Stars of vibrating strings: Switching boundary feedback stabilization

  • Received: 01 November 2009 Revised: 01 April 2010
  • Primary: 93C20, 35L05.

  • We consider a star-shaped network consisting of a single node with N3 connected arcs. The dynamics on each arc is governed by the wave equation. The arcs are coupled at the node and each arc is controlled at the other end. Without assumptions on the lengths of the arcs, we show that if the feedback control is active at all exterior ends, the system velocity vanishes in finite time.
       In order to achieve exponential decay to zero of the system velocity, it is not necessary that the system is controlled at all N exterior ends, but stabilization is still possible if, from time to time, one of the feedback controllers breaks down. We give sufficient conditions that guarantee that such a switching feedback stabilization where not all controls are necessarily active at each time is successful.

    Citation: Martin Gugat, Mario Sigalotti. Stars of vibrating strings: Switching boundary feedback stabilization[J]. Networks and Heterogeneous Media, 2010, 5(2): 299-314. doi: 10.3934/nhm.2010.5.299

    Related Papers:

    [1] Martin Gugat, Mario Sigalotti . Stars of vibrating strings: Switching boundary feedback stabilization. Networks and Heterogeneous Media, 2010, 5(2): 299-314. doi: 10.3934/nhm.2010.5.299
    [2] Zhong-Jie Han, Gen-Qi Xu . Spectrum and dynamical behavior of a kind of planar network of non-uniform strings with non-collocated feedbacks. Networks and Heterogeneous Media, 2010, 5(2): 315-334. doi: 10.3934/nhm.2010.5.315
    [3] Yacine Chitour, Guilherme Mazanti, Mario Sigalotti . Stability of non-autonomous difference equations with applications to transport and wave propagation on networks. Networks and Heterogeneous Media, 2016, 11(4): 563-601. doi: 10.3934/nhm.2016010
    [4] Yaru Xie, Genqi Xu . The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks and Heterogeneous Media, 2016, 11(3): 527-543. doi: 10.3934/nhm.2016008
    [5] Avner Friedman . PDE problems arising in mathematical biology. Networks and Heterogeneous Media, 2012, 7(4): 691-703. doi: 10.3934/nhm.2012.7.691
    [6] Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger . Feedback stabilization of a coupled string-beam system. Networks and Heterogeneous Media, 2009, 4(1): 19-34. doi: 10.3934/nhm.2009.4.19
    [7] Serge Nicaise, Julie Valein . Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Networks and Heterogeneous Media, 2007, 2(3): 425-479. doi: 10.3934/nhm.2007.2.425
    [8] Dongyi Liu, Genqi Xu . Input-output L2-well-posedness, regularity and Lyapunov stability of string equations on networks. Networks and Heterogeneous Media, 2022, 17(4): 519-545. doi: 10.3934/nhm.2022007
    [9] Tong Li . Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8(3): 773-781. doi: 10.3934/nhm.2013.8.773
    [10] Luca Schenato, Sandro Zampieri . On rendezvous control with randomly switching communication graphs. Networks and Heterogeneous Media, 2007, 2(4): 627-646. doi: 10.3934/nhm.2007.2.627
  • We consider a star-shaped network consisting of a single node with N3 connected arcs. The dynamics on each arc is governed by the wave equation. The arcs are coupled at the node and each arc is controlled at the other end. Without assumptions on the lengths of the arcs, we show that if the feedback control is active at all exterior ends, the system velocity vanishes in finite time.
       In order to achieve exponential decay to zero of the system velocity, it is not necessary that the system is controlled at all N exterior ends, but stabilization is still possible if, from time to time, one of the feedback controllers breaks down. We give sufficient conditions that guarantee that such a switching feedback stabilization where not all controls are necessarily active at each time is successful.


  • This article has been cited by:

    1. M. Ouzahra, Exponential stability of nondissipative linear system in Banach space and application to unbounded bilinear systems, 2017, 109, 01676911, 53, 10.1016/j.sysconle.2017.08.010
    2. Martin Gugat, Jan Giesselmann, G. Buttazzo, E. Casas, L. de Teresa, R. Glowinski, G. Leugering, E. Trélat, X. Zhang, Boundary feedback stabilization of a semilinear model for the flow in star-shaped gas networks, 2021, 27, 1292-8119, 67, 10.1051/cocv/2021061
    3. Martin Gugat, Stephan Gerster, On the limits of stabilizability for networks of strings, 2019, 131, 01676911, 104494, 10.1016/j.sysconle.2019.104494
    4. Charlotte Rodriguez, Networks of geometrically exact beams: Well-posedness and stabilization, 2022, 12, 2156-8472, 49, 10.3934/mcrf.2021002
    5. Martin Gugat, Günter Leugering, Ke Wang, Neumann boundary feedback stabilization for a nonlinear wave equation: A strict H2-lyapunov function, 2017, 7, 2156-8499, 419, 10.3934/mcrf.2017015
    6. Eduardo Cerpa, Emmanuelle Crépeau, Claudia Moreno, On the boundary controllability of the Korteweg–de Vries equation on a star-shaped network, 2019, 0265-0754, 10.1093/imamci/dny047
    7. Enrique Zuazua, 2013, Chapter 9, 978-3-642-32159-7, 463, 10.1007/978-3-642-32160-3_9
    8. Martin Gugat, Boundary feedback stabilization of the telegraph equation: Decay rates for vanishing damping term, 2014, 66, 01676911, 72, 10.1016/j.sysconle.2014.01.007
    9. Zhong-Jie Han, Gen-Qi Xu, Output feedback stabilisation of a tree-shaped network of vibrating strings with non-collocated observation, 2011, 84, 0020-7179, 458, 10.1080/00207179.2011.561441
    10. Farhat Shel, Exponential stability of a network of elastic and thermoelastic materials, 2013, 36, 01704214, 869, 10.1002/mma.2644
    11. Abdessamad El Alami, Imad El Harraki, Ali Boutoulout, Regional Feedback Stabilization for Infinite Semilinear Systems, 2018, 24, 1079-2724, 343, 10.1007/s10883-017-9386-3
    12. Kaïs Ammari, Farhat Shel, 2022, Chapter 2, 978-3-030-86350-0, 15, 10.1007/978-3-030-86351-7_2
    13. Martin Gugat, Markus Dick, Günter Leugering, 2013, Chapter 26, 978-3-642-36061-9, 255, 10.1007/978-3-642-36062-6_26
    14. Pierre-Olivier Lamare, Antoine Girard, Christophe Prieur, Switching Rules for Stabilization of Linear Systems of Conservation Laws, 2015, 53, 0363-0129, 1599, 10.1137/140953952
    15. Abdessamad El Alami, Ali Boutoulout, 2020, Chapter 6, 978-3-030-26148-1, 67, 10.1007/978-3-030-26149-8_6
    16. Yacine Chitour, Guilherme Mazanti, Mario Sigalotti, Stability of non-autonomous difference equations with applications to transport and wave propagation on networks, 2016, 11, 1556-1801, 563, 10.3934/nhm.2016010
    17. Yacine Chitour, Swann Marx, Guilherme Mazanti, G. Buttazzo, E. Casas, L. de Teresa, R. Glowinski, G. Leugering, E. Trélat, X. Zhang, One-dimensional wave equation with set-valued boundary damping: well-posedness, asymptotic stability, and decay rates, 2021, 27, 1292-8119, 84, 10.1051/cocv/2021067
    18. Markus Dick, Martin Gugat, Gunter Leugering, 2012, Feedback stabilization of quasilinear hyperbolic systems with varying delays, 978-1-4673-2124-2, 125, 10.1109/MMAR.2012.6347931
    19. Alaa Hayek, Serge Nicaise, Zaynab Salloum, Ali Wehbe, Existence, Uniqueness and Stabilization of Solutions of a Generalized Telegraph Equation on Star Shaped Networks, 2020, 170, 0167-8019, 823, 10.1007/s10440-020-00360-8
    20. Yacine Chitour, Guilherme Mazanti, Mario Sigalotti, Persistently damped transport on a network of circles, 2016, 369, 0002-9947, 3841, 10.1090/tran/6778
    21. Markus Dick, Martin Gugat, Günter Leugering, A strict H1-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction, 2011, 1, 2155-3297, 225, 10.3934/naco.2011.1.225
    22. Fatiha Alabau-Boussouira, Vincent Perrollaz, Lionel Rosier, Finite-time stabilization of a network of strings, 2015, 5, 2156-8499, 721, 10.3934/mcrf.2015.5.721
    23. Martin Gugat, Sonja Steffensen, Dynamic boundary control games with networks of strings, 2018, 24, 1292-8119, 1789, 10.1051/cocv/2017082
    24. Martin Gugat, Markus Dick, Günter Leugering, Gas Flow in Fan-Shaped Networks: Classical Solutions and Feedback Stabilization, 2011, 49, 0363-0129, 2101, 10.1137/100799824
    25. Mohamed Ouzahra, Global stabilization of semilinear systems using switching controls, 2012, 48, 00051098, 837, 10.1016/j.automatica.2012.02.018
    26. Pierre-Olivier Lamare, Antoine Girard, Christophe Prieur, 2013, Lyapunov techniques for stabilization of switched linear systems of conservation laws, 978-1-4673-5717-3, 448, 10.1109/CDC.2013.6759922
    27. Martin Gugat, Markus Dick, Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction, 2011, 1, 2156-8499, 469, 10.3934/mcrf.2011.1.469
    28. Markus Dick, Martin Gugat, Michael Herty, Günter Leugering, Sonja Steffensen, Ke Wang, 2014, Chapter 31, 978-3-319-05082-9, 487, 10.1007/978-3-319-05083-6_31
    29. Markus Dick, Martin Gugat, Günter Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes, 2010, 5, 1556-181X, 691, 10.3934/nhm.2010.5.691
    30. Jon Asier Bárcena-Petisco, Márcio Cavalcante, Giuseppe Maria Coclite, Nicola De Nitti, Enrique Zuazua, Control of hyperbolic and parabolic equations on networks and singular limits, 2024, 0, 2156-8472, 0, 10.3934/mcrf.2024015
    31. Martin Gugat, Stabilization of a cyclic network of strings by nodal control, 2025, 25, 1424-3199, 10.1007/s00028-024-01030-0
    32. Yacine Chitour, Paolo Mason, Mario Sigalotti, 2025, Chapter 7, 978-3-031-82981-9, 145, 10.1007/978-3-031-82982-6_7
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4901) PDF downloads(93) Cited by(32)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog