A mathematical model for spaghetti cooking with free boundaries

  • Received: 01 January 2010 Revised: 01 November 2010
  • 76S05, 35R35, 45G10.

  • We propose a mathematical model for the process of dry pasta cooking with specific reference to spaghetti. Pasta cooking is a two-stage process: water penetration followed by starch gelatinization. Differently from the approach adopted so far in the technical literature, our model includes free boundaries: the water penetration front and the gelatinization onset front representing a fast stage of the corresponding process. Behind the respective fronts water sorption and gelatinization proceed according to some kinetics. The outer boundary is also moving and unknown as a consequence of swelling. Existence and uniqueness are proved and numerical simulations are presented.

    Citation: Antonio Fasano, Mario Primicerio, Andrea Tesi. A mathematical model for spaghetti cooking with free boundaries[J]. Networks and Heterogeneous Media, 2011, 6(1): 37-60. doi: 10.3934/nhm.2011.6.37

    Related Papers:

    [1] Antonio Fasano, Mario Primicerio, Andrea Tesi . A mathematical model for spaghetti cooking with free boundaries. Networks and Heterogeneous Media, 2011, 6(1): 37-60. doi: 10.3934/nhm.2011.6.37
    [2] Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa . A one dimensional free boundary problem for adsorption phenomena. Networks and Heterogeneous Media, 2014, 9(4): 655-668. doi: 10.3934/nhm.2014.9.655
    [3] Jésus Ildefonso Díaz, Tommaso Mingazzini, Ángel Manuel Ramos . On the optimal control for a semilinear equation with cost depending on the free boundary. Networks and Heterogeneous Media, 2012, 7(4): 605-615. doi: 10.3934/nhm.2012.7.605
    [4] Kota Kumazaki, Toyohiko Aiki, Adrian Muntean . Local existence of a solution to a free boundary problem describing migration into rubber with a breaking effect. Networks and Heterogeneous Media, 2023, 18(1): 80-108. doi: 10.3934/nhm.2023004
    [5] Avner Friedman . PDE problems arising in mathematical biology. Networks and Heterogeneous Media, 2012, 7(4): 691-703. doi: 10.3934/nhm.2012.7.691
    [6] Bing Feng, Congyin Fan . American call option pricing under the KoBoL model with Poisson jumps. Networks and Heterogeneous Media, 2025, 20(1): 143-164. doi: 10.3934/nhm.2025009
    [7] Gary Bunting, Yihong Du, Krzysztof Krakowski . Spreading speed revisited: Analysis of a free boundary model. Networks and Heterogeneous Media, 2012, 7(4): 583-603. doi: 10.3934/nhm.2012.7.583
    [8] Hakima Bessaih, Yalchin Efendiev, Florin Maris . Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10(2): 343-367. doi: 10.3934/nhm.2015.10.343
    [9] Bendong Lou . Self-similar solutions in a sector for a quasilinear parabolic equation. Networks and Heterogeneous Media, 2012, 7(4): 857-879. doi: 10.3934/nhm.2012.7.857
    [10] Pierre Degond, Sophie Hecht, Nicolas Vauchelet . Incompressible limit of a continuum model of tissue growth for two cell populations. Networks and Heterogeneous Media, 2020, 15(1): 57-85. doi: 10.3934/nhm.2020003
  • We propose a mathematical model for the process of dry pasta cooking with specific reference to spaghetti. Pasta cooking is a two-stage process: water penetration followed by starch gelatinization. Differently from the approach adopted so far in the technical literature, our model includes free boundaries: the water penetration front and the gelatinization onset front representing a fast stage of the corresponding process. Behind the respective fronts water sorption and gelatinization proceed according to some kinetics. The outer boundary is also moving and unknown as a consequence of swelling. Existence and uniqueness are proved and numerical simulations are presented.


    [1] S. Cafieri, S. Chillo, M. Mastromatteo, N. Suriano and M. A. Del Nobile, A mathematical model to predict the effect of shape on pasta hydration kinetic during cooking and overcooking, J. Cereal Science, (2008).
    [2] E. Cocci, G. Sacchetti, M. Vallicelli and M. Dalla Rosa, Spaghetti cooking b microwave oven: Cooking kinetics and product quality, J. Food Eng., 85 (2008), 537-546. doi: oi:10.1016/j.jfoodeng.2007.08.013
    [3] S. E. Cunningham, W. A. M. Mcminn, T. R. A. Magee and P. S. Richardson, Modelling water absorption of pasta during soaking, J. Food. Eng., 82 (2007), 600-607. doi: 10.1016/j.jfoodeng.2007.03.018
    [4] M. J. Davey, K. A. Landman, M. J. McGuinness and H. N. Jin, Mathematical modelling of rice cooking and dissolution in beer production, AIChE Journal, 48 (2002), 1811-1826. doi: 10.1002/aic.690480821
    [5] R. A. Grzybowski and B. J. Donnelly, Starch gelatinization in cooked spaghetti, J. Food Science, 42 (1977), 1304-1315. doi: 10.1111/j.1365-2621.1977.tb14483.x
    [6] M. J. McGuinness, C. P. Please, N. Fowkes, P. McGowan, L. Ryder and D. Forte, Modelling the wetting and cooking of a single cereal grain, IMA J. Math. Appl. Business and Industry, 11 (2000), 49-70.
    [7] A. G. F. Stapley, P. J. Fryer and L. F. Gladden, Diffusion and reaction in whole wheat grains during boiling, AIChE Journal, 44 (1998), 1777-1789. doi: 10.1002/aic.690440809
    [8] A. K. Syarief, R. J. Gustafson and R. V. Morey, Moisture diffusion coefficients for yellow-dent corn components, Trans. ASAE, 30 (1987), 522-528.
    [9] Ch. Xue, N. Sakai and M. Fukuoka, Use of microwave heating to control the degree of starch geletinization in noodles, J. Food. Eng., 87 (2007), 357-362. doi: 10.1016/j.jfoodeng.2007.12.017
    [10] Tain-Yi Zhang, A. S. Bakshi, R. J. Gustafson and D. B. Lund, Finite element analysis of nonlinear water diffusion during rice soaking, J. Food Science, 49 (1984), 246-277. doi: 10.1111/j.1365-2621.1984.tb13719.x
  • This article has been cited by:

    1. Jae Pil Roh, Sungmin Jeong, Imkyung Oh, Suyong Lee, Micro-computed tomographic and proton NMR characterization of cooked noodles and their correlation with conventional methods, 2020, 270, 02608774, 109765, 10.1016/j.jfoodeng.2019.109765
    2. Nathaniel N. Goldberg, Oliver M. O'Reilly, Mechanics-based model for the cooking-induced deformation of spaghetti, 2020, 101, 2470-0045, 10.1103/PhysRevE.101.013001
    3. Jingfei Liu, Nico F. Declercq, Air-coupled ultrasonic investigation of stacked cylindrical rods, 2012, 131, 0001-4966, 4500, 10.1121/1.4707442
    4. Alessio Cimini, Matteo Cibelli, Mauro Moresi, Reducing the cooking water-to-dried pasta ratio and environmental impact of pasta cooking, 2019, 99, 00225142, 1258, 10.1002/jsfa.9299
    5. Alessio Cimini, Matteo Cibelli, Maria Cristina Messia, Mauro Moresi, Commercial short-cut extruded pasta: Cooking quality and carbon footprint vs. water-to-pasta ratio, 2019, 116, 09603085, 150, 10.1016/j.fbp.2019.05.004
    6. Alessio Cimini, Matteo Cibelli, Anna R Taddei, Mauro Moresi, Effect of cooking temperature on cooked pasta quality and sustainability, 2021, 101, 0022-5142, 4946, 10.1002/jsfa.11138
    7. Phillip Toultchinski, Thomas A. Vilgis, How to cook pasta? Physicists view on suggestions for energy saving methods, 2024, 36, 1070-6631, 10.1063/5.0230480
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4497) PDF downloads(225) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog