Schwarz waveform relaxation algorithms for semilinear reaction-diffusion equations

  • Received: 01 January 2010 Revised: 01 May 2010
  • 35K55, 65M12, 65M55.

  • We introduce nonoverlapping domain decomposition algorithms of Schwarz waveform relaxation type for the semilinear reaction-diffusion equation. We define linear Robin and second order (or Ventcell) transmission conditions between the subdomains, which we prove to lead to a well defined and converging algorithm. We also propose nonlinear transmission conditions. Both types are based on best approximation problems for the linear equation and provide efficient algorithms, as the numerical results that we present here show.

    Citation: Filipa Caetano, Martin J. Gander, Laurence Halpern, Jérémie Szeftel. Schwarz waveform relaxation algorithms for semilinear reaction-diffusion equations[J]. Networks and Heterogeneous Media, 2010, 5(3): 487-505. doi: 10.3934/nhm.2010.5.487

    Related Papers:

    [1] Filipa Caetano, Martin J. Gander, Laurence Halpern, Jérémie Szeftel . Schwarz waveform relaxation algorithms for semilinear reaction-diffusion equations. Networks and Heterogeneous Media, 2010, 5(3): 487-505. doi: 10.3934/nhm.2010.5.487
    [2] Markus Gahn, Maria Neuss-Radu, Peter Knabner . Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface. Networks and Heterogeneous Media, 2018, 13(4): 609-640. doi: 10.3934/nhm.2018028
    [3] José Antonio Carrillo, Yingping Peng, Aneta Wróblewska-Kamińska . Relative entropy method for the relaxation limit of hydrodynamic models. Networks and Heterogeneous Media, 2020, 15(3): 369-387. doi: 10.3934/nhm.2020023
    [4] Delio Mugnolo . Gaussian estimates for a heat equation on a network. Networks and Heterogeneous Media, 2007, 2(1): 55-79. doi: 10.3934/nhm.2007.2.55
    [5] Narcisa Apreutesei, Vitaly Volpert . Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8(1): 23-35. doi: 10.3934/nhm.2013.8.23
    [6] James Nolen . A central limit theorem for pulled fronts in a random medium. Networks and Heterogeneous Media, 2011, 6(2): 167-194. doi: 10.3934/nhm.2011.6.167
    [7] Xu Yang, François Golse, Zhongyi Huang, Shi Jin . Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks and Heterogeneous Media, 2006, 1(1): 143-166. doi: 10.3934/nhm.2006.1.143
    [8] Danielle Hilhorst, Hideki Murakawa . Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium. Networks and Heterogeneous Media, 2014, 9(4): 669-682. doi: 10.3934/nhm.2014.9.669
    [9] Vincent Renault, Michèle Thieullen, Emmanuel Trélat . Optimal control of infinite-dimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via Optogenetics. Networks and Heterogeneous Media, 2017, 12(3): 417-459. doi: 10.3934/nhm.2017019
    [10] Alexander Mielke, Sina Reichelt, Marita Thomas . Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks and Heterogeneous Media, 2014, 9(2): 353-382. doi: 10.3934/nhm.2014.9.353
  • We introduce nonoverlapping domain decomposition algorithms of Schwarz waveform relaxation type for the semilinear reaction-diffusion equation. We define linear Robin and second order (or Ventcell) transmission conditions between the subdomains, which we prove to lead to a well defined and converging algorithm. We also propose nonlinear transmission conditions. Both types are based on best approximation problems for the linear equation and provide efficient algorithms, as the numerical results that we present here show.


  • This article has been cited by:

    1. Christophe Besse, Feng Xing, Schwarz waveform relaxation method for one-dimensional Schrödinger equation with general potential, 2017, 74, 1017-1398, 393, 10.1007/s11075-016-0153-4
    2. Florian Häberlein, Laurence Halpern, 2014, Chapter 3, 978-3-319-05788-0, 29, 10.1007/978-3-319-05789-7_3
    3. Elyes Ahmed, Caroline Japhet, Michel Kern, Space–time domain decomposition for two-phase flow between different rock types, 2020, 371, 00457825, 113294, 10.1016/j.cma.2020.113294
    4. Stephan Benjamin Lunowa, Iuliu Sorin Pop, Barry Koren, Linearized domain decomposition methods for two-phase porous media flow models involving dynamic capillarity and hysteresis, 2020, 372, 00457825, 113364, 10.1016/j.cma.2020.113364
    5. Stephan Benjamin Lunowa, Iuliu Sorin Pop, Barry Koren, 2021, Chapter 13, 978-3-030-55873-4, 145, 10.1007/978-3-030-55874-1_13
    6. Tamás Ladics, Error analysis of waveform relaxation method for semi-linear partial differential equations, 2015, 285, 03770427, 15, 10.1016/j.cam.2015.02.003
    7. Hassan Belhadj, Mohamed Fihri, Samir Khallouq, Nabila Nagid, Optimal number of Schur subdomains: Application to semi-implicit finite volume discretization of semilinear reaction diffusion problem, 2018, 11, 1937-1179, 21, 10.3934/dcdss.2018002
    8. Shu-Lin Wu, Ting-Zhu Huang, Quasi-Optimized Overlapping Schwarz Waveform Relaxation Algorithm for PDEs with Time-Delay, 2013, 14, 1815-2406, 780, 10.4208/cicp.100312.071112a
    9. Shu-Lin Wu, 2016, Chapter 64, 978-3-319-18826-3, 623, 10.1007/978-3-319-18827-0_64
    10. Bérangère Delourme, Laurence Halpern, A Complex Homographic Best Approximation Problem. Application to Optimized Robin--Schwarz Algorithms, and Optimal Control Problems, 2021, 59, 0036-1429, 1769, 10.1137/20M1335789
    11. Florian Haeberlein, Laurence Halpern, Anthony Michel, 2013, Chapter 45, 978-3-642-35274-4, 387, 10.1007/978-3-642-35275-1_45
    12. Rodrigue Kammogne, Daniel Loghin, 2014, Chapter 64, 978-3-319-05788-0, 667, 10.1007/978-3-319-05789-7_64
    13. V. Dolean, M. J. Gander, W. Kheriji, F. Kwok, R. Masson, Nonlinear Preconditioning: How to Use a Nonlinear Schwarz Method to Precondition Newton's Method, 2016, 38, 1064-8275, A3357, 10.1137/15M102887X
    14. Daniel Bennequin, Martin J. Gander, Loic Gouarin, Laurence Halpern, Optimized Schwarz waveform relaxation for advection reaction diffusion equations in two dimensions, 2016, 134, 0029-599X, 513, 10.1007/s00211-015-0784-8
    15. Martin J. Gander, Stephan B. Lunowa, Christian Rohde, Non-Overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations, 2023, 45, 1064-8275, A49, 10.1137/21M1415005
    16. Christophe Besse, Feng Xing, Domain Decomposition Algorithms for Two Dimensional Linear Schrödinger Equation, 2017, 72, 0885-7474, 735, 10.1007/s10915-017-0375-1
    17. Hui Zhang, Yao-Lin Jiang, A note on the H 1-convergence of the overlapping Schwarz waveform relaxation method for the heat equation, 2014, 66, 1017-1398, 299, 10.1007/s11075-013-9734-7
    18. Simon Clement, Florian Lemarié, Eric Blayo, Discrete analysis of Schwarz waveform relaxation for a diffusion reaction problem with discontinuous coefficients, 2022, 8, 2426-8399, 99, 10.5802/smai-jcm.81
    19. Emil Engström, Eskil Hansen, Linearly convergent nonoverlapping domain decomposition methods for quasilinear parabolic equations, 2024, 64, 0006-3835, 10.1007/s10543-024-01038-5
    20. Nahed Naceur, Jean R. Roche, Moez Khenissi, A numerical solution for Fujita-type problems using an adaptive domain decomposition method, 2025, 0003-6811, 1, 10.1080/00036811.2025.2521803
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4257) PDF downloads(70) Cited by(20)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog