General constrained conservation laws. Application to pedestrian flow modeling

  • Received: 01 July 2012 Revised: 01 November 2012
  • Primary: 35L65; Secondary: 90B20.

  • We extend the results on conservation laws with local flux constraint obtained in [2, 12] to general (non-concave) flux functions and non-classical solutions arising in pedestrian flow modeling [15]. We first provide a well-posedness result based on wave-front tracking approximations and the Kružhkov doubling of variable technique for a general conservation law with constrained flux. This provides a sound basis for dealing with non-classical solutions accounting for panic states in the pedestrian flow model introduced by Colombo and Rosini [15]. In particular, flux constraints are used here to model the presence of doors and obstacles. We propose a "front-tracking" finite volume scheme allowing to sharply capture classical and non-classical discontinuities. Numerical simulations illustrating the Braess paradox are presented as validation of the method.

    Citation: Christophe Chalons, Paola Goatin, Nicolas Seguin. General constrained conservation laws. Application to pedestrian flow modeling[J]. Networks and Heterogeneous Media, 2013, 8(2): 433-463. doi: 10.3934/nhm.2013.8.433

    Related Papers:

    [1] Christoph Nick, Helmut F. Schlaak, Christiane Thielemann . Simulation and Measurement of Neuroelectrodes Characteristics with Integrated High Aspect Ratio Nano Structures. AIMS Materials Science, 2015, 2(3): 189-202. doi: 10.3934/matersci.2015.3.189
    [2] Sumaiya F. Begum, Hai-Feng Ji . Biochemistry tuned by nanopillars. AIMS Materials Science, 2021, 8(5): 748-759. doi: 10.3934/matersci.2021045
    [3] Hai-Feng Ji, Morasae Samadi, Hao Gu, Veronica Tomchak, Zhen Qiao . Fabrication and applications of self-assembled nanopillars. AIMS Materials Science, 2017, 4(4): 905-919. doi: 10.3934/matersci.2017.4.905
    [4] Christian M Julien, Alain Mauger, Ashraf E Abdel-Ghany, Ahmed M Hashem, Karim Zaghib . Smart materials for energy storage in Li-ion batteries. AIMS Materials Science, 2016, 3(1): 137-148. doi: 10.3934/matersci.2016.1.137
    [5] Alexandre Lavrov, Kamila Gawel, Malin Torsæter . Manipulating cement-steel interface by means of electric field: Experiment and potential applications. AIMS Materials Science, 2016, 3(3): 1199-1207. doi: 10.3934/matersci.2016.3.1199
    [6] Claas Hüter, Shuo Fu, Martin Finsterbusch, Egbert Figgemeier, Luke Wells, Robert Spatschek . Electrode–electrolyte interface stability in solid state electrolyte systems: influence of coating thickness under varying residual stresses. AIMS Materials Science, 2017, 4(4): 867-877. doi: 10.3934/matersci.2017.4.867
    [7] Christian M. Julien, Alain Mauger . In situ Raman analyses of electrode materials for Li-ion batteries. AIMS Materials Science, 2018, 5(4): 650-698. doi: 10.3934/matersci.2018.4.650
    [8] Stephanie Flores Zopf, Matthew J. Panzer . Integration of UV-cured Ionogel Electrolyte with Carbon Paper Electrodes. AIMS Materials Science, 2014, 1(1): 59-69. doi: 10.3934/matersci.2014.1.59
    [9] Serguei Chiriaev, Nis Dam Madsen, Horst-Günter Rubahn, Shuang Ma Andersen . Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures. AIMS Materials Science, 2017, 4(6): 1289-1304. doi: 10.3934/matersci.2017.6.1289
    [10] R.A. Silva, C.O. Soares, R. Afonso, M.D. Carvalho, A.C. Tavares, M.E. Melo Jorge, A. Gomes, M.I. da Silva Pereira, C.M. Rangel . Synthesis and electrocatalytic properties of La0.8Sr0.2FeO3−δ perovskite oxide for oxygen reactions. AIMS Materials Science, 2017, 4(4): 991-1009. doi: 10.3934/matersci.2017.4.991
  • We extend the results on conservation laws with local flux constraint obtained in [2, 12] to general (non-concave) flux functions and non-classical solutions arising in pedestrian flow modeling [15]. We first provide a well-posedness result based on wave-front tracking approximations and the Kružhkov doubling of variable technique for a general conservation law with constrained flux. This provides a sound basis for dealing with non-classical solutions accounting for panic states in the pedestrian flow model introduced by Colombo and Rosini [15]. In particular, flux constraints are used here to model the presence of doors and obstacles. We propose a "front-tracking" finite volume scheme allowing to sharply capture classical and non-classical discontinuities. Numerical simulations illustrating the Braess paradox are presented as validation of the method.


    [1] B. Andreianov and N. Seguin, Analysis of a Burgers equation with singular resonant source term and convergence of well-balanced schemes, Discrete Contin. Dyn. Syst., 32 (2012), 1939-1964. doi: 10.3934/dcds.2012.32.1939
    [2] B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws, With supplementary material available online, Numer. Math., 115 (2010), 609-645. doi: 10.1007/s00211-009-0286-7
    [3] B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of $L^1$-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., 201 (2011), 27-86. doi: 10.1007/s00205-010-0389-4
    [4] D. Braess, Über ein Paradoxon aus der Verkehrsplanung, Unternehmensforschung, 12 (1968), 258-268.
    [5] A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem," Oxford Lecture Series in Mathematics and its Applications, Vol. 20, Oxford University Press, Oxford, 2000.
    [6] R. Bürger, A. García, K. H. Karlsen and J. D. Towers, A family of numerical schemes for kinematic flows with discontinuous flux, J. Engrg. Math., 60 (2008), 387-425. doi: 10.1007/s10665-007-9148-4
    [7] C. Cancès and N. Seguin, Error estimate for Godunov approximation of locally constrained conservation laws, SIAM J. Numer. Anal., 50 (2012), 3036-3060. doi: 10.1137/110836912
    [8] C. Chalons, Numerical approximation of a macroscopic model of pedestrian flows, SIAM J. Sci. Comput., 29 (2007), 539-555 (electronic). doi: 10.1137/050641211
    [9] C. Chalons and P. Goatin, Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling, Interfaces Free Bound., 10 (2008), 197-221. doi: 10.4171/IFB/186
    [10] G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal., 147 (1999), 89-118. doi: 10.1007/s002050050146
    [11] P. Colella, Glimm's method for gas dynamics, SIAM J. Sci. Statist. Comput., 3 (1982), 76-110. doi: 10.1137/0903007
    [12] R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, J. Differential Equations, 234 (2007), 654-675. doi: 10.1016/j.jde.2006.10.014
    [13] R. M. Colombo, P. Goatin and M. D. Rosini, Conservation laws with unilateral constraints in traffic modeling, Applied and Industrial Mathematics in Italy III, Ser. Adv. Math. Appl. Sci., 82, World Sci. Publ., Hackensack, NJ, (2010), 244-255. doi: 10.1142/9789814280303_0022
    [14] _______, On the modelling and management of traffic, ESAIM Math. Model. Numer. Anal., 45 (2011), 853-872. doi: 10.1051/m2an/2010105
    [15] R. M. Colombo and M. D. Rosini, Pedestrian flows and non-classical shocks, Math. Methods Appl. Sci., 28 (2005), 1553-1567. doi: 10.1002/mma.624
    [16] _______, Existence of nonclassical solutions in a pedestrian flow model, Nonl. Analysis: RWA, 10 (2009), 2716-2728. doi: 10.1016/j.nonrwa.2008.08.002
    [17] M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings, Proc. AMS, 78 (1980), 385-390. doi: 10.1090/S0002-9939-1980-0553381-X
    [18] C. M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl., 38 (1972), 33-41. doi: 10.1016/0022-247X(72)90114-X
    [19] M. L. Delle Monache and P. Goatin, Scalar conservation laws with moving density constraints arising in traffic flow modeling, INRIA Research Report, no. 8119, October 2012.
    [20] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in "Handbook of Numerical Analysis," Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, (2000), 713-1020.
    [21] M. Garavello and P. Goatin, The Aw-Rascle traffic model with locally constrained flow, J. Math. Anal. Appl., 378 (2011), 634-648. doi: 10.1016/j.jmaa.2011.01.033
    [22] M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models," AIMS Series on Applied Mathematics, 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.
    [23] I. M. Gel'fand, Some problems in the theory of quasi-linear equations, Uspehi Mat. Nauk, 14 (1959), 87-158.
    [24] D. Helbing, A. Johansson, and H. Z. Al-Abideen, Dynamics of crowd disasters: An empirical study, Physical Review E, 75 (2007). doi: 10.1103/PhysRevE.75.046109
    [25] H. Holden and N. H. Risebro, "Front Tracking for Hyperbolic Conservation Laws," Applied Mathematical Sciences, Vol. 152, Springer-Verlag, New York, 2002. doi: 10.1007/978-3-642-56139-9
    [26] S. N. Kružhkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255.
    [27] P. G. LeFloch, "Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical Shock Waves," Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2002. doi: 10.1007/978-3-0348-8150-0
    [28] T. P. Liu, The Riemann problem for general systems of conservation laws, J. Differential Equations, 18 (1975), 218-234. doi: 10.1016/0022-0396(75)90091-1
    [29] J. Málek, J. Nečas, M. Rokyta and M. Růžička, "Weak and Measure-Valued Solutions to Evolutionary PDEs," Applied Mathematics and Mathematical Computation, 13, Chapman & Hall, London, 1996.
    [30] E. Yu. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws, J. Hyperbolic Differ. Equ., 4 (2007), 729-770. doi: 10.1142/S0219891607001343
    [31] M. D. Rosini, Nonclassical interactions portrait in a macroscopic pedestrian flow model, J. Differential Equations, 246 (2009), 408-427. doi: 10.1016/j.jde.2008.03.018
    [32] B. Temple, Global solution of the Cauchy problem for a class of $2\times 2$ nonstrictly hyperbolic conservation laws, Adv. in Appl. Math., 3 (1982), 335-375. doi: 10.1016/S0196-8858(82)80010-9
    [33] A. I. Vol'pert, Spaces $BV$ and quasilinear equations, Mat. Sb. (N.S.), 73(115) (1967), 255-302.
  • This article has been cited by:

    1. George Tsekenis, Marianneza Chatzipetrou, Maria Massaouti, Ioanna Zergioti, Comparative Assessment of Affinity-Based Techniques for Oriented Antibody Immobilization towards Immunosensor Performance Optimization, 2019, 2019, 1687-725X, 1, 10.1155/2019/6754398
    2. Dana Mackey, Eilís Kelly, Robert Nooney, Richard O'Kennedy, Direct immunoassays and their performance – theoretical modelling of the effects of antibody orientation and associated kinetics, 2018, 10, 1757-9694, 598, 10.1039/C8IB00077H
    3. Dana Mackey, Eilis Kelly, Robert Nooney, 2017, Chapter 103, 978-3-319-63081-6, 687, 10.1007/978-3-319-63082-3_103
    4. Lewis Roberts, Thom Griffith, Alan Champneys, Martina Piano, Janice Kiely, Richard Luxton, Mathematical modelling of a magnetic immunoassay, 2017, 82, 0272-4960, 1253, 10.1093/imamat/hxx034
    5. Elizabeth A. Campbell, Katily Ramirez, Meghana Holegadde, Nayana Yeshlur, Akram Khaja, Todd A. Sulchek, Tuning Antibody Presentation to Enhance T-Cell Activation for Downstream Cytotoxicity, 2021, 0743-7463, 10.1021/acs.langmuir.0c03203
    6. Tamás Pfeil, Blanka Herbály, A linear model for polyclonal antibody–antigen reactions, 2022, 198, 03784754, 20, 10.1016/j.matcom.2022.02.004
    7. Jianguo Chang, Nailong Gao, Peng Dai, Ziming Zhu, Hui You, Wei Han, Lu Li, Facile engineered polymeric microdevice via co-coupling of phenylboronic acid and Protein A for oriented antibody immobilization enables substantial signal enhancement for an enhanced fluorescence immunoassay, 2021, 346, 09254005, 130444, 10.1016/j.snb.2021.130444
    8. Hamid Aghamohammadi, Seied Ali Hosseini, Sanjana Srikant, Alexander Wong, Mahla Poudineh, Computational and Experimental Model to Study Immunobead-Based Assays in Microfluidic Mixing Platforms, 2022, 94, 0003-2700, 2087, 10.1021/acs.analchem.1c04228
    9. Jiewen Chen, Guangshuai Yao, Chundong Huang, Qidong Shen, Jian Miao, Lingyun Jia, Biparatopic Nanobody-Based Immunosorbent for the Highly Selective Elimination of Tumor Necrosis Factor-α, 2024, 2373-9878, 10.1021/acsbiomaterials.3c01765
    10. Song Liu, Xiaolu Li, Huyang Gao, Jing Chen, Hongfeng Jiang, Progress in Aptamer Research and Future Applications, 2025, 2191-1363, 10.1002/open.202400463
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4863) PDF downloads(119) Cited by(30)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog