] C. R. Laing, Chimera states in heterogeneous networks, Chaos, 19 (2009), 013113. doi: 10.1063/1.3068353
    [26] Z. Levnajić, Emergent multistability and frustration in phase-repulsive networks of oscillators, Phys. Rev. E, 84 (2011), 016231.
    [27] S. Lück and A. Pikovsky, Dynamics of multi-frequency oscillator ensembles with resonant coupling, Phys. Lett. A, 375 (2011), 2714-2719.
    [28] R. E. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model, J. Nonlinear Sci., 17 (2007), 309-347. doi: 10.1007/s00332-006-0806-x
    [29] R. E. Mirollo and S. H. Strogatz, The spectrum of the locked state for the Kuramoto model of coupled oscillator, Physica D, 205 (2005), 249-266. doi: 10.1016/j.physd.2005.01.017
    [30] R. E. Mirollo and S. H. Strogatz, Stability of incoherence in a population of coupled oscillators, J. Stat. Phys., 63 (1991), 613-635. doi: 10.1007/BF01029202
    [31] E. Oh, C. Choi, B. Kahng and D. Kim, Modular synchronization in complex networks with a gauge Kuramoto model, EPL, 83 (2008), 68003. doi: 10.1209/0295-5075/83/68003
    [32] K. Park, S. W. Rhee and M. Y. Choi, Glass synchronization in the network of oscillators with random phase shift, Phys. Rev. E, 57 (1998), 5030-5035. doi: 10.1103/PhysRevE.57.5030
    [33] A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743
    [34] H. Sakaguchi and Y. Kuramoto, A soluble active rotator model showing phase transitions via mutual entrainment, Prog. Theor. Phys., 76 (1986), 576-581. doi: 10.1143/PTP.76.576
    [35] S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20. doi: 10.1016/S0167-2789(00)00094-4
    [36] T. Tanaka, T. Aoki and T. Aoyagi, Dynamics in co-evolving networks of active elements, Forma, 24 (2009), 17-22.
    [37] J. L. van Hemmen and W. F. Wreszinski, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators, J. Stat. Phys., 72 (1993), 145-166. doi: 10.1007/BF01048044
    [38] A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42. doi: 10.1016/0022-5193(67)90051-3
    [39] Z. G. Zheng, Frustration effect on synchronization and chaos in coupled oscillators, Chin. Phys. Soc., 10 (2011), 703-707.
  • This article has been cited by:

    1. Seung-Yeal Ha, Dohyun Kim, Hansol Park, Sang Woo Ryoo, Constants of motion for the finite-dimensional Lohe type models with frustration and applications to emergent dynamics, 2021, 416, 01672789, 132781, 10.1016/j.physd.2020.132781
    2. Tingting Zhu, Emergence of synchronization in Kuramoto model with frustration under general network topology, 2022, 17, 1556-1801, 255, 10.3934/nhm.2022005
    3. R. Farhangi, M.T. Beheshti, 2020, Transient Stability Conditions Assessment in Smart Grids via New Lyapunov Approaches, 978-1-6654-1957-4, 1, 10.1109/SGC52076.2020.9335744
    4. Seung-Yeal Ha, Myeongju Kang, Hansol Park, Emergent dynamics of the Lohe Hermitian sphere model with frustration, 2021, 62, 0022-2488, 052701, 10.1063/5.0038769
    5. Seung-Yeal Ha, Hansol Park, Tommaso Ruggeri, Woojoo Shim, Emergent Behaviors of Thermodynamic Kuramoto Ensemble on a Regular Ring Lattice, 2020, 181, 0022-4715, 917, 10.1007/s10955-020-02611-2
    6. Hirotada Honda, Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling, 2017, 12, 1556-181X, 25, 10.3934/nhm.2017002
    7. Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang, Emergence of Phase-Locking in the Kuramoto Model for Identical Oscillators with Frustration, 2018, 17, 1536-0040, 581, 10.1137/17M1112959
    8. Seung-Yeal Ha, Doheon Kim, Jaeseung Lee, Yinglong Zhang, Remarks on the stability properties of the Kuramoto–Sakaguchi–Fokker–Planck equation with frustration, 2018, 69, 0044-2275, 10.1007/s00033-018-0984-z
    9. Reza Farhangi, Mohammad Taghi Hamidi Beheshti, The Kuramoto Model: The Stability Conditions in the Presence of Phase Shift, 2021, 53, 1370-4621, 2631, 10.1007/s11063-021-10510-0
    10. Zhuchun Li, Seung-Yeal Ha, Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia, 2016, 26, 0218-2025, 357, 10.1142/S0218202516400054
    11. Seung-Yeal Ha, Myeongju Kang, Hansol Park, Tommaso Ruggeri, Woojoo Shim, Emergent behaviors of the continuum thermodynamic Kuramoto model in a large coupling regime, 2021, 300, 00220396, 519, 10.1016/j.jde.2021.07.047
    12. Reza Farhangi, Mohammad Taghi Hamidi Beheshti, An Analytical Approach for the Stability Analysis of Power Networks Through Kuramoto Oscillators Model, 2023, 1556-5068, 10.2139/ssrn.4350025
    13. Seung-Yeal Ha, Javier Morales, Yinglong Zhang, Kuramoto order parameters and phase concentration for the Kuramoto-Sakaguchi equation with frustration, 2021, 20, 1553-5258, 2579, 10.3934/cpaa.2021013
    14. Seung-Yeal Ha, Dohyun Kim, Emergence of synchronous behaviors for the Schrödinger–Lohe model with frustration, 2019, 32, 0951-7715, 4609, 10.1088/1361-6544/ab3626
    15. Seung-Yeal Ha, Hwa Kil Kim, Jinyeong Park, Remarks on the complete synchronization for the Kuramoto model with frustrations, 2018, 16, 0219-5305, 525, 10.1142/S0219530517500130
    16. Seung-Yeal Ha, Jaeseung Lee, Yinglong Zhang, Robustness in the instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, 2019, 77, 0033-569X, 631, 10.1090/qam/1533
    17. Hangjun Cho, Seung-Yeal Ha, Dohyun Kim, Emergent behaviors of two attractively coupled swarm sphere models with frustration, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023045
    18. Javad Soleimani, Reza Farhangi, Gunes Karabulut Kurt, Fatemeh Mechershavi, 2024, Chapter 5, 978-0-85466-533-4, 10.5772/intechopen.1003734
    19.
    20. Reza Farhangi, Mohammad Taghi Hamidi Beheshti, Mohsin Jamil, Ashraf Ali Khan, An analytical approach for the stability analysis of power networks through Kuramoto oscillators model, 2023, 126, 10075704, 107467, 10.1016/j.cnsns.2023.107467
    21. Xiaoxue Zhao, Xiang Zhou, Critical points, stability, and basins of attraction of three Kuramoto oscillators with isosceles triangle network, 2024, 158, 08939659, 109246, 10.1016/j.aml.2024.109246
    22.
    23.
    24.
    25.
    26.
    27.
    28.
    29.
    30.
    31.
    32.
    33.
    34.
    35.
    36.
    37.
    38.
    39.
    40.
    41.
    42.
    43.
    44.
    45.
    46.
    47.
    48.
    49.
    50.
    51.
    52.
    53.
    54.
    55.
    56.
    57.
    58.
    59.
    60.
    61.
    62.
    63.
    64.
    65.
    66.
    67.
    68.
    69.
    70.
    71.
    72.
    73.
    74.
    75.
    76.
    77.
    78.
    79.
    80.
    81.
    82.
    83.
    84.
    85.
    86.
    87.
    88.
    89.
    90.
    91.
    92.
    93.
    94.
    95.
    96.
    97.
    98.
    99.
    100.
    101.
    102.
    103.
    104.
    105.
    106.
    107.
    108.
    109.
    110.
    111.
    112.
    113.
    114.
    115.
    116.
    117.
    118.
    119.
    120.
    121.
    122.
    123.
    124.
    125.
    126.
    127.
    128.
    129.
    130.
    131.
    132.
    133.
    134.
    135.
    136.
    137.
    138.
    139.
    140.
    141.
    142.
    143.
    144.
    145.
    146.
    147.
    148.
    149.
    150.
    151.
    152.
    153.
    154.
    155.
    156.
    157.
    158.
    159.
    160.
    161.
    162.
    163.
    164.
    165.
    166.
    167.
    168.
    169.
    170.
    171.
    172.
    173.
    174.
    175.
    176.
    177.
    178.
    179.
    180.
    181.
    182.
    183.
    184.
    185.
    186.
    187.
    188.
    189.
    190.
    191.
    192.
    193.
    194.
    195.
    196.
    197.
    198.
    199.
    200.
    201.
    202.
    203.
    204.
    205.
    206.
    207.
    208.
    209.
    210.
    211.
    212.
    213.
    214.
    215.
    216.
    217.
    218.
    219.
    220.
    221.
    222.
    223.
    224.
    225.
    226.
    227.
    228.
    229.
    230.
    231.
    232.
    233.
    234.
    235.
    236.
    237.
    238.
    239.
    240.
    241.
    242.
    243.
    244.
    245.
    246.
    247.
    248.
    249.
    250.
    251.
    252.
    253.
    254.
    255.
    256.
    257.
    258.
    259.
    260.
    261.
    262.
    263.
    264.
    265.
    266.
    267.
    268.
    269.
    270.
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4381) PDF downloads(170) Cited by(19)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog