Citation: Mattia Bongini, Massimo Fornasier. Sparse stabilization of dynamical systems driven by attraction and avoidance forces[J]. Networks and Heterogeneous Media, 2014, 9(1): 1-31. doi: 10.3934/nhm.2014.9.1
[1] | Mattia Bongini, Massimo Fornasier . Sparse stabilization of dynamical systems driven by attraction and avoidance forces. Networks and Heterogeneous Media, 2014, 9(1): 1-31. doi: 10.3934/nhm.2014.9.1 |
[2] | Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf . Sparse control of alignment models in high dimension. Networks and Heterogeneous Media, 2015, 10(3): 647-697. doi: 10.3934/nhm.2015.10.647 |
[3] | Christophe Prieur . Control of systems of conservation laws with boundary errors. Networks and Heterogeneous Media, 2009, 4(2): 393-407. doi: 10.3934/nhm.2009.4.393 |
[4] | Toufik Bakir, Bernard Bonnard, Jérémy Rouot . A case study of optimal input-output system with sampled-data control: Ding et al. force and fatigue muscular control model. Networks and Heterogeneous Media, 2019, 14(1): 79-100. doi: 10.3934/nhm.2019005 |
[5] | A M Ishtiaque Mahbub, Behdad Chalaki, Andreas A. Malikopoulos . A constrained optimal control framework for vehicle platoons with delayed communication. Networks and Heterogeneous Media, 2023, 18(3): 982-1005. doi: 10.3934/nhm.2023043 |
[6] | Zhong-Jie Han, Gen-Qi Xu . Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks and Heterogeneous Media, 2011, 6(2): 297-327. doi: 10.3934/nhm.2011.6.297 |
[7] | Ciro D'Apice, Peter I. Kogut, Rosanna Manzo . On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks and Heterogeneous Media, 2014, 9(3): 501-518. doi: 10.3934/nhm.2014.9.501 |
[8] | Matteo Novaga, Enrico Valdinoci . Closed curves of prescribed curvature and a pinning effect. Networks and Heterogeneous Media, 2011, 6(1): 77-88. doi: 10.3934/nhm.2011.6.77 |
[9] | Yunhua Liao, Mohamed Maama, M. A. Aziz-Alaoui . Consensus dynamics and coherence in hierarchical small-world networks. Networks and Heterogeneous Media, 2025, 20(2): 482-499. doi: 10.3934/nhm.2025022 |
[10] | Hyunjin Ahn . Uniform stability of the Cucker–Smale and thermodynamic Cucker–Smale ensembles with singular kernels. Networks and Heterogeneous Media, 2022, 17(5): 753-782. doi: 10.3934/nhm.2022025 |
[1] | L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford University Press, New York, 2000. |
[2] |
J.-P. Aubin and A. Cellina, Differential Inclusions, Set-valued maps and viability theory, Grundlehren der Mathematischen Wissenschaften, 264, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69512-4
![]() |
[3] |
M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat, Sparse stabilization and control of alignment models, Math. Control Relat. Fields, 3 (2013), 447-466. Available from: http://www-m15.ma.tum.de/foswiki/pub/M15/Allgemeines/PublicationsEN/flocking_V9.pdf. doi: 10.3934/mcrf.2013.3.447
![]() |
[4] |
J. A. Carrillo, Y.-P. Choi and M. Hauray, The derivation of swarming models: Mean-field limit and Wasserstein distances, in Collective Dynamics from Bacteria to Crowds, CISM International Centre for Mechanical Sciences, 553, Springer, 2014, 1-46. doi: 10.1007/978-3-7091-1785-9_1
![]() |
[5] |
J. A. Carrillo, M. R. D'Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinet. Relat. Models, 2 (2009), 363-378. doi: 10.3934/krm.2009.2.363
![]() |
[6] |
J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences (eds. G. Naldi, L. Pareschi, G. Toscani and N. Bellomo), Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, 2010, 297-336. doi: 10.1007/978-0-8176-4946-3_12
![]() |
[7] |
Y. Chuang, M. D'Orsogna, D. Marthaler, A. Bertozzi and L. Chayes, State transition and the continuum limit for the 2D interacting, self-propelled particle system, Physica D, 232 (2007), 33-47. doi: 10.1016/j.physd.2007.05.007
![]() |
[8] |
F. Cucker and J.-G. Dong, A general collision-avoiding flocking framework, IEEE Trans. Automat. Control, 56 (2011), 1124-1129. doi: 10.1109/TAC.2011.2107113
![]() |
[9] |
F. Cucker and J.-G. Dong, A conditional, collision-avoiding, model for swarming, Discrete and Continuous Dynamical Systems, 34 (2014), 1009-1020. doi: 10.3934/dcds.2014.34.1009
![]() |
[10] |
F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842
![]() |
[11] |
F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227. doi: 10.1007/s11537-007-0647-x
![]() |
[12] |
M. D'Orsogna, Y. Chuang, A. Bertozzi and L. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett., 96 (2006). doi: 10.1103/PhysRevLett.96.104302
![]() |
[13] | A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Translated from the Russian, Mathematics and its Applications (Soviet Series), 18, Kluwer Academic Publishers Group, Dordrecht, 1988. |
[14] | M. Fornasier and F. Solombrino, Mean-field optimal control, preprint, arXiv:1306.5913, (2013). |
[15] |
S.-Y. Ha, T. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings, IEEE Trans. Automat. Control, 55 (2010), 1679-1683. doi: 10.1109/TAC.2010.2046113
![]() |
[16] | J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, 1998. |
[17] | M. Huang, P. Caines and R. Malhamé, Individual and mass behaviour in large population stochastic wireless power control problems: Centralized and nash equilibrium solutions, in Proceedings of the 42nd IEEE Conference on Decision and Control Maui, Hawaii, USA, December, 2003, 98-103. |
[18] |
J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math. (3), 2 (2007), 229-260. doi: 10.1007/s11537-007-0657-8
![]() |
[19] | SIAM Rev., to appear. |
[20] |
M. Nuorian, P. Caines and R. Malhamé, Synthesis of Cucker-Smale type flocking via mean field stochastic control theory: Nash equilibria, in Proceedings of the 48th Allerton Conf. on Comm., Cont. and Comp., Monticello, Illinois, 2010, 814-819. doi: 10.1109/ALLERTON.2010.5706992
![]() |
[21] | M. Nuorian, P. Caines and R. Malhamé, Mean field analysis of controlled Cucker-Smale type flocking: Linear analysis and perturbation equations, in Proceedings of 18th IFAC World Congress Milano (Italy) August 28-September 2, 2011, 4471-4476. |
[22] |
A. Rahmani, M. Ji, M. Mesbahi and M. Egerstedt, Controllability of multi-agent systems from a graph-theoretic perspective, SIAM J. Control and Optimization, 48 (2009), 162-186. doi: 10.1137/060674909
![]() |
[23] |
H. G. Tanner, On the controllability of nearest neighbor interconnections, in Proceedings of the 43rd IEEE Conference on Decision and Control, IEEE Press, Piscataway, NJ, 2004, 2467-2472. doi: 10.1109/CDC.2004.1428782
![]() |
[24] |
T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, 517 (2012), 71-140. doi: 10.1016/j.physrep.2012.03.004
![]() |
1. | Giacomo Albi, Young-Pil Choi, Massimo Fornasier, Dante Kalise, Mean Field Control Hierarchy, 2017, 76, 0095-4616, 93, 10.1007/s00245-017-9429-x | |
2. | Ertug Olcay, Boris Lohmann, 2019, Extension of the Cucker-Dong Flocking with a Virtual Leader and a Reactive Control Law, 978-3-907144-00-8, 101, 10.23919/ECC.2019.8796225 | |
3. | Giacomo Albi, Mattia Bongini, Emiliano Cristiani, Dante Kalise, Invisible Control of Self-Organizing Agents Leaving Unknown Environments, 2016, 76, 0036-1399, 1683, 10.1137/15M1017016 | |
4. | Mattia Bongini, Giuseppe Buttazzo, Optimal control problems in transport dynamics, 2017, 27, 0218-2025, 427, 10.1142/S0218202517500063 | |
5. | Massimo Fornasier, Benedetto Piccoli, Nastassia Pouradier Duteil, Francesco Rossi, 2014, Mean-field optimal control by leaders, 978-1-4673-6090-6, 6957, 10.1109/CDC.2014.7040482 | |
6. | Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat, Sparse stabilization and control of alignment models, 2015, 25, 0218-2025, 521, 10.1142/S0218202515400059 | |
7. | Marco Caponigro, Benedetto Piccoli, Francesco Rossi, Emmanuel Trélat, Sparse Jurdjevic–Quinn stabilization of dissipative systems, 2017, 86, 00051098, 110, 10.1016/j.automatica.2017.08.012 | |
8. | Mattia Bongini, Massimo Fornasier, Francesco Rossi, Francesco Solombrino, Mean-Field Pontryagin Maximum Principle, 2017, 175, 0022-3239, 1, 10.1007/s10957-017-1149-5 | |
9. | M. FORNASIER, S. LISINI, C. ORRIERI, G. SAVARÉ, Mean-field optimal control as Gamma-limit of finite agent controls, 2019, 30, 0956-7925, 1153, 10.1017/S0956792519000044 | |
10. | Jong-Ho Kim, Jea-Hyun Park, Fully nonlinear Cucker–Smale model for pattern formation and damped oscillation control, 2023, 120, 10075704, 107159, 10.1016/j.cnsns.2023.107159 | |
11. | Marco Caponigro, Benedetto Piccoli, Francesco Rossi, Emmanuel Trelat, 2016, Sparse feedback stabilization of multi-agent dynamics, 978-1-5090-1837-6, 4278, 10.1109/CDC.2016.7798917 | |
12. | Rafael Bailo, Mattia Bongini, José A. Carrillo, Dante Kalise, Optimal consensus control of the Cucker-Smale model, 2018, 51, 24058963, 1, 10.1016/j.ifacol.2018.07.245 | |
13. | Massimo Fornasier, Benedetto Piccoli, Francesco Rossi, Mean-field sparse optimal control, 2014, 372, 1364-503X, 20130400, 10.1098/rsta.2013.0400 | |
14. | Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf, Sparse control of alignment models in high dimension, 2015, 10, 1556-181X, 647, 10.3934/nhm.2015.10.647 | |
15. | Mattia Bongini, Massimo Fornasier, 2017, Chapter 5, 978-3-319-49994-9, 173, 10.1007/978-3-319-49996-3_5 | |
16. | Giacomo Albi, Lorenzo Pareschi, Selective model-predictive control for flocking systems, 2018, 9, 2038-0909, 4, 10.2478/caim-2018-0009 | |
17. | Young-Pil Choi, Dante Kalise, Jan Peszek, Andrés A. Peters, A Collisionless Singular Cucker--Smale Model with Decentralized Formation Control, 2019, 18, 1536-0040, 1954, 10.1137/19M1241799 | |
18. | Giacomo Albi, Lorenzo Pareschi, Mattia Zanella, 2016, Chapter 4, 978-3-319-55794-6, 58, 10.1007/978-3-319-55795-3_4 | |
19. | Mattia Bongini, Francesco Salvarani, Mean field games of controls with Dirichlet boundary conditions, 2024, 30, 1292-8119, 32, 10.1051/cocv/2024020 | |
20. | Emiliano Cristiani, Nadia Loy, Marta Menci, Andrea Tosin, Kinetic description and macroscopic limit of swarming dynamics with continuous leader–follower transitions, 2025, 228, 03784754, 362, 10.1016/j.matcom.2024.09.006 |