Research article Special Issues

Does supply chain finance business model innovation improve capital allocation efficiency? Evidence from the cost of capital

  • Received: 05 June 2023 Revised: 06 August 2023 Accepted: 10 August 2023 Published: 15 August 2023
  • Based on the sample of China's A-share listed companies from 2008 to 2021 and the text analysis data of supply chain finance, this study examines whether the supply chain finance business model innovation can improve the efficiency of capital allocation. Results showed that: 1) Firms with a supply chain finance business model have a low cost of capital, particularly the cost of equity capital; 2) The supply chain finance business model reduces the cost of capital in firms with low strategic commitment and a high degree of information asymmetry; 3) The supply chain finance business model innovation can reduce the cost of capital when the degree of competition in the external product market is low and the internal enterprise scale is large. The above findings can greatly inform the optimization of equity finance market supply, the promotion of innovation, and the provision of investment and financing and business decisions that are consistent with sustainable development goals.

    Citation: Ping Wang, Rui Chen, Qiqing Huang. Does supply chain finance business model innovation improve capital allocation efficiency? Evidence from the cost of capital[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 16421-16446. doi: 10.3934/mbe.2023733

    Related Papers:

    [1] Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409
    [2] Ke Guo, Wanbiao Ma . Global dynamics of an SI epidemic model with nonlinear incidence rate, feedback controls and time delays. Mathematical Biosciences and Engineering, 2021, 18(1): 643-672. doi: 10.3934/mbe.2021035
    [3] Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya . Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences and Engineering, 2010, 7(2): 347-361. doi: 10.3934/mbe.2010.7.347
    [4] Hui Cao, Yicang Zhou, Zhien Ma . Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1399-1417. doi: 10.3934/mbe.2013.10.1399
    [5] A. Q. Khan, M. Tasneem, M. B. Almatrafi . Discrete-time COVID-19 epidemic model with bifurcation and control. Mathematical Biosciences and Engineering, 2022, 19(2): 1944-1969. doi: 10.3934/mbe.2022092
    [6] Marcin Choiński, Mariusz Bodzioch, Urszula Foryś . A non-standard discretized SIS model of epidemics. Mathematical Biosciences and Engineering, 2022, 19(1): 115-133. doi: 10.3934/mbe.2022006
    [7] John E. Franke, Abdul-Aziz Yakubu . Periodically forced discrete-time SIS epidemic model with disease induced mortality. Mathematical Biosciences and Engineering, 2011, 8(2): 385-408. doi: 10.3934/mbe.2011.8.385
    [8] Zhen Jin, Guiquan Sun, Huaiping Zhu . Epidemic models for complex networks with demographics. Mathematical Biosciences and Engineering, 2014, 11(6): 1295-1317. doi: 10.3934/mbe.2014.11.1295
    [9] Wenzhang Huang, Maoan Han, Kaiyu Liu . Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences and Engineering, 2010, 7(1): 51-66. doi: 10.3934/mbe.2010.7.51
    [10] Peter Rashkov, Ezio Venturino, Maira Aguiar, Nico Stollenwerk, Bob W. Kooi . On the role of vector modeling in a minimalistic epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 4314-4338. doi: 10.3934/mbe.2019215
  • Based on the sample of China's A-share listed companies from 2008 to 2021 and the text analysis data of supply chain finance, this study examines whether the supply chain finance business model innovation can improve the efficiency of capital allocation. Results showed that: 1) Firms with a supply chain finance business model have a low cost of capital, particularly the cost of equity capital; 2) The supply chain finance business model reduces the cost of capital in firms with low strategic commitment and a high degree of information asymmetry; 3) The supply chain finance business model innovation can reduce the cost of capital when the degree of competition in the external product market is low and the internal enterprise scale is large. The above findings can greatly inform the optimization of equity finance market supply, the promotion of innovation, and the provision of investment and financing and business decisions that are consistent with sustainable development goals.





    [1] E. Hofmann, Supply chain finance: Some conceptual insights, Logistic Management-Innovative Logistikkonzepte, (2005), 203–214. https://doi.org/10.1007/978-3-322-82165-2_16 doi: 10.1007/978-3-322-82165-2_16
    [2] D. A. Wuttke, C. Blome, K. Foerstl, M. Henke, Managing the innovation adoption of supply chain finance--empirical evidence from six European case studies, J. Bus. Logist., 34 (2013), 148–166. https://doi.org/10.1111/jbl.12016 doi: 10.1111/jbl.12016
    [3] E. Camerinelli, Supply chain finance, J. Payments Strat. Syst., 3 (2009), 114–128. Available from: http://peterdawson.pbworks.com/w/file/fetch/69172087/SCF.pdf
    [4] H. C. Pfohl, M. Gomm, Supply chain finance: Optimizing financial flows in supply chains, Logist. Res., 1 (2009), 149–161. https://doi.org/10.1007/s12159-009-0020-y doi: 10.1007/s12159-009-0020-y
    [5] S. D. Lekkakos, A. Serrano, Supply chain finance for small and medium sized enterprises: The case of reverse factoring, Int. J. Phys. Distrib. Logist. Manag., 46 (2016), 367–392. https://doi.org/10.1108/IJPDLM-07-2014-0165 doi: 10.1108/IJPDLM-07-2014-0165
    [6] M. Wandfluh, E. Hofmann, P. Schoensleben, Financing buyer-supplier dyads: An empirical analysis on financial collaboration in the supply chain, Int. J. of Logist. Res. Appl., 19 (2016), 200–217. https://doi.org/10.1080/13675567.2015.1065803 doi: 10.1080/13675567.2015.1065803
    [7] J. Chod, N, Trichakis, G. Tsoukalas, H. Aspegren, M, Weber, On the financing benefits of supply chain transparency and blockchain adoption, Manag. Sci., 66 (2020), 4359–4919. https://doi.org/10.1287/mnsc.2019.3434 doi: 10.1287/mnsc.2019.3434
    [8] Y. Omran, M, Henke, R. Heines, E. Hofmann, Blockchain-driven supply chain finance: towards a conceptual framework from a buyer perspective, in 26th Annual Conference of the International Purchasing and Supply Education and Research Association, 4 (2017). Available from: https://www.alexandria.unisg.ch/251095
    [9] A. Goldfarb, C. Tucker, Digital economics, J. Econ. Lit., 57 (2019), 3–43. https://doi.org/10.1257/jel.20171452 doi: 10.1257/jel.20171452
    [10] H. Song, M. Y. Li, K. K. Yu, Big data analytics in digital platforms: How do dinancial service providers customise supply chain finance? Int. J. Oper. Prod. Manage., 41 (2021), 410–435. https://doi.org/10.1108/IJOPM-07-2020-0485 doi: 10.1108/IJOPM-07-2020-0485
    [11] E. Hofmann, S. Zumsteg, Win-win and No-win situations in supply chain finance: the case of accounts receivable programs, Supply Chain Forum, 16 (2015), 30–50. https://doi.org/10.1080/16258312.2015.11716350 doi: 10.1080/16258312.2015.11716350
    [12] L. M. Gelsomino, R, Mangiaracina, A. Perego, A. Tumino, Supply chain finance: A literature review, Int. J. Phys. Distrib. Logist. Manag., 46 (2016), 348–366. https://doi.org/10.1108/IJPDLM-08-2014-0173 doi: 10.1108/IJPDLM-08-2014-0173
    [13] A. Pan, L. Xu, B. Li, R. Ling, The impact of supply chain finance on firm cash holdings: Evidence from China, Pac.-Basin Financ. J., 63 (2020), 101402. https://doi.org/10.1016/j.pacfin.2020.101402 doi: 10.1016/j.pacfin.2020.101402
    [14] B. Sundarakani, R. de Souza, M. Goh, S. M. Wagner, S. Manikandan, Modeling carbon footprints across the supply chain, Int. J. Prod. Econ., 128 (2011), 43–50. http://doi.org/10.1016/j.ijpe.2010.01.018 doi: 10.1016/j.ijpe.2010.01.018
    [15] Y. Tsao, E. Nugraha Ridhwan Amir, V. Thanh, M. Dachyar, Designing an eco-efficient supply chain network considering carbon trade and trade-credit: A robust fuzzy optimization approach, Comput. Ind. Eng., 160 (2021), 107595. http://doi.org/10.1016/j.cie.2021.107595 doi: 10.1016/j.cie.2021.107595
    [16] A. I. Nicolae, Working capital financing in reverse supply chains-new perspectives (auto-financing), Eurasian J. Econ. Financ., 6 (2018), 35–46. http://doi.org/10.15604/ejef.2018.06.01.004 doi: 10.15604/ejef.2018.06.01.004
    [17] L. Zhang, R. Long, H. Chen, X. Huang, Performance changes analysis of industrial enterprises under energy constraints, Resour. Conserv. Recy., 136 (2018), 248–256. https://doi.org/10.1016/j.resconrec.2018.04.032 doi: 10.1016/j.resconrec.2018.04.032
    [18] S. Shao, Z. Hu, J. Cao, L. Yang, D. Guan, Environmental regulation and enterprise innovation: A review, Bus. Strateg. Environ., 29 (2020), 1465–1478. https://doi.org/10.1002/bse.2446 doi: 10.1002/bse.2446
    [19] H. G. Huntington, Crude oil trade and current account deficits. Energy Econ., 50 (2015), 70–79. https://doi.org/10.1016/j.eneco.2015.03.030 doi: 10.1016/j.eneco.2015.03.030
    [20] H. Sun, R. U. Awan, M. A. Nawaz, M. Mohsin, A. K. Rasheed, N. Iqbal, Assessing the socio-economic viability of solar commercialization and electrification in south Asian countries, Environ. Dev. Sustain., 23 (2021), 9875–9897. https://doi.org/10.1007/s10668-020-01038-9 doi: 10.1007/s10668-020-01038-9
    [21] K. Zhang, Y. Wang, Z. Huang, Do the Green Credit Guidelines Affect Renewable Energy Investment? Empirical Research from China, Sustainability, 13 (2021), 1–18. https://doi.org/10.3390/su13169331 doi: 10.3390/su13169331
    [22] X He, L. Tang, Exploration on building of visualization platform to innovate business operation pattern of supply chain finance, Phys. Proced., 33 (2012), 1886–1893. https://doi.org/ 10.1016/j.phpro.2012.05.298 doi: 10.1016/j.phpro.2012.05.298
    [23] P. Trkman, K. McCormack, Supply Chain Risk in Turbulent Environments--A Conceptual Model for Managing Supply Chain Network Risk, Int. J. Prod. Econ., 119 (2009), 247–258. https://doi.org/10.1016/j.ijpe.2009.03.002 doi: 10.1016/j.ijpe.2009.03.002
    [24] X. D. Zhao, K, Yeung, Q. P. Huang, X. Song, Improving the predictability of business failure of supply chain finance clients by using external big dataset, Ind. Manag. Data Syst., 115 (2015), 1683-1703. https://doi.org/10.1108/IMDS-04-2015-0161 doi: 10.1108/IMDS-04-2015-0161
    [25] Z. X. Chen, J. Chen, Z. G. Zhang, X. Zhi, Does network governance based on banks' e-commerce platform facilitate supply chain financing, China Agric. Econ. Rev., 11 (2019), 688–703. https://doi.org/10.1108/CAER-06-2018-0132 doi: 10.1108/CAER-06-2018-0132
    [26] Z. Ali, B. Gong, A. Mehreen, Predicting supply chain effectiveness through supply chain finance: Evidence from small and medium enterprises, Int. J. Logist. Manag., 30 (2019), 488–505. https://doi.org/10.1108/IJLM-05-2018-0118 doi: 10.1108/IJLM-05-2018-0118
    [27] T. Muganyi, L. Yan, Y. Yin, H. Sun, X. Gong, F. Taghizadeh-Hesary, Fintech, regtech and financial development: evidence from China, Financi. Innov., 8 (2022), 1–20. https://doi.org/10.1186/s40854-021-00313-6 doi: 10.1186/s40854-021-00313-6
    [28] O. Guedhami, D. Mishra, Excess control, corporate governance and implied cost of equity: international evidence, Financ. Rev., 44 (2009), 489–524. https://doi.org/10.1111/j.1540-6288.2009.00227.x doi: 10.1111/j.1540-6288.2009.00227.x
    [29] C. Botosan, Disclosure level and the cost of equity capital, Account. Rev., 72 (1997), 323–349. https://doi.org/10.1016/S0361-3682(97)80165-1 doi: 10.1016/S0361-3682(97)80165-1
    [30] H. Ashbaugh-Skaife, D. W. Collins, R. K. Jr. William, The discovery and reporting of internal control deficiencies prior to sox-mandated audits, J. Account. Econ., 44 (2017), 166–192. https://doi.org/ 10.1016/j.jacceco.2006.10.001 doi: 10.1016/j.jacceco.2006.10.001
    [31] D. W. Diamond, R. E. Verrecchia, Disclosure, liquidity, and the cost of capital, J. Financ., 46 (1991), 1325–1359. https://doi.org/10.1111/j.1540-6261.1991.tb04620.x doi: 10.1111/j.1540-6261.1991.tb04620.x
    [32] M. G. Hertzel, Z. Li, M. S. Officer, K. J. Rodgers, Inter-firm linkages and the wealth effects of financial distress along the supply chain, J. Financ. Econ., 87 (2008), 374–387. https://doi.org/10.1016/j.jfineco.2007.01.005 doi: 10.1016/j.jfineco.2007.01.005
    [33] P. N. Patatoukas, Customer-base concentration: implications for firm performance and capital markets, Account. Rev., 87 (2012), 363–392. https://doi.org/10.2308/accr-10198 doi: 10.2308/accr-10198
    [34] J. Wang, Do firms' relationships with principal customers/suppliers affect shareholders' income? J. Corp. Financ., 18 (2012), 860–878. https://doi.org/10.1016/j.jcorpfin.2012.06.007 doi: 10.1016/j.jcorpfin.2012.06.007
    [35] D. Dhaliwal, J. S. Judd, M. Serfling, S. Shaikh, Customer concentration risk and the cost of equity capital, J. Account. Econ., 61 (2016), 23–48. https://doi.org/10.1016/j.jacceco.2015.03.005 doi: 10.1016/j.jacceco.2015.03.005
    [36] C. Truong, T. H. Nguyen, T. Huynh, Customer satisfaction and the cost of capital, Rev. Account. Stud., 26 (2020), 293–342. https://doi.org/10.1007/s11142-020-09555-8 doi: 10.1007/s11142-020-09555-8
    [37] M. Hong, J. J. He, K. X. Zhang, Z. D. Guo, Does digital transformation of enterprises help reduce the cost of equity capital, Math. Biosci. Eng., 20 (2023), 6498–6516. http://doi.org/10.3934/mbe.2023280 doi: 10.3934/mbe.2023280
    [38] E. Hofmann, H. Kotzab, A supply chain oriented approach of working capital management, J. Bus. Logist., 31 (2010), 305–330. https://doi.org/10.1002/j.2158-1592.2010.tb00154.x doi: 10.1002/j.2158-1592.2010.tb00154.x
    [39] M. L. Gomm, Supply chain finance: applying finance theory to supply chain management to enhance finance in supply chains, Int. J. Logist.-Res. App., 13 (2010), 133–142. https://doi.org/10.1080/13675560903555167 doi: 10.1080/13675560903555167
    [40] T. T. Zhang, C. Y. Zhang, Q. F. Pei. Misconception of providing supply chain finance: Its stabilising role, Int. J. Prod. Econ., 213 (2019), 175–184. https://doi.org/10.1016/j.ijpe.2019.03.008 doi: 10.1016/j.ijpe.2019.03.008
    [41] P. Polak, R, Simal, M. Hamdan, Post-crisis emerging role of the treasure, Eur. J Sci. Res., 86 (2012), 319–339.
    [42] G. Bi, Y. Fei, X. Yuan. D. Wang, Joint operational and financial collaboration in a capital-constrained supply chain under manufacturer collateral, Asia Pac. J. Oper. Res., 35 (2018), 1–23. http://doi.org/10.1142/S0217595918500100 doi: 10.1142/S0217595918500100
    [43] F. Caniato, L. M. Gelsomino, A. Perego, S. Rnchi, Does finance solve the supply chain financing problem?, Supply Chain Manag., 21 (2016), 534–549. https://doi.org/10.1108/SCM-11-2015-0436 doi: 10.1108/SCM-11-2015-0436
    [44] D. Easley, M. O'Hara, Information and the cost of capital, J. Financ., 59 (2004), 1553–1583. http://doi.org/10.1111/j.1540-6261.2004.00672.x doi: 10.1111/j.1540-6261.2004.00672.x
    [45] C. P. Himmelberg, R. G. Hubbard, I. Love, Investor protection, ownership, and the cost of capital, Working paper, Columbia University, (2002). http://doi.org/10.2139/ssrn.1692686
    [46] D. I. Blackman, C. Holland, The management of financial supply chains: from adversarial to co-operative strategies, IFIP Int. Feder. Inform. Process., 226 (2006), 82–95. http://doi.org/10.1007/978-0-387-39229-5_8 doi: 10.1007/978-0-387-39229-5_8
    [47] W. M. Randll, T. Farris Ⅱ, Supply chain financing: Using cash-to-cash variables to strengthen the supply chain, Int. J. Phys. Distr. Logist. Manag., 39 (2009), 669–689. https://doi.org/10.1108/09600030910996314 doi: 10.1108/09600030910996314
    [48] J. F. Lamoureux, T. A. Evans, Supply chain finance: A new means to support the competitiveness and resilience of global value chains, Export Develop., (2011).
    [49] F. Z. Barrane, N. O. Ndubisi, S. Kamble, G. E. Karuranga, D. Poulin, Building trust in multi-stakeholder collaborations for new product development in the digital transformation era, Benchmark. Int. J., 28 (2020), 205–228. https://doi.org/10.1108/BIJ-04-2020-0164 doi: 10.1108/BIJ-04-2020-0164
    [50] J. T. Brander, B. Lewis. Oligopoly and financial structure: The limited liability effect, Am. Econ. Rev., 76 (1986), 956–970. https://doi.org/10.1017/CBO9780511528231.025 doi: 10.1017/CBO9780511528231.025
    [51] F. Hawlitschek, B. Notheisen, T, Teubner, The limits of trust-free systems: A literature review on blockchain technology and trust in the sharing economy, Electron. Commer. Res. Appl., 29 (2008), 50–63. https://doi.org/10.1016/j.elerap.2018.03.005 doi: 10.1016/j.elerap.2018.03.005
    [52] M. Poitevin, Financial signalling and the 'deep-pocket' argument, Rand J. Econ., 20 (1989), 26–40. Available from: http://links.jstor.org/sici?sici = 0741-6261%28198921%2920%3A1%3C26%3AFSAT%22A%3E2.0.CO%3B2-P & origin = repec
    [53] I. C. L. Ng, New business and economic models in the connected digital economy, J. Revenue Pricing Manag., 13 (2014), 149–155. https://doi.org/10.1057/rpm.2013.27 doi: 10.1057/rpm.2013.27
    [54] S. Templar, E. Hofmann, C. Findlay, Financing the end-to-end supply chain: a reference guide to supply chain finance, Kogan Page Publishers, ISBN: 978-0-7494-7141-5, (2020).
    [55] H. Yang, W. Zhuo, L. Shao, Equilibrium evolution in a two-echelon supply chain with financially constrained retailers: The impact of equity financing, Int. J. Prod. Econ., 185 (2017), 139–149. https://doi.org/10.1016/j.ijpe.2016.12.027 doi: 10.1016/j.ijpe.2016.12.027
    [56] N. Yan, X. He, Y. Liu, Financing the capital-constrained supply chain with loss aversion: Supplier finance vs. supplier investment, Omega, 88 (2019), 162–178. https://doi.org/10.1016/j.omega.2018.08.003 doi: 10.1016/j.omega.2018.08.003
    [57] X. F. Chen, A. Wang, Trade credit contract with limited liability in the supply chain with budget constraints, Ann. Oper. Res., 196 (2012), 153–165. https://doi.org/10.1007/s10479-012-1119-0 doi: 10.1007/s10479-012-1119-0
    [58] B. Li, S. M. An, D. P. Song, Selection of financing strategies with a risk-averse supplier in a capital-constrained supply chain, Transp. Res. E. Logist. Transp. Rev., 118 (2018), 163–183. https://doi.org/10.1016/j.tre.2018.06.007 doi: 10.1016/j.tre.2018.06.007
    [59] Q. Zhang, M. Dong, J. Luo, A. Segerstedt, Supply chain coordination with trade credit and quantity discount incorporating default risk, Int. J. Prod. Econ., 153 (2014), 352-360. https://doi.org/10.1016/j.ijpe.2014.03.019 doi: 10.1016/j.ijpe.2014.03.019
    [60] S. K. Devalkar, H, Krishnan, The impact of working capital financing costs on the efficiency of trade credit, Prod. Oper. Manag., 28 (2019), 878–889. https://doi.org/ 10.1111/poms.12954 doi: 10.1111/poms.12954
    [61] Y. He, X. Zhao, L. Zhao, H. Ju, Coordinating a supply chain with effort and price dependent stochastic demand, Appl. Math. Model., 33 (2009), 2777–2790. https://doi.org/ 10.1016/j.apm.2008.08.016 doi: 10.1016/j.apm.2008.08.016
    [62] W. D. Du, J. Y. Mao, Developing and maintaining clients' trust through institutional mechanisms in online service markets for digital entrepreneurs: A process model, J. Strategic Inf. Syst., 27 (2018), 296–310. https://doi.org/10.1016/j.jsis.2018.07.001 doi: 10.1016/j.jsis.2018.07.001
    [63] Z. F. Lu, K. T. Ye, Analysis of equity financing preference of listed companies in China - is equity financing preference due to low financing cost, Econom. Res., 4 (2004), 50–59. Available from: https://kns.cnki.net/kcms2/article/abstract?v = N6L1kuKE8iKewN7EAJVpO6NkGgVnV-HRjUsAJUBB1MweE2XgOoRSDknD3XI6ZcX-1QSXOHyn-h0J1w4pgVwzhDbViD08eXZdH-buh8qJ-lft64oEvqX7Wg = = & uniplatform = NZKPT & language = gb (In Chinese)
    [64] Y. L. Zhang, Q. Gong, Z. Rong, Technical innovation, equity financing and financial structure transformation, Manag. World, 278 (2016), 65–80. https://doi.org/10.19744/j.cnki.11-1235/f.2016.11.006 (In Chinese) doi: 10.19744/j.cnki.11-1235/f.2016.11.006(InChinese)
    [65] P. Wang, The cost of capital: Theory and estimation technology, Beijing: Economic Management Press, 12 (2018), 281–318. ISBN: 978-7-5096-5448-4 (In Chinese)
    [66] J. A. Pittman, S. Fortin, 2004. Auditor choice and the cost of debt capital for newly public firms, J. Account. Econ., 37 (2004), 113–136. https://doi.org/10.1016/j.jacceco.2003.06.005 doi: 10.1016/j.jacceco.2003.06.005
    [67] K. K. Li, P. Mohanram, Evaluating cross-sectional forecasting models for implied cost of capital, Rev. Account. Stud., 19 (2014), 1152–1185. https://doi.org/10.1007/s11142-014-9282-y doi: 10.1007/s11142-014-9282-y
    [68] Y. Zou, P. Wang, L. M. Zhang, Corporate earnings forecast and cost of capital estimation: cross-sectional regression model forecast vs. analyst forecast, Math. Statist. Manag., 38 (2019), 172–190. https://doi.org/10.13860/j.cnki.sltj.20180817-002 (In Chinese) doi: 10.13860/j.cnki.sltj.20180817-002(InChinese)
    [69] M. J. Gordon, The savings investment and valuation of a corporation, Rev. Econ. Stat., 44 (1962), 37–51. Available from: http://s.dic.cool/S/0FDyxCAB
    [70] J. Claus, J. Thomas, Equity premia as low as three percent? Evidence from analysts' earnings forecasts for domestic and international stock markets, J. Financ., 56 (2001), 1629–1666. https://doi.org/10.1111/0022-1082.00384 doi: 10.1111/0022-1082.00384
    [71] J. A. Ohlson, B. E. Juettner-Nauroth, Expected EPS and EPS growth as determinants of value, Rev. Account. Stud., 10 (2005), 349–365. https://doi.org/10.1007/s11142-005-1535-3 doi: 10.1007/s11142-005-1535-3
    [72] W. Gebhardt, C, Lee, B, Swaminathan, Toward an implied cost of capital, J. Account. Res., 39 (2001), 135–176. https://doi.org/10.1111/1475-679X.00007 doi: 10.1111/1475-679X.00007
    [73] P. D. Easton, PE ratios, PEG ratios, and estimating the implied expected rate of return on equity capital, Account. Rev., 79 (2004), 73–95. https://doi.org/10.2308/accr.2004.79.1.73 doi: 10.2308/accr.2004.79.1.73
    [74] C. Huang, F. T. Chan, S. H. Chung, Recent contributions to supply chain finance: Towards a theoretical and practical research agenda, Int. J. Prod. Res., 60 (2022), 493–516. https://doi.org/10.1080/00207543.2021.1964706 doi: 10.1080/00207543.2021.1964706
    [75] E. F. Fama, K. R. French, The cross-section of expected stock returns, J. Financ., 47 (1992), 427–465. http://doi.org/10.1111/j.1540-6261.1992.tb04398.x doi: 10.1111/j.1540-6261.1992.tb04398.x
    [76] A. B. Crittenden, V. L. Crittenden, W. F. Crittenden, The digitalization triumvirate: How incumbents survive, Bus. Horiz., 62 (2019), 259–266. http://doi.org/10.1016/j.bushor.2018.11.005 doi: 10.1016/j.bushor.2018.11.005
    [77] U. Bititci, S. V. Martinez, P. Albores, Creating and managing value in collaborative Networks, Int. J. Phys. Distrib. Logist. Manag., 34 (2004), 251–268. http://doi.org/info:doi/10.1108/09600030410533574 doi: 10.1108/09600030410533574
    [78] D. Teece, G. Pisano, A. Shuen, Dynamic capabilities and strategic management, Strateg. Manage. J., 18 (1997), 509–533. http://links.jstor.org/sici?sici = 0143-2095%28199708%2918%3A7%3C509%3ADCASM%3E2.0.C0%3B2-%23
    [79] C. A Botosan, M. A. Plumlee, Assessing alternative proxies for the expected risk premium, Account. Rev., 80 (2005), 21–53. http://doi.org/10.1002/jcb.20087 doi: 10.1002/jcb.20087
    [80] L. Fresard, Financial strength and product market behavior: The real effects of corporate cash holdings, J. Financ., 65 (2010), 1097–1122. https://doi.org/10.1111/j.1540-6261.2010.01562.x doi: 10.1111/j.1540-6261.2010.01562.x
    [81] P. M. Dechow, R. G. Sloan, A, P, Hutton, Detecting earnings management, Account. Rev., 70 (1995), 193–225. https://doi.org/10.2307/258852 doi: 10.2307/258852
    [82] M. Bernini, A. Montagnoli, Competition and financial constraints: A two-sided story, J. Int. Money Finan., 70 (2017), 88–109. https://doi.org/10.1016/j.jimonfin.2016.07.003 doi: 10.1016/j.jimonfin.2016.07.003
    [83] X. Giroud, H. M. Mueller, Corporate governance, product market competition, and equity prices, J. Financ., 66 (2011), 563–600. https://doi.org/10.1111/j.1540-6261.2010.01642.x doi: 10.1111/j.1540-6261.2010.01642.x
    [84] S. J. Nickell, Competition and corporate performance, J. Polit. Econ., 104 (1996), 724–746. https://doi.org/10.1086/262040 doi: 10.1086/262040
    [85] L. J. Danny, F. W. William, G. Z. Zach, Concentrated supply chain membership and financial performance: chain-and firm-level perspectives, J. Oper. Manag., 28 (2010), 1–16. https://doi.org/10.1016/j.jom.2009.06.002 doi: 10.1016/j.jom.2009.06.002
  • This article has been cited by:

    1. Guirong Jiang, Qigui Yang, Periodic solutions and bifurcation in an SIS epidemic model with birth pulses, 2009, 50, 08957177, 498, 10.1016/j.mcm.2009.04.021
    2. Soodeh Hosseini, Mohammad Abdollahi Azgomi, Adel Torkaman Rahmani, Malware propagation modeling considering software diversity and immunization, 2016, 13, 18777503, 49, 10.1016/j.jocs.2016.01.002
    3. Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya, Global stability for a discrete SIS epidemic model with immigration of infectives, 2012, 18, 1023-6198, 1913, 10.1080/10236198.2011.602973
    4. Raul Nistal, Manuel de la Sen, Santiago Alonso-Quesada, Asier Ibeas, 2014, A nonlinear SEIR epidemic model with feedback vaccination control, 978-3-9524269-1-3, 158, 10.1109/ECC.2014.6862291
    5. Jinhu Xu, Yan Geng, Stability preserving NSFD scheme for a delayed viral infection model with cell-to-cell transmission and general nonlinear incidence, 2017, 23, 1023-6198, 893, 10.1080/10236198.2017.1304933
    6. Yuhua Long, Lin Wang, Global dynamics of a delayed two-patch discrete SIR disease model, 2020, 83, 10075704, 105117, 10.1016/j.cnsns.2019.105117
    7. Xiaolin Fan, Lei Wang, Zhidong Teng, Global dynamics for a class of discrete SEIRS epidemic models with general nonlinear incidence, 2016, 2016, 1687-1847, 10.1186/s13662-016-0846-y
    8. Jinhu Xu, Jiangyong Hou, Yan Geng, Suxia Zhang, Dynamic consistent NSFD scheme for a viral infection model with cellular infection and general nonlinear incidence, 2018, 2018, 1687-1847, 10.1186/s13662-018-1560-8
    9. Zohreh Eskandari, Javad Alidousti, Stability and codimension 2 bifurcations of a discrete time SIR model, 2020, 357, 00160032, 10937, 10.1016/j.jfranklin.2020.08.040
    10. Jinhu Xu, Yan Geng, A nonstandard finite difference scheme for a multi-group epidemic model with time delay, 2017, 2017, 1687-1847, 10.1186/s13662-017-1415-8
    11. Zengyun Hu, Zhidong Teng, Chaojun Jia, Chi Zhang, Long Zhang, Dynamical analysis and chaos control of a discrete SIS epidemic model, 2014, 2014, 1687-1847, 10.1186/1687-1847-2014-58
    12. Yueli Luo, Shujing Gao, Dehui Xie, Yanfei Dai, A discrete plant disease model with roguing and replanting, 2015, 2015, 1687-1847, 10.1186/s13662-014-0332-3
    13. Qamar Din, Qualitative behavior of a discrete SIR epidemic model, 2016, 09, 1793-5245, 1650092, 10.1142/S1793524516500923
    14. Tailei Zhang, Junli Liu, Zhidong Teng, Threshold conditions for a discrete nonautonomous SIRS model, 2015, 38, 01704214, 1781, 10.1002/mma.3186
    15. Zengyun Hu, Zhidong Teng, Long Zhang, Stability and bifurcation analysis in a discrete SIR epidemic model, 2014, 97, 03784754, 80, 10.1016/j.matcom.2013.08.008
    16. Zhidong Teng, Lei Wang, Linfei Nie, Global attractivity for a class of delayed discrete SIRS epidemic models with general nonlinear incidence, 2015, 38, 01704214, 4741, 10.1002/mma.3389
    17. Zengyun Hu, Zhidong Teng, Haijun Jiang, Stability analysis in a class of discrete SIRS epidemic models, 2012, 13, 14681218, 2017, 10.1016/j.nonrwa.2011.12.024
    18. Jahangir Chowdhury, Sourav Rana, Sabyasachi Bhattacharya, Priti Kumar Roy, 2017, Chapter 23, 978-981-10-3757-3, 319, 10.1007/978-981-10-3758-0_23
    19. Lei Wang, Zhidong Teng, Haijun Jiang, Global attractivity of a discrete SIRS epidemic model with standard incidence rate, 2013, 36, 01704214, 601, 10.1002/mma.2734
    20. Tailei Zhang, Permanence and extinction in a nonautonomous discrete SIRVS epidemic model with vaccination, 2015, 271, 00963003, 716, 10.1016/j.amc.2015.09.071
    21. Zengyun Hu, Linlin Chang, Zhidong Teng, Xi Chen, Bifurcation analysis of a discrete S I R S epidemic model with standard incidence rate, 2016, 2016, 1687-1847, 10.1186/s13662-016-0874-7
    22. JUPING ZHANG, ZHEN JIN, DISCRETE TIME SI AND SIS EPIDEMIC MODELS WITH VERTICAL TRANSMISSION, 2009, 17, 0218-3390, 201, 10.1142/S0218339009002788
    23. Junhong Li, Ning Cui, Bifurcation and Chaotic Behavior of a Discrete-Time SIS Model, 2013, 2013, 1026-0226, 1, 10.1155/2013/705601
    24. Qiaoling Chen, Zhidong Teng, Lei Wang, Haijun Jiang, The existence of codimension-two bifurcation in a discrete SIS epidemic model with standard incidence, 2013, 71, 0924-090X, 55, 10.1007/s11071-012-0641-6
    25. S.M. Salman, E. Ahmed, A mathematical model for Creutzfeldt Jacob Disease (CJD), 2018, 116, 09600779, 249, 10.1016/j.chaos.2018.09.041
    26. Pengfei Wu, Jingshun Duanmu, Jiyong Du, 2012, Analysis of an SIS Epidemic Model with Disease-Induced Mortality, 978-0-7695-4647-6, 596, 10.1109/ICCSEE.2012.17
    27. Yan Geng, Jinhu Xu, Stability preserving NSFD scheme for a multi-group SVIR epidemic model, 2017, 01704214, 10.1002/mma.4357
    28. Lei Wang, Qianqian Cui, Zhidong Teng, Global dynamics in a class of discrete-time epidemic models with disease courses, 2013, 2013, 1687-1847, 10.1186/1687-1847-2013-57
    29. J. Hallberg Szabadváry, Y. Zhou, On qualitative analysis of a discrete time SIR epidemical model, 2021, 7, 25900544, 100067, 10.1016/j.csfx.2021.100067
    30. Fang Zheng, 2022, Chapter 12, 978-981-19-2447-7, 121, 10.1007/978-981-19-2448-4_12
    31. Zhidong Teng, Linfei Nie, Jiabo Xu, Dynamical behaviors of a discrete SIS epidemic model with standard incidence and stage structure, 2013, 2013, 1687-1847, 10.1186/1687-1847-2013-87
    32. Javier Cifuentes-Faura, Ursula Faura-Martínez, Matilde Lafuente-Lechuga, Mathematical Modeling and the Use of Network Models as Epidemiological Tools, 2022, 10, 2227-7390, 3347, 10.3390/math10183347
    33. Limin Zhang, Jiaxin Gu, Guangyuan Liao, Bifurcations and model fitting of a discrete epidemic system with incubation period and saturated contact rate, 2025, 1023-6198, 1, 10.1080/10236198.2025.2457987
    34. Jahangir Chowdhury, Fahad Al Basir, Anirban Mukherjee, Priti Kumar Roy, A theta logistic model for the dynamics of whitefly borne mosaic disease in Cassava: impact of roguing and insecticide spraying, 2025, 1598-5865, 10.1007/s12190-025-02419-x
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2717) PDF downloads(298) Cited by(6)

Article outline

Figures and Tables

Figures(1)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog