Sparse stabilization of dynamical systems driven by attraction and avoidance forces

  • Received: 01 September 2013 Revised: 01 November 2013
  • Primary: 37B25, 49J15; Secondary: 68P30.

  • Conditional self-organization and pattern-formation are relevant phenomena arising in biological, social, and economical contexts, and received a growing attention in recent years in mathematical modeling. An important issue related to optimal government strategies is how to design external parsimonious interventions, aiming at enforcing systems to converge to specific patterns. This is in contrast to other models where the players of the systems are allowed to interact freely and are supposed autonomously, either by game rules or by embedded decentralized feedback control rules, to converge to patterns. In this paper we tackle the problem of designing optimal centralized feedback controls for systems of moving particles, subject to mutual attraction and repulsion forces, and friction. Under certain conditions on the attraction and repulsion forces, if the total energy of the system, composed of the sum of its kinetic and potential parts, is below a certain critical threshold, then such systems are known to converge autonomously to the stable configuration of keeping confined and collision avoiding in space, uniformly in time. If the energy is above such a critical level, then the space coherence can be lost. We show that in the latter situation of lost self-organization, one can nevertheless steer the system to return to stable energy levels by feedback controls defined as the minimizers of a certain functional with $l_1$-norm penalty and constraints. Additionally we show that the optimal strategy in this class of controls is necessarily sparse, i.e., the control acts on at most one agent at each time. This is another remarkable example of how homophilious systems, i.e., systems where agents tend to be strongly more influenced by near agents than far ones, are naturally prone to sparse stabilization, explaining the effectiveness of parsimonious interventions of governments in societies.

    Citation: Mattia Bongini, Massimo Fornasier. Sparse stabilization of dynamical systems driven by attraction and avoidance forces[J]. Networks and Heterogeneous Media, 2014, 9(1): 1-31. doi: 10.3934/nhm.2014.9.1

    Related Papers:

    [1] Mattia Bongini, Massimo Fornasier . Sparse stabilization of dynamical systems driven by attraction and avoidance forces. Networks and Heterogeneous Media, 2014, 9(1): 1-31. doi: 10.3934/nhm.2014.9.1
    [2] Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf . Sparse control of alignment models in high dimension. Networks and Heterogeneous Media, 2015, 10(3): 647-697. doi: 10.3934/nhm.2015.10.647
    [3] Christophe Prieur . Control of systems of conservation laws with boundary errors. Networks and Heterogeneous Media, 2009, 4(2): 393-407. doi: 10.3934/nhm.2009.4.393
    [4] Toufik Bakir, Bernard Bonnard, Jérémy Rouot . A case study of optimal input-output system with sampled-data control: Ding et al. force and fatigue muscular control model. Networks and Heterogeneous Media, 2019, 14(1): 79-100. doi: 10.3934/nhm.2019005
    [5] A M Ishtiaque Mahbub, Behdad Chalaki, Andreas A. Malikopoulos . A constrained optimal control framework for vehicle platoons with delayed communication. Networks and Heterogeneous Media, 2023, 18(3): 982-1005. doi: 10.3934/nhm.2023043
    [6] Zhong-Jie Han, Gen-Qi Xu . Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks and Heterogeneous Media, 2011, 6(2): 297-327. doi: 10.3934/nhm.2011.6.297
    [7] Ciro D'Apice, Peter I. Kogut, Rosanna Manzo . On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks and Heterogeneous Media, 2014, 9(3): 501-518. doi: 10.3934/nhm.2014.9.501
    [8] Matteo Novaga, Enrico Valdinoci . Closed curves of prescribed curvature and a pinning effect. Networks and Heterogeneous Media, 2011, 6(1): 77-88. doi: 10.3934/nhm.2011.6.77
    [9] Yunhua Liao, Mohamed Maama, M. A. Aziz-Alaoui . Consensus dynamics and coherence in hierarchical small-world networks. Networks and Heterogeneous Media, 2025, 20(2): 482-499. doi: 10.3934/nhm.2025022
    [10] Hyunjin Ahn . Uniform stability of the Cucker–Smale and thermodynamic Cucker–Smale ensembles with singular kernels. Networks and Heterogeneous Media, 2022, 17(5): 753-782. doi: 10.3934/nhm.2022025
  • Conditional self-organization and pattern-formation are relevant phenomena arising in biological, social, and economical contexts, and received a growing attention in recent years in mathematical modeling. An important issue related to optimal government strategies is how to design external parsimonious interventions, aiming at enforcing systems to converge to specific patterns. This is in contrast to other models where the players of the systems are allowed to interact freely and are supposed autonomously, either by game rules or by embedded decentralized feedback control rules, to converge to patterns. In this paper we tackle the problem of designing optimal centralized feedback controls for systems of moving particles, subject to mutual attraction and repulsion forces, and friction. Under certain conditions on the attraction and repulsion forces, if the total energy of the system, composed of the sum of its kinetic and potential parts, is below a certain critical threshold, then such systems are known to converge autonomously to the stable configuration of keeping confined and collision avoiding in space, uniformly in time. If the energy is above such a critical level, then the space coherence can be lost. We show that in the latter situation of lost self-organization, one can nevertheless steer the system to return to stable energy levels by feedback controls defined as the minimizers of a certain functional with $l_1$-norm penalty and constraints. Additionally we show that the optimal strategy in this class of controls is necessarily sparse, i.e., the control acts on at most one agent at each time. This is another remarkable example of how homophilious systems, i.e., systems where agents tend to be strongly more influenced by near agents than far ones, are naturally prone to sparse stabilization, explaining the effectiveness of parsimonious interventions of governments in societies.


    [1] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford University Press, New York, 2000.
    [2] J.-P. Aubin and A. Cellina, Differential Inclusions, Set-valued maps and viability theory, Grundlehren der Mathematischen Wissenschaften, 264, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69512-4
    [3] M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat, Sparse stabilization and control of alignment models, Math. Control Relat. Fields, 3 (2013), 447-466. Available from: http://www-m15.ma.tum.de/foswiki/pub/M15/Allgemeines/PublicationsEN/flocking_V9.pdf. doi: 10.3934/mcrf.2013.3.447
    [4] J. A. Carrillo, Y.-P. Choi and M. Hauray, The derivation of swarming models: Mean-field limit and Wasserstein distances, in Collective Dynamics from Bacteria to Crowds, CISM International Centre for Mechanical Sciences, 553, Springer, 2014, 1-46. doi: 10.1007/978-3-7091-1785-9_1
    [5] J. A. Carrillo, M. R. D'Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinet. Relat. Models, 2 (2009), 363-378. doi: 10.3934/krm.2009.2.363
    [6] J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences (eds. G. Naldi, L. Pareschi, G. Toscani and N. Bellomo), Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, 2010, 297-336. doi: 10.1007/978-0-8176-4946-3_12
    [7] Y. Chuang, M. D'Orsogna, D. Marthaler, A. Bertozzi and L. Chayes, State transition and the continuum limit for the 2D interacting, self-propelled particle system, Physica D, 232 (2007), 33-47. doi: 10.1016/j.physd.2007.05.007
    [8] F. Cucker and J.-G. Dong, A general collision-avoiding flocking framework, IEEE Trans. Automat. Control, 56 (2011), 1124-1129. doi: 10.1109/TAC.2011.2107113
    [9] F. Cucker and J.-G. Dong, A conditional, collision-avoiding, model for swarming, Discrete and Continuous Dynamical Systems, 34 (2014), 1009-1020. doi: 10.3934/dcds.2014.34.1009
    [10] F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842
    [11] F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227. doi: 10.1007/s11537-007-0647-x
    [12] M. D'Orsogna, Y. Chuang, A. Bertozzi and L. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett., 96 (2006). doi: 10.1103/PhysRevLett.96.104302
    [13] A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Translated from the Russian, Mathematics and its Applications (Soviet Series), 18, Kluwer Academic Publishers Group, Dordrecht, 1988.
    [14] M. Fornasier and F. Solombrino, Mean-field optimal control, preprint, arXiv:1306.5913, (2013).
    [15] S.-Y. Ha, T. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings, IEEE Trans. Automat. Control, 55 (2010), 1679-1683. doi: 10.1109/TAC.2010.2046113
    [16] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, 1998.
    [17] M. Huang, P. Caines and R. Malhamé, Individual and mass behaviour in large population stochastic wireless power control problems: Centralized and nash equilibrium solutions, in Proceedings of the 42nd IEEE Conference on Decision and Control Maui, Hawaii, USA, December, 2003, 98-103.
    [18] J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math. (3), 2 (2007), 229-260. doi: 10.1007/s11537-007-0657-8
    [19] SIAM Rev., to appear.
    [20] M. Nuorian, P. Caines and R. Malhamé, Synthesis of Cucker-Smale type flocking via mean field stochastic control theory: Nash equilibria, in Proceedings of the 48th Allerton Conf. on Comm., Cont. and Comp., Monticello, Illinois, 2010, 814-819. doi: 10.1109/ALLERTON.2010.5706992
    [21] M. Nuorian, P. Caines and R. Malhamé, Mean field analysis of controlled Cucker-Smale type flocking: Linear analysis and perturbation equations, in Proceedings of 18th IFAC World Congress Milano (Italy) August 28-September 2, 2011, 4471-4476.
    [22] A. Rahmani, M. Ji, M. Mesbahi and M. Egerstedt, Controllability of multi-agent systems from a graph-theoretic perspective, SIAM J. Control and Optimization, 48 (2009), 162-186. doi: 10.1137/060674909
    [23] H. G. Tanner, On the controllability of nearest neighbor interconnections, in Proceedings of the 43rd IEEE Conference on Decision and Control, IEEE Press, Piscataway, NJ, 2004, 2467-2472. doi: 10.1109/CDC.2004.1428782
    [24] T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, 517 (2012), 71-140. doi: 10.1016/j.physrep.2012.03.004
  • This article has been cited by:

    1. Giacomo Albi, Young-Pil Choi, Massimo Fornasier, Dante Kalise, Mean Field Control Hierarchy, 2017, 76, 0095-4616, 93, 10.1007/s00245-017-9429-x
    2. Ertug Olcay, Boris Lohmann, 2019, Extension of the Cucker-Dong Flocking with a Virtual Leader and a Reactive Control Law, 978-3-907144-00-8, 101, 10.23919/ECC.2019.8796225
    3. Giacomo Albi, Mattia Bongini, Emiliano Cristiani, Dante Kalise, Invisible Control of Self-Organizing Agents Leaving Unknown Environments, 2016, 76, 0036-1399, 1683, 10.1137/15M1017016
    4. Mattia Bongini, Giuseppe Buttazzo, Optimal control problems in transport dynamics, 2017, 27, 0218-2025, 427, 10.1142/S0218202517500063
    5. Massimo Fornasier, Benedetto Piccoli, Nastassia Pouradier Duteil, Francesco Rossi, 2014, Mean-field optimal control by leaders, 978-1-4673-6090-6, 6957, 10.1109/CDC.2014.7040482
    6. Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat, Sparse stabilization and control of alignment models, 2015, 25, 0218-2025, 521, 10.1142/S0218202515400059
    7. Marco Caponigro, Benedetto Piccoli, Francesco Rossi, Emmanuel Trélat, Sparse Jurdjevic–Quinn stabilization of dissipative systems, 2017, 86, 00051098, 110, 10.1016/j.automatica.2017.08.012
    8. Mattia Bongini, Massimo Fornasier, Francesco Rossi, Francesco Solombrino, Mean-Field Pontryagin Maximum Principle, 2017, 175, 0022-3239, 1, 10.1007/s10957-017-1149-5
    9. M. FORNASIER, S. LISINI, C. ORRIERI, G. SAVARÉ, Mean-field optimal control as Gamma-limit of finite agent controls, 2019, 30, 0956-7925, 1153, 10.1017/S0956792519000044
    10. Jong-Ho Kim, Jea-Hyun Park, Fully nonlinear Cucker–Smale model for pattern formation and damped oscillation control, 2023, 120, 10075704, 107159, 10.1016/j.cnsns.2023.107159
    11. Marco Caponigro, Benedetto Piccoli, Francesco Rossi, Emmanuel Trelat, 2016, Sparse feedback stabilization of multi-agent dynamics, 978-1-5090-1837-6, 4278, 10.1109/CDC.2016.7798917
    12. Rafael Bailo, Mattia Bongini, José A. Carrillo, Dante Kalise, Optimal consensus control of the Cucker-Smale model, 2018, 51, 24058963, 1, 10.1016/j.ifacol.2018.07.245
    13. Massimo Fornasier, Benedetto Piccoli, Francesco Rossi, Mean-field sparse optimal control, 2014, 372, 1364-503X, 20130400, 10.1098/rsta.2013.0400
    14. Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf, Sparse control of alignment models in high dimension, 2015, 10, 1556-181X, 647, 10.3934/nhm.2015.10.647
    15. Mattia Bongini, Massimo Fornasier, 2017, Chapter 5, 978-3-319-49994-9, 173, 10.1007/978-3-319-49996-3_5
    16. Giacomo Albi, Lorenzo Pareschi, Selective model-predictive control for flocking systems, 2018, 9, 2038-0909, 4, 10.2478/caim-2018-0009
    17. Young-Pil Choi, Dante Kalise, Jan Peszek, Andrés A. Peters, A Collisionless Singular Cucker--Smale Model with Decentralized Formation Control, 2019, 18, 1536-0040, 1954, 10.1137/19M1241799
    18. Giacomo Albi, Lorenzo Pareschi, Mattia Zanella, 2016, Chapter 4, 978-3-319-55794-6, 58, 10.1007/978-3-319-55795-3_4
    19. Mattia Bongini, Francesco Salvarani, Mean field games of controls with Dirichlet boundary conditions, 2024, 30, 1292-8119, 32, 10.1051/cocv/2024020
    20. Emiliano Cristiani, Nadia Loy, Marta Menci, Andrea Tosin, Kinetic description and macroscopic limit of swarming dynamics with continuous leader–follower transitions, 2025, 228, 03784754, 362, 10.1016/j.matcom.2024.09.006
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6056) PDF downloads(233) Cited by(20)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog