Formal asymptotic expansions for symmetric ancient ovals in mean curvature flow

  • Received: 01 March 2012 Revised: 01 October 2012
  • Primary: 53C44, 35K59; Secondary: 35C20.

  • We provide formal matched asymptotic expansions for ancient convex solutions to MCF. The formal analysis leading to the solutions is analogous to that for the generic MCF neck pinch in [1].
        For any $p, q$ with $p+q=n$, $p\geq1$, $q\geq2$ we find a formal ancient solution which is a small perturbation of an ellipsoid. For $t\to-\infty$ the solution becomes increasingly astigmatic: $q$ of its major axes have length $\approx\sqrt{2(q-1)(-t)}$, while the other $p$ axes have length $\approx \sqrt{-2t\log(-t)}$.
        We conjecture that an analysis similar to that in [2] will lead to a rigorous construction of ancient solutions to MCF with the asymptotics described in this paper.

    Citation: Sigurd Angenent. Formal asymptotic expansions for symmetric ancient ovalsin mean curvature flow[J]. Networks and Heterogeneous Media, 2013, 8(1): 1-8. doi: 10.3934/nhm.2013.8.1

    Related Papers:

    [1] Sigurd Angenent . Formal asymptotic expansions for symmetric ancient ovals in mean curvature flow. Networks and Heterogeneous Media, 2013, 8(1): 1-8. doi: 10.3934/nhm.2013.8.1
    [2] Dimitra Antonopoulou, Georgia Karali . A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks and Heterogeneous Media, 2013, 8(1): 9-22. doi: 10.3934/nhm.2013.8.9
    [3] Ken-Ichi Nakamura, Toshiko Ogiwara . Periodically growing solutions in a class of strongly monotone semiflows. Networks and Heterogeneous Media, 2012, 7(4): 881-891. doi: 10.3934/nhm.2012.7.881
    [4] Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111
    [5] Leonid Berlyand, Mykhailo Potomkin, Volodymyr Rybalko . Sharp interface limit in a phase field model of cell motility. Networks and Heterogeneous Media, 2017, 12(4): 551-590. doi: 10.3934/nhm.2017023
    [6] Leonid Berlyand, Giuseppe Cardone, Yuliya Gorb, Gregory Panasenko . Asymptotic analysis of an array of closely spaced absolutely conductive inclusions. Networks and Heterogeneous Media, 2006, 1(3): 353-377. doi: 10.3934/nhm.2006.1.353
    [7] Marie Henry . Singular limit of an activator-inhibitor type model. Networks and Heterogeneous Media, 2012, 7(4): 781-803. doi: 10.3934/nhm.2012.7.781
    [8] Natalia O. Babych, Ilia V. Kamotski, Valery P. Smyshlyaev . Homogenization of spectral problems in bounded domains with doubly high contrasts. Networks and Heterogeneous Media, 2008, 3(3): 413-436. doi: 10.3934/nhm.2008.3.413
    [9] Gung-Min Gie, Makram Hamouda, Roger Temam . Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary. Networks and Heterogeneous Media, 2012, 7(4): 741-766. doi: 10.3934/nhm.2012.7.741
    [10] Grigory Panasenko, Ruxandra Stavre . Asymptotic analysis of the Stokes flow with variable viscosity in a thin elastic channel. Networks and Heterogeneous Media, 2010, 5(4): 783-812. doi: 10.3934/nhm.2010.5.783
  • We provide formal matched asymptotic expansions for ancient convex solutions to MCF. The formal analysis leading to the solutions is analogous to that for the generic MCF neck pinch in [1].
        For any $p, q$ with $p+q=n$, $p\geq1$, $q\geq2$ we find a formal ancient solution which is a small perturbation of an ellipsoid. For $t\to-\infty$ the solution becomes increasingly astigmatic: $q$ of its major axes have length $\approx\sqrt{2(q-1)(-t)}$, while the other $p$ axes have length $\approx \sqrt{-2t\log(-t)}$.
        We conjecture that an analysis similar to that in [2] will lead to a rigorous construction of ancient solutions to MCF with the asymptotics described in this paper.


    [1] S. B. Angenent and J. J. L. Velázquez, Degenerate neckpinches in mean curvature flow, J. Reine Angew. Math., 482 (1997), 15-66.
    [2] Sigurd Angenent, Cristina Caputo and Dan Knopf, Minimally invasive surgery for Ricci flow singularities, J. Reine Angew. Math., 672 (2012), 39–87(to appear).
    [3] Sigurd Angenent, Shrinking doughnuts, Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog, 1989), Progr. Nonlinear Differential Equations Appl., 7 Birkhäuser Boston, Boston, MA, (1992), 21-38.
    [4] Panagiota Daskalopoulos, Richard Hamilton and Natasa Sesum, Classification of compact ancient solutions to the curve shortening flow, J. Differential Geom., 84 (2010), 455-464.
    [5] M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom., 23 (1986), 69-96.
  • This article has been cited by:

    1. Theodora Bourni, Mat Langford, Giuseppe Tinaglia, Ancient mean curvature flows out of polytopes, 2022, 26, 1364-0380, 1849, 10.2140/gt.2022.26.1849
    2. Susanna Risa, Carlo Sinestrari, Ancient Solutions of Geometric Flows with Curvature Pinching, 2019, 29, 1050-6926, 1206, 10.1007/s12220-018-0036-0
    3. Susanna Risa, Carlo Sinestrari, Strong spherical rigidity of ancient solutions of expansive curvature flows, 2020, 52, 0024-6093, 94, 10.1112/blms.12308
    4. ZHENGCHAO JI, ANCIENT SOLUTIONS OF CODIMENSION TWO SURFACES WITH CURVATURE PINCHING - RETRACTED, 2020, 102, 0004-9727, 162, 10.1017/S0004972720000179
    5. Kyeongsu Choi, Robert Haslhofer, Or Hershkovits, Brian White, Ancient asymptotically cylindrical flows and applications, 2022, 229, 0020-9910, 139, 10.1007/s00222-022-01103-2
    6. Peng Lu, Jiuru Zhou, Ancient solutions for Andrews’ hypersurface flow, 2021, 2021, 0075-4102, 85, 10.1515/crelle-2020-0020
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3916) PDF downloads(87) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog