$ h $ | $ \|y-y_h\| $ | $ \|p-p_h\| $ | $ CPU $ $ time\ (s) $ |
$ \frac{1}{4} $ | $ 0.1095 $ | $ 0.0856 $ | $ 0.7031 $ |
$ \frac{1}{16} $ | $ 0.0079 $ | $ 0.0045 $ | $ 8.8702 $ |
$ \frac{1}{64} $ | $ 0.0005 $ | $ 0.0002 $ | $ 2253.6396 $ |
Citation: James R. Lambert, Steven K. Nordeen. A role for the non-conserved N-terminal domain of the TATA-binding protein in the crosstalk between cell signaling pathways and steroid receptors[J]. AIMS Molecular Science, 2015, 2(2): 64-76. doi: 10.3934/molsci.2015.2.64
[1] | Changling Xu, Tianliang Hou . Superclose analysis of a two-grid finite element scheme for semilinear parabolic integro-differential equations. Electronic Research Archive, 2020, 28(2): 897-910. doi: 10.3934/era.2020047 |
[2] | Jun Pan, Yuelong Tang . Two-grid $ H^1 $-Galerkin mixed finite elements combined with $ L1 $ scheme for nonlinear time fractional parabolic equations. Electronic Research Archive, 2023, 31(12): 7207-7223. doi: 10.3934/era.2023365 |
[3] | Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang . Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29(1): 1859-1880. doi: 10.3934/era.2020095 |
[4] | Hongze Zhu, Chenguang Zhou, Nana Sun . A weak Galerkin method for nonlinear stochastic parabolic partial differential equations with additive noise. Electronic Research Archive, 2022, 30(6): 2321-2334. doi: 10.3934/era.2022118 |
[5] | Noelia Bazarra, José R. Fernández, Ramón Quintanilla . Numerical analysis of a problem in micropolar thermoviscoelasticity. Electronic Research Archive, 2022, 30(2): 683-700. doi: 10.3934/era.2022036 |
[6] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu .
Convergence and quasi-optimality of |
[7] | N. Bazarra, J. R. Fernández, R. Quintanilla . A dual-phase-lag porous-thermoelastic problem with microtemperatures. Electronic Research Archive, 2022, 30(4): 1236-1262. doi: 10.3934/era.2022065 |
[8] | Shan Jiang, Li Liang, Meiling Sun, Fang Su . Uniform high-order convergence of multiscale finite element computation on a graded recursion for singular perturbation. Electronic Research Archive, 2020, 28(2): 935-949. doi: 10.3934/era.2020049 |
[9] | Chunmei Wang . Simplified weak Galerkin finite element methods for biharmonic equations on non-convex polytopal meshes. Electronic Research Archive, 2025, 33(3): 1523-1540. doi: 10.3934/era.2025072 |
[10] | Noelia Bazarra, José R. Fernández, Ramón Quintanilla . On the mixtures of MGT viscoelastic solids. Electronic Research Archive, 2022, 30(12): 4318-4340. doi: 10.3934/era.2022219 |
It is well known that optimal control problems play a very important role in the fields of science and engineering. In the operation of physical and economic processes, optimal control problems have a variety of applications. Therefore, highly effective numerical methods are key to the successful application of the optimal control problem in practice. The finite element method is an important method for solving optimal control problems and has been extensively studied in the literature. Many researchers have made various contributions on this topic. A systematic introduction to the finite element method for partial differential equations (PDEs) and optimal control problems can be found in [1,2]. For example, a priori error estimates of finite element approximation were established for the optimal control problems governed by linear elliptic and parabolic state equations, see [3,4]. Using adaptive finite element method to obtain posterior error estimation; see [5,6]. Furthermore, some superconvergence results have been established by applying recovery techniques, see [7,8].
The two-grid method based on two finite element spaces on one coarse and one fine grid was first proposed by Xu [9,10,11]. It is combined with other numerical methods to solve many partial differential equations, e.g., nonlinear elliptic problems [12], nonlinear parabolic equations [13], eigenvalue problems [14,15,16] and fractional differential equations [17].
Many real applications, such as heat conduction control of storage materials, population dynamics control and wave control problems governed by integro-differential equations, need to consider optimal control problems governed by elliptic integral equations and parabolic integro-differential equations. More and more experts and scholars began to pay attention to the numerical simulation of these optimal control problems. In [18], the authors analyzed the finite element method for optimal control problems governed by integral equations and integro-differential equations. In [19], the authors considered the error estimates of expanded mixed methods for optimal control problems governed by hyperbolic integro-differential equations. As far as we know, there is no research on a two-grid finite element method for parabolic integro-differential control problems in the existing literature.
In this paper, we design a two-grid scheme of fully discrete finite element approximation for optimal control problems governed by parabolic integro-differential equations. It is shown that when the coarse and fine mesh sizes satisfy $ h = H^2 $, the two-grid method achieves the same convergence property as the finite element method. We are interested in the following optimal control problems:
$ minu∈K⊂U{12∫T0‖y−yd‖2+‖u‖2dt}, $ | (1.1) |
$ yt−div(A∇y)+∫t0div(B(t,s)∇y(s))ds=f+u, ∀ x∈Ω, t∈J, $ | (1.2) |
$ y(x,t)=0, ∀ x∈∂Ω, t∈J, $ | (1.3) |
$ y(x,0)=y0(x), ∀ x∈Ω, $ | (1.4) |
where $ \Omega $ is a bounded domain in $ \mathbb{R}^{2} $ and $ J = (0, T] $. Let $ K $ be a closed convex set in $ U = L^2(J; L^2(\Omega)) $, $ f\in L^{2}(J; L^{2}(\Omega)) $, $ y_{d}\in H^{1}(J; L^{2}(\Omega)) $ and $ y_{0}\in H^{1}(\Omega) $. $ K $ is a set defined by
$ K={u∈U:∫Ωu(x,t)dx≥0}; $ | (1.5) |
$ A = A(x) = (a_{ij}(x)) $ is a symmetric matrix function with $ a_{ij}(x)\in W^{1, \infty}(\Omega) $, which satisfies the ellipticity condition
$ a∗|ξ|2≤2∑i,j=1ai,j(x)ξiξj≤a∗|ξ|2, ∀(ξ,x)∈R2×ˉΩ, 0<a∗<a∗. $ |
Moreover, $ B(t, s) = B(x, t, s) $ is also a $ 2\times2 $ matrix; assume that there exists a positive constant $ M $ such that
$ ‖B(t,s)‖0,∞+‖Bt(t,s)‖0,∞≤M. $ |
In this paper, we adopt the standard notation $ W^{m, p}(\Omega) $ for Sobolev spaces on $ \Omega $ with a norm $ \|\cdot\|_{m, p} $ given by $ \| v \|_{m, p}^{p} = \sum\limits_{|\alpha|\leq m}\| D^\alpha v\|_{L^{p}(\Omega)}^{p} $, as well as a semi-norm $ |\cdot|_{m, p} $ given by $ | v|_{m, p}^{p} = \sum\limits_{|\alpha| = m}\| D^\alpha v\|_{L^{p}(\Omega)}^{p} $. We set $ W_0^{m, p}(\Omega) = \{v\in W^{m, p}(\Omega): v|_{\partial \Omega} = 0\} $. For $ p = 2 $, we denote $ H^m(\Omega) = W^{m, 2}(\Omega), \ H_0^m(\Omega) = W_0^{m, 2}(\Omega) $, and $ \|\cdot\|_{m} = \|\cdot\|_{m, 2}, \ \|\cdot\| = \|\cdot\|_{0, 2} $.
We denote by $ L^s(J; W^{m, p}(\Omega)) $ the Banach space of all $ L^s $ integrable functions from $ J $ into $ W^{m, p}(\Omega) $ with the norm $ \|v\|_{L^s(J; W^{m, p}(\Omega))} = \Big(\int_0^T||v||_{W^{m, p}(\Omega)}^sdt\Big)^{\frac{1}{s}}\ \rm{for}\ s\in [1, \infty) $ and the standard modification for $ s = \infty $. For simplicity of presentation, we denote $ \| v\|_{L^s(J; W^{m, p}(\Omega))} $ by $ \| v\|_{L^s(W^{m, p})} $. Similarly, one can define the spaces $ H^1(J; W^{m, p}(\Omega)) $ and $ C^k(J; W^{m, p}(\Omega)) $. In addition $ C $ denotes a general positive constant independent of $ h $ and $ \Delta t $, where $ h $ is the spatial mesh size and $ \Delta t $ is a time step.
The outline of this paper is as follows. In Section 2, we first construct a fully discrete finite element approximation scheme for the optimal control problems (1.1)–(1.4) and give its equivalent optimality conditions. In Section 3, we derive a priori error estimates for all variables, and then analyze the global superconvergence by using the recovery techniques. In Section 4, we present a two-grid scheme and discuss its convergence. In Section 5, we present a numerical example to verify the validity of the two-grid method.
In this section, we shall construct a fully discrete finite element approximation scheme for the control problems (1.1)–(1.4). For sake of simplicity, we take the state space $ Q = L^{2}(J; V) $ and $ V = H_0^{1}(\Omega) $.
We recast (1.1)–(1.4) in the following weak form: find $ (y, u)\in Q\times K $ such that
$ minu∈K⊂U{12∫T0‖y−yd‖2+‖u‖2dt}, $ | (2.1) |
$ (yt,v)+(A∇y,∇v)=∫t0(B(t,s)∇y(s),∇v)ds+(f+u,v), ∀ v∈V, t∈J, $ | (2.2) |
$ y(x,0)=y0(x), ∀ x∈Ω, $ | (2.3) |
where $ (\cdot, \cdot) $ is the inner product of $ L^{2}(\Omega) $.
Since the objective functional is convex, it follows from [2] that the optimal control problems (2.1)–(2.3) have a unique solution $ (y, u) $, and that $ (y, u) $ is the solution of (2.1)–(2.3) if and only if there is a co-state $ p\in Q $ such that $ (y, p, u) $ satisfies the following optimality conditions:
$ (yt,v)+(A∇y,∇v)=∫t0(B(t,s)∇y(s),∇v)ds+(f+u,v), ∀ v∈V, t∈J, $ | (2.4) |
$ y(x,0)=y0(x), ∀ x∈Ω, $ | (2.5) |
$ −(pt,q)+(A∇p,∇q)=∫Tt(B∗(s,t)∇p(s),∇q)ds+(y−yd,q), ∀ q∈V, t∈J, $ | (2.6) |
$ p(x,T)=0, ∀ x∈Ω, $ | (2.7) |
$ (u+p,˜u−u)≥0, ∀ ˜u∈K, t∈J. $ | (2.8) |
As in [20], the inequality (Eq 2.8) can be expressed as
$ u=max{0,ˉp}−p, $ | (2.9) |
where $ \bar{p} = \frac{\int_\Omega pdx}{\int_\Omega dx} $ denotes the integral average on $ \Omega $ of the function $ p $.
Let $ T_{h} $ denote a regular triangulation of the polygonal domain $ \Omega $, $ h_{\tau} $ denote the diameter of $ \tau $ and $ h = \max\limits_{\tau \in T_{h}}{h_{\tau}} $. Let $ V_h\subset V $ be defined by the following finite element space:
$ Vh={vh∈C0(ˉΩ)∩V,vh|τ∈P1(τ), ∀ τ∈Th}. $ | (2.10) |
And the approximated space of control is given by
$ Uh:={˜uh∈U:∀ τ∈Th, ˜uh|τ=constant}. $ | (2.11) |
Set $ K_h = U_h\cap K. $
Before the fully discrete finite element scheme is given, we introduce some projection operators. First, we define the Ritz-Volterra projection [21] $ R_h:\ V\rightarrow V_h $, which satisfies the following: for any $ y, p\in V $
$ (A(∇(y−Rhy),∇vh)−∫t0(B(t,s)∇(y−Rhy),∇vh)ds=0, ∀ vh∈Vh, $ | (2.12) |
$ ‖∂i(y−Rhy)∂ti‖+h‖∇∂i(y−Rhy)∂ti‖≤Ch2i∑m=0‖∂my∂tm‖2, i=0,1. $ | (2.13) |
$ (A(∇(p−Rhp),∇vh)−∫Tt(B∗(s,t)∇(p−Rhp),∇vh)ds=0, ∀ vh∈Vh, $ | (2.14) |
$ ‖∂i(p−Rhp)∂ti‖+h‖∇∂i(p−Rhp)∂ti‖≤Ch2i∑m=0‖∂mp∂tm‖2, i=0,1. $ | (2.15) |
Next, we define the standard $ L^2 $-orthogonal projection [22] $ Q_h:\ L^{2}(\Omega) \rightarrow U_h $, which satisfies the following: for any $ \phi\in L^{2}(\Omega) $
$ (ϕ−Qhϕ,wh)=0, ∀ wh∈Uh, $ | (2.16) |
$ ‖ϕ−Qhϕ‖−s,2≤Ch1+s‖u‖1, s=0,1, ∀ ϕ∈H1(Ω), $ | (2.17) |
At last, we define the element average operator [7] $ \pi_h: L^{2}(\Omega)\rightarrow U_h $ by
$ πhψ|τ=∫τψdx∫τdx, ∀ ψ∈L2(Ω), τ∈Th. $ | (2.18) |
We have the approximation property
$ ‖ψ−πhψ‖−s,r≤Ch1+s‖ψ‖1,r, s=0,1, ∀ ψ∈W1,r(Ω). $ | (2.19) |
We now consider the fully discrete finite element approximation for the control problem. Let $ \Delta t > 0 $, $ N = T/\Delta t\in \mathbb{Z} $ and $ t_n = n \Delta t $, $ n\in \mathbb{Z} $. Also, let
$ ψn=ψn(x)=ψ(x,tn),dtψn=ψn−ψn−1Δt,δψn=ψn−ψn−1. $ |
Like in [23], we define for $ 1\leq s\leq \infty $ and $ s = \infty $, the discrete time dependent norms
$ |||ψ|||Ls(J;Wm,p(Ω)):=(N−l∑n=1−lΔt‖ψn‖sm,p)1s, |||ψ|||L∞(J;Wm,p(Ω)):=max1−l≤n≤N−l‖ψn‖m,p, $ |
where $ l = 0 $ for the control variable $ u $ and the state variable $ y $, and $ l = 1 $ for the co-state variable $ p $.
Then the fully discrete approximation scheme is to find $ (y_h^n, u_h^n)\in V_h\times K_h $, $ n = 1, 2, \cdots, N $, such that
$ minunh∈Kh{12N∑n=1Δt(‖ynh−ynd‖2+‖unh‖2)}, $ | (2.20) |
$ (dtynh,vh)+(A∇ynh,∇vh)=(n∑i=1ΔtB(tn,ti−1)∇yih,∇vh)+(fn+unh,vh), ∀ vh∈Vh, $ | (2.21) |
$ y0h=Rhy0. $ | (2.22) |
Again, we can see that the above optimal control problem has a unique solution $ (y_h^n, u_h^n) $, and that $ (y_h^n, u_h^n)\in V_h\times K_{h} $ is the solution of (2.20)–(2.22) if and only if there is a co-state $ p_h^{n-1}\in V_h $ such that $ (y_h^n, p_h^{n-1}, u_h^n) $ satisfies the following optimality conditions:
$ (dtynh,vh)+(A∇ynh,∇vh)=(n∑i=1ΔtB(tn,ti−1)∇yih,∇vh)+(fn+unh,vh), ∀ vh∈Vh, $ | (2.23) |
$ y0h=Rhy0, $ | (2.24) |
$ −(dtpnh,qh)+(A∇pn−1h,∇qh)=(N∑i=nΔtB∗(ti,tn−1)∇pi−1h,∇qh)+(ynh−ynd,qh), ∀ qh∈Vh, $ | (2.25) |
$ pNh=0, $ | (2.26) |
$ (unh+pn−1h,˜uh−unh)≥0, ∀ ˜uh∈Kh. $ | (2.27) |
Similarly, employing the projection (2.9), the optimal condition (2.27) can be rewritten as follows:
$ unh=max{0,¯pn−1h}−πhpn−1h, $ | (2.28) |
where $ \overline{p_h^{n-1}} = \frac{\int_{\Omega}p_h^{n-1}}{\int_{\Omega}1} $.
In the rest of the paper, we shall use some intermediate variables. For any control function $ \tilde{u}\in K $ satisfies the following:
$ (dtynh(˜u),vh)+(A∇ynh(˜u),∇vh)=(n∑i=1ΔtB(tn,ti−1)∇yih(˜u),∇vh)+(fn+˜un,vh), ∀ vh∈Vh, $ | (2.29) |
$ y0h(˜u)=Rhy0, $ | (2.30) |
$ −(dtpnh(˜u),qh)+(A∇pn−1h(˜u),∇qh)=(N∑i=nΔtB∗(ti,tn−1)∇pi−1h(˜u),∇qh)+(ynh(˜u)−ynd,qh), ∀ qh∈Vh, $ | (2.31) |
$ pNh(˜u)=0. $ | (2.32) |
In this section, we will discuss a priori error estimates and superconvergence of the fully discrete case for the state variable, the co-state variable and the control variable. In order to do it, we need the following lemmas.
Lemma 3.1. Let $ (y_h^n(u), p_h^{n-1}(u)) $ be the solution of (2.29)–(2.32) with $ \tilde{u} = u $ and $ (y, p) $ be the solution of (2.4)–(2.8). Assume that the exact solution $ (y, p) $ has enough regularities for our purpose. Then, for $ \Delta t $ small enough and $ 1\leq n\leq N $, we have
$ |||y−yh(u)|||L∞(L2)+|||p−ph(u)|||L∞(L2)≤C(Δt+h2), $ | (3.1) |
$ |||∇(y−yh(u))|||L∞(L2)+|||∇(p−ph(u))|||L∞(L2)≤C(Δt+h). $ | (3.2) |
Proof. For convenience, let
$ yn−ynh(u)=yn−Rhyn+Rhyn−ynh(u)=:ηny+ξny,pn−pnh(u)=pn−Rhpn+Rhpn−pnh(u)=:ηnp+ξnp. $ |
Taking $ t = t_n $ in (2.4), subtracting (2.29) from (2.4) and then using (2.12), we have
$ (dtξny,vh)+(A∇ξny,∇vh)=(dtyn−ynt,vh)−(dtηny,vh)+[∫tn0(B(tn,s)∇Rhy(s),∇vh)ds−(n∑i=1ΔtB(tn,ti−1)∇yih(u),∇vh)]. $ | (3.3) |
Choosing $ v_h = dt\xi_{y}^n $ in (3.3), we get
$ (dtξny,dtξny)+(A∇ξny,dt∇ξny)=(dtyn−ynt,dtξny)−(dtηny,dtξny)+[∫tn0(B(tn,s)∇Rhy(s),dt∇ξny)ds−(n∑i=1ΔtB(tn,ti−1)∇yih(u),dt∇ξny)]. $ | (3.4) |
Notice that
$ (dt∇ξny,A∇ξny)≥12Δt(‖A12∇ξny‖2−‖A12∇ξn−1y‖2). $ | (3.5) |
Multiplying $ \Delta t $ and summing over $ n $ from $ 1 $ to $ l $ $ (1\leq l\leq N) $ on both sides of (3.4), and by using (3.5) and $ \xi_y^0 = 0 $, we find that
$ 12‖A12∇ξly‖2+l∑n=1‖dtξny‖2Δt≤l∑n=1(dtyn−ynt,dtξny)Δt−l∑n=1(dtηny,dtξny)Δt+l∑n=1[∫tn0(B(tn,s)∇Rhy(s),dt∇ξny)ds−(n∑i=1ΔtB(tn,ti−1)∇yih(u),dt∇ξny)]Δt=:3∑i=1Ai. $ | (3.6) |
Now, we estimate the right-hand terms of (3.6). For $ A_1 $, from the results given in [24], we have
$ A1≤Cl∑n=1(∫tntn−1‖ytt‖dt)2Δt+‖l∑n=1‖dtξny‖2Δt≤C(Δt)2∫tl0‖ytt‖2dt+14l∑n=1‖dtξny‖2Δt≤C(Δt)2‖ytt‖2L2(L2)+14l∑n=1‖dtξny‖2Δt. $ | (3.7) |
For $ A_2 $, using (2.13), the Hölder inequality and the Cauchy inequality, we have
$ A2≤Cl∑n=1‖ηny−ηn−1yΔt‖2Δt+14l∑n=1‖dtξny‖2Δt≤Cl∑n=11Δt‖∫tntn−1(ηy)tdt‖2+14l∑n=1‖dtξny‖2Δt≤Cl∑n=11Δt((∫tntn−1‖(ηy)t‖2dt)12(∫tntn−112dt)12)2+14l∑n=1‖dtξny‖2Δt≤Ch4∫tl0‖yt‖22dt+14l∑n=1‖dtξny‖2Δt≤Ch4‖yt‖2L2(H2)+14l∑n=1‖dtξny‖2Δt. $ | (3.8) |
At last, for $ A_3 $, it follows from the Cauchy inequality, Cauchy mean value theorem and assumptions on $ A $ and $ B $ that
$ A3=l∑n=1[∫tn0(B(tn,s)∇Rhy(s),dt∇ξny)ds−(n∑i=1ΔtB(tn,ti)∇yih(u),dt∇ξny)+(n∑i=1ΔtB(tn,ti)∇yih(u),dt∇ξny)−(n∑i=1ΔtB(tn,ti−1)∇yih(u),dt∇ξny)]Δt≤C(Δt)2(‖∇Rhyt‖2L2(L2)+‖∇Rhy‖2L2(L2))+Cl∑n=1‖∇ξny‖2Δt+Cl∑n=1Δtn∑i=1‖∇ξiy‖2Δt+a∗4‖∇ξly‖2, $ | (3.9) |
where
$ l∑n=1[∫tn0(B(tn,s)∇Rhy(s),dt∇ξny)ds−(n∑i=1ΔtB(tn,ti)∇yih(u),dt∇ξny)]Δt=(∫tl0B(tl,s)∇Rhy(s)ds−l∑i=1B(tl,ti)∇RhyiΔt,∇ξly)+l∑i=1(ΔtB(tl,ti)∇ξiy,∇ξly)+l−1∑n=1(∫tn0(B(tn,s)−B(tn+1,s))∇Rhyds,∇ξny)−l−1∑n=1(∫tn+1tnB(tn+1,s)(∇Rhy−∇Rhyn+1)ds,∇ξny)−l−1∑n=1(n∑i=1Δt(B(tn,ti)−B(tn+1,ti))∇Rhyi,∇ξny)−l−1∑n=1(ΔtB(tn+1,tn+1)∇ξn+1y,∇ξny) $ |
$ +l−1∑n=1(n∑i=1Δt(B(tn,ti)−B(tn+1,ti))∇ξiy,∇ξny)=(∫tl0B(tl,s)∇Rhy(s)ds−l∑i=1B(tl,ti)∇RhyiΔt,∇ξly)+(l∑i=1ΔtB(tl,ti)∇ξiy,∇ξly))+l−1∑n=1(∫tn0Bt(t∗n+1,s)Δt∇Rhyds,∇ξny)−l−1∑n=1(∫tn+1tnΔtB(tn+1,s)∇Rhyn+1tds,∇ξny)−l−1∑n=1(n∑i=1(Δt)2Bt(t∗n+1,ti)∇Rhyids,∇ξny)−l−1∑n=1(ΔtB(tn+1,tn+1)∇ξn+1y,∇ξny)+l−1∑n=1(n∑i=1(Δt)2Bt(t∗n+1,ti)∇ξiy,∇ξny)≤C(Δt)2(‖∇Rhyt‖2L2(L2)+‖∇Rhy‖2L2(L2))+Cl∑n=1‖∇ξny‖2Δt+Cl∑n=1Δtn∑i=1‖∇ξiy‖2Δt+a∗8‖∇ξly‖2 $ |
and
$ l∑n=1[(n∑i=1ΔtB(tn,ti)∇yih(u),dt∇ξny)−(n∑i=1ΔtB(tn,ti−1)∇yih(u),dt∇ξny)]Δt=(l∑i=1Δt(B(tl,ti)−B(tl,ti−1))∇Rhyi,∇ξly)−(l∑i=1Δt(B(tl,ti)−B(tl,ti−1))∇ξiy,∇ξly)+l−1∑n=1(n∑i=1Δt(B(tn,ti)−B(tn,ti−1))∇Rhyi,∇ξny)−l−1∑n=1(n∑i=1Δt(B(tn,ti)−B(tn,ti−1))∇ξiy,∇ξny)−l−1∑n=1(n+1∑i=1Δt(B(tn+1,ti)−B(tn+1,ti−1))∇Rhyi,∇ξny)+l−1∑n=1(n+1∑i=1Δt(B(tn+1,ti)−B(tn+1,ti−1))∇ξiy,∇ξny)=(l∑i=1(Δt)2Bt(tl,t∗i)∇Rhyi,∇ξly)−(l∑i=1(Δt)2Bt(tl,t∗i)∇ξiy,∇ξly) $ |
$ +l−1∑n=1(n∑i=1(Δt)2Bt(tn,t∗i)∇Rhyi,∇ξny)−l−1∑n=1(n∑i=1(Δt)2Bt(tn,t∗i)∇ξiy,∇ξny)−l−1∑n=1(n+1∑i=1(Δt)2Bt(tn+1,t∗i)∇Rhyi,∇ξny)+l−1∑n=1(n+1∑i=1(Δt)2Bt(tn+1,t∗i)∇ξiy,∇ξny)≤C(Δt)2‖∇Rhy‖2L2(L2)+Cl∑n=1‖∇ξny‖2Δt+Cl∑n=1Δtn∑i=1‖∇ξiy‖2Δt+a∗8‖∇ξly‖2, $ |
where $ t_{i}^* $ is located between $ t_{i-1} $ and $ t_{i} $, and we also used
$ ‖∫tn0B(tn,s)∇Rhy(s)ds−n∑i=1B(tn,ti)∇RhyiΔt‖≤CΔt(‖∇Rhyt‖L2(L2)+‖∇Rhy‖L2(L2)). $ |
From (3.7)–(3.9), we have
$ 12‖A12∇ξly‖2+12l∑n=1‖dtξny‖2Δt≤Ch4‖yt‖2L2(H2)+C(Δt)2(‖ytt‖2L2(L2)+‖∇Rhyt‖2L2(L2)+‖∇Rhy‖2L2(L2))+Cl∑n=1‖∇ξny‖2Δt+Cl∑n=1Δtn∑i=1‖∇ξiy‖2Δt+a∗4‖∇ξly‖2. $ | (3.10) |
Adding $ \sum_{n = 1}^l\|\nabla \xi_{y}^n\|^2\Delta t $ to both sides of (3.10), by use of the assumption on $ A $ and discrete Gronwall's inequality, we have
$ |||∇(Rhy−yh(u))|||L∞(L2)≤C(Δt+h2). $ | (3.11) |
Using (2.13), the Poincare inequality and the triangle inequality, we get
$ |||y−yh(u)|||L∞(L2)≤C(Δt+h2), |||∇(y−yh(u))|||L∞(L2)≤C(Δt+h). $ | (3.12) |
Taking $ t = t_{n-1} $ in (2.6), subtracting (2.31) from (2.6) and then using (2.14), we have
$ −(dtξnp,qh)+(A∇ξn−1p,∇qh)=−(dtpn−pn−1t,qh)+(dtηnp,qh)+∫Ttn−1(B∗(s,tn−1)∇Rhp(s),∇qh)ds−(N∑i=nΔtB∗(ti,tn−1)∇pi−1h(u),∇qh)+(δynd−δyn+yn−ynh(u),qh). $ | (3.13) |
Choosing $ q_h = -dt\xi_{p}^{n} $ in (3.13), multiplying by $ \Delta t $ and summing over $ n $ from $ l+1 $ to $ N\ (0\leq l\leq N-1) $ on both sides of (3.13), since $ \xi_p^N = 0 $, we find that
$ 12‖A12∇ξlp‖2+N∑n=l+1‖dtξnp‖2Δt≤N∑n=l+1(dtpn−pn−1t,dtξnp)Δt−N∑n=l+1(dtηnp,dtξnp)Δt−N∑n=l+1[∫Ttn−1(B∗(s,tn−1)∇Rhp(s),dt∇ξnp)ds−(N∑i=nΔtB∗(ti,tn−1)∇pi−1h(u),dt∇ξnp)]Δt−N∑n=l+1(δynd−δyn+yn−ynh(u),dtξnp)Δt=:4∑i=1Bi. $ | (3.14) |
Notice that
$ −(A∇ξn−1p,dt∇ξnp)≥12Δt(‖A12∇ξn−1p‖2−‖A12∇ξnp‖2). $ | (3.15) |
Now, we estimate the right-hand terms of (3.14). Similar to (3.7), we have
$ B1≤C(Δt)2‖ptt‖2L2(L2)+14N∑n=l+1‖dtξnp‖2Δt. $ | (3.16) |
For $ B_2 $, using (2.15) and the Cauchy inequality, we have
$ B2≤Ch4‖pt‖2L2(H2)+14N∑n=l+1‖dtξnp‖2Δt. $ | (3.17) |
For $ B_3 $, applying the same estimates as $ A_3 $, we conclude that
$ B3=−N∑n=l+1[∫Ttn−1(B∗(s,tn−1)∇Rhp(s),dt∇ξnp)ds−(N∑i=nΔtB∗(ti−1,tn−1)∇pi−1h(u),dt∇ξnp)+(N∑i=nΔtB∗(ti−1,tn−1)∇pi−1h(u),dt∇ξnp)−(N∑i=nΔtB∗(ti,tn−1)∇pi−1h(u),dt∇ξnp)]Δt≤C(Δt)2(‖∇Rhpt‖2L2(L2)+‖∇Rhp‖2L2(L2))+CN∑n=l+1‖∇ξnp‖2Δt+CN∑n=l+1ΔtN∑i=n‖∇ξip‖2Δt+a∗4‖∇ξlp‖2, $ | (3.18) |
where
$ ‖∇Rhpt‖L2(L2)+‖∇Rhp‖L2(L2)≤‖∇(pt−Rhpt)‖L2(L2)+‖∇pt‖L2(L2)+‖∇(p−Rhp)‖L2(L2)+‖∇p‖L2(L2). $ |
For $ B_4 $, using the Cauchy inequality and the smoothness of $ y $ and $ y_d $, we have
$ B4=−N∑n=l+1(δynd−δyn+yn−ynh(u),dtξnp)Δt≤C(Δt)2(‖yt‖2L2(L2)+‖(yd)t‖2L2(L2))+C‖yn−ynh(u)‖2L2(L2)+14N∑n=l+1‖dtξnp‖2Δt. $ | (3.19) |
Combining (3.16)–(3.19), we have
$ 12‖A12∇ξlp‖2+14N∑n=l+1‖dtξnp‖2Δt≤C(Δt)2(‖ptt‖2L2(L2)+‖∇Rhpt‖2L2(L2)+‖∇Rhp‖2L2(L2)+‖yt‖2L2(L2)+‖(yd)t‖2L2(L2))+Ch4‖pt‖2L2(H2)+C‖yn−ynh(u)‖2L2(L2)+a∗4‖∇ξlp‖2+CN∑n=l+1‖∇ξnp‖2Δt+CN∑n=l+1ΔtN∑i=n‖∇ξip‖2Δt. $ | (3.20) |
By adding $ \sum_{n = l+1}^N\|\nabla \xi_{p}^n\|^2\Delta t $ to both sides of (3.20) and applying the assumption on $ A $, discrete Gronwall's inequality and (3.12), we conclude that
$ |||∇(Rhp−ph(u))|||L∞(L2)≤C(Δt+h2). $ | (3.21) |
Using (2.15) and the triangle inequality, we get
$ |||p−ph(u)|||L∞(L2)≤C(Δt+h2), |||∇(p−ph(u))|||L∞(L2)≤C(Δt+h); $ | (3.22) |
we have completed the proof of the Lemma 3.1.
Lemma 3.2. Choose $ \tilde{u}^n = Q_h u^n $ and $ \tilde{u}^n = u^n $ in (2.29)–(2.32) respectively. Then, for $ \Delta t $ small enough and $ 1\leq n\leq N $, we have
$ |||∇(yh(u)−yh(Qhu))|||L∞(L2)+|||∇(ph(u)−ph(Qhu))|||L∞(L2)≤Ch2. $ | (3.23) |
Proof. For convenience, let
$ λny=ynh(u)−ynh(Qhu), λnp=pnh(u)−pnh(Qhu). $ |
Taking $ \tilde{u}^n = u^n $ and $ \tilde{u}^n = Q_hu^n $ in (2.29), we easily get
$ (dtλny,vh)+(A∇λny,∇vh)=n∑i=1Δt(B(tn,ti−1)∇λiy,∇vh)+(un−Qhun,vh). $ | (3.24) |
By choosing $ v_h = dt\lambda_y^n $ in (3.24), multiplying by $ \Delta t $ and summing over $ n $ from $ 1 $ to $ l $ $ (1\leq l\leq N) $ on both sides of (3.24), we find that
$ 12‖A12∇λly‖2+l∑n=1‖dtλny‖2Δt≤l∑n=1(n∑i=1Δt(B(tn,ti−1)∇λiy,dt∇λny)Δt+l∑n=1(un−Qhun,λny−λn−1y)=(l∑i=1ΔtB(tl,ti−1)∇λiy,∇λly)+l−1∑n=1(n∑i=1ΔtB(tn,ti−1)∇λiy−n+1∑i=1ΔtB(tn+1,ti−1)∇λiy,∇λny)+(ul−Qhul,λly)−l−1∑n=1(un+1−Qhun+1−(un−Qhun),λny)=(l∑i=1ΔtB(tl,ti−1)∇λiy,∇λly)+l−1∑n=1(n∑i=1(Δt)2Bt(t∗n+1,ti−1)∇λiy,∇λny)−l−1∑n=1(ΔtB(tn+1,tn)∇λn+1y,∇λny)+C‖ul−Qhul‖−1‖∇λly‖+l−1∑n=1‖(u−Qhu)t(θn)‖−1‖∇λny‖Δt≤Cl∑n=1‖∇λny‖2Δt+Cl∑n=1Δtn∑i=1‖∇λiy‖2Δt+a∗4‖∇λly‖2+Ch4(‖ul‖21+‖ut‖2L2(H1)), $ | (3.25) |
where we use (2.17) and the assumption on $ B $; additionally, $ \theta^n $ is located between $ t_{n} $ and $ t_{n+1} $.
Add $ \sum_{n = 1}^l\|\nabla \lambda_{y}^n\|^2\Delta t $ to both sides of (3.25); then for sufficiently small $ \Delta t $, combining (3.25) and the discrete Gronwall inequality, we have
$ ‖|∇(yh(u)−yh(Qhu))‖|L∞(L2)≤Ch2. $ | (3.26) |
Similar to (3.24), we have
$ −(dtλnp,qh)+(A∇λn−1p,∇qh)=(N∑i=nΔtB∗(ti,tn−1)∇λi−1p,∇qh)+(λny,qh), ∀ qh∈Vh. $ | (3.27) |
By choosing $ q_h = -dt\lambda_p^n $ in (3.27), multiplying by $ \Delta t $ and summing over $ n $ from $ l+1 $ to $ N $ $ (0\leq l\leq N-1) $ on both sides of (3.27), combining (3.26) and Poincare inequality gives
$ 12‖A12∇λlp‖2+l∑n=1‖dtλnp‖2Δt≤−N∑n=l+1(N∑i=nΔtB∗(ti,tn−1)∇λi−1p,dt∇λnp)Δt−N∑n=l+1(λny,dtλnp)Δt=(N∑i=l+1ΔtB∗(ti,tl)∇λi−1p,∇λlp)−N−1∑n=l+1(N∑i=nΔtB∗(ti,tn−1)∇λi−1p,∇λnp)+N−1∑n=l+1(N∑i=n+1ΔtB∗(ti,tn)∇λi−1p,∇λnp)−N∑n=l+1(λny,dtλnp)Δt=(N∑i=l+1ΔtB∗(ti,tl)∇λi−1p,∇λlp)−N−1∑n=l+1(N∑i=n(Δt)2B∗t(ti,t∗n)∇λi−1p,∇λnp)−N−1∑n=l+1(ΔtB∗(tn,tn)∇λn−1p,∇λnp)−N∑n=l+1(λny,dtλnp)Δt≤Ch4+a∗4‖∇λlp‖2+CN∑n=l+1‖∇λn−1p‖2Δt+CN−1∑n=l+1ΔtN∑i=n‖∇λip‖2Δt+12N∑n=l+1‖dtλnp‖2Δt. $ | (3.28) |
Add $ \sum_{n = l+1}^N\|\nabla \lambda_{p}^{n-1}\|^2\Delta t $ to both sides of (3.28); then for sufficiently small $ \Delta t $, applying the discrete Gronwall inequality and the assumptions on $ A $ and $ B $, we have
$ |||∇(ph(u)−ph(Qhu))|||L∞(L2)≤Ch2. $ | (3.29) |
Using the stability analysis as in Lemma 3.2 yields Lemma 3.3.
Lemma 3.3. Let $ (y_{h}^n, p_{h}^n) $ and $ (y_{h}^n(Q_hu), p_{h}^n(Q_hu)) $ be the discrete solutions of (2.29)$ - $(2.32) with $ \tilde{u}^{n} = u_h^{n} $ and $ \tilde{u}^{n} = Q_hu^{n} $, respectively. Then, for $ \Delta t $ small enough and $ 1\leq n\leq N $, we have
$ |||∇(yh(Qhu)−yh)|||L∞(L2)+|||∇(ph(Qhu)−ph)|||L∞(L2)≤C|||Qhu−uh|||L2(L2). $ | (3.30) |
Next, we derive the following inequality.
Lemma 3.4. Choose $ \tilde{u}^n = Q_h u^n $ and $ \tilde{u}^n = u_h^n $ in (2.29)$ - $(2.32) respectively. Then, we have
$ N∑n=1(Qhun−unh,pn−1h(Qhu)−pn−1h)Δt≥0. $ | (3.31) |
Proof. For $ n = 0, 1, \ldots, N $, let
$ rnp=pnh(Qhu)−pnh, rny=ynh(Qhu)−ynh. $ |
From (2.29)–(2.32), we have
$ (dtrny,vh)+(A∇rny,∇vh)−n∑i=1Δt(B(tn,ti−1)∇riy,∇vh)=(Qhun−unh,vh), ∀ vh ∈Vh, $ | (3.32) |
$ −(dtrnp,qh)+(A∇rn−1p,∇qh)−N∑i=nΔt(B∗(ti,tn−1)∇ri−1p,∇qh)=(rny,qh), ∀ qh ∈Vh. $ | (3.33) |
Notice that
$ \sum\limits_{n = 1}^{N}\left(\Delta t \sum\limits_{i = 1}^nB(t_n,t_{i-1})\nabla r_{y}^{i},\nabla r_{p}^{n-1}\right) = \sum\limits_{n = 1}^{N}\left(\Delta t \sum\limits_{i = n}^NB^*(t_i,t_{n-1})\nabla r_{p}^{i-1},\nabla r_{y}^{n}\right) $ |
and
$ \sum\limits_{n = 1}^N\left(dtr_y^n,r_{p}^{n-1}\right)\Delta t+\sum\limits_{n = 1}^N\left(dt r_p^n,r_{y}^{n}\right)\Delta t = 0. $ |
By choosing $ v_h = -r_{p}^{n-1} $ in (3.32), $ q_h = r_{y}^{n} $ in (3.33), and then multiplying the two resulting equations by $ \Delta t $ and summing it over $ n $ from $ 1 $ to $ N $, we have
$ N∑n=1(Qhun−unh,pn−1h(Qhu)−pn−1h)Δt=N∑n=1‖rny‖2Δt, $ | (3.34) |
which completes the proof of the lemma.
Lemma 3.5. Let $ u $ be the solution of (2.4)–(2.8) and $ u_{h}^{n} $ be the solution of (2.23)–(2.27). Assume that all of the conditions in Lemmas 3.1–3.4 are valid. Then, for $ \Delta t $ small enough and $ 1\leq n\leq N $, we have
$ |||Qhu−uh|||L2(L2)≤C(h2+Δt). $ | (3.35) |
Proof. Take $ \tilde{u} = u_h^{n} $ in (2.8) and $ \tilde{u}_h = Q_h u^{n} $ in (2.27) to get the following two inequalities:
$ (un+pn,unh−un)≥0 $ | (3.36) |
and
$ (unh+pn−1h,Qhun−unh)≥0. $ | (3.37) |
Note that $ u_h^{n}-u^{n} = u_h^{n}-Q_hu^{n}+Q_hu^{n}-u^{n} $. Adding the two inequalities (3.36) and (3.37), we have
$ (unh+pn−1h−un−pn,Qhun−unh)+(un+pn,Qhun−un)≥0. $ | (3.38) |
Thus, by (3.38), (2.16), (2.8) and Lemma 3.4, we find that
$ |||Qhu−uh|||2L2(L2)=N∑n=1(Qhun−unh,Qhun−unh)Δt≤N∑n=1(Qhun−un,Qhun−unh)Δt+N∑n=1(pn−1h−pn,Qhun−unh)Δt+N∑n=1(un+pn,Qhun−un)Δt=N∑n=1(pn−1h−pn−1h(Qhu),Qhun−unh)Δt+N∑n=1(pn−1−pn,Qhun−unh)Δt+N∑n=1(pn−1h(u)−pn−1,Qhun−unh)Δt+N∑n=1(un+pn,Qhun−un)Δt+N∑n=1(pn−1h(Qhu)−pn−1h(u),Qhun−unh)Δt≤N∑n=1(pn−1−pn,Qhun−unh)Δt+N∑n=1(pn−1h(u)−pn−1,Qhun−unh)Δt+N∑n=1(pn−1h(Qhu)−pn−1h(u),Qhun−unh)Δt=:3∑i=1Fi. $ | (3.39) |
It follows from the Cauchy inequality, Lemma 3.1, Lemma 3.2 and Poincare's inequality that
$ F1≤C(Δt)2‖pt‖2L2(L2)+14N∑n=1‖Qhun−unh‖2Δt, $ | (3.40) |
$ F2≤C(h4+(Δt)2)+14N∑n=1‖Qhun−unh‖2Δt, $ | (3.41) |
$ F3≤Ch4+14N∑n=1‖Qhun−unh‖2Δt. $ | (3.42) |
Substituting the estimates for $ F_{1} $–$ F_{3} $ into (3.39), we derive (3.35).
Using (3.11), (3.21), Lemmas 3.2–3.5 and the triangle inequality, we derive the following superconvergence for the state variable.
Lemma 3.6. Let $ u $ be the solution of (2.4)–(2.8) and $ u_{h}^{n} $ be the solution of (2.23)–(2.27). Assume that all of the conditions in Lemmas 3.1–3.5 are valid. Then, for $ \Delta t $ small enough and $ 1\leq n\leq N $, we have
$ |||∇(Rhy−yh)|||L∞(L2)+|||∇(Rhp−ph)|||L∞(L2)≤C(h2+Δt). $ | (3.43) |
Now, the main result of this section is given in the following theorem.
Theorem 3.1. Let $ (y, p, u) $ and $ (y_{h}^{n}, p_{h}^{n-1}, u_{h}^n) $ be the solutions of (2.4)–(2.8) and (2.23)–(2.27), respectively. Assume that $ y $, $ p $ and $ u $ have enough regularities for our purpose; then, for $ \Delta t $ small enough and $ 1\leq n\leq N $, we have
$ |||y−yh|||L∞(L2)+|||p−ph|||L∞(L2)≤C(h2+Δt), $ | (3.44) |
$ |||∇(y−yh)|||L∞(L2)+|||∇(p−ph)|||L∞(L2)≤C(h+Δt), $ | (3.45) |
$ |||u−uh|||L2(L2)≤C(h+Δt). $ | (3.46) |
Proof. The proof of the theorem can be completed by using Lemmas 3.1–3.5, (2.17) and the triangle inequality.
To provide the global superconvergence for the control and state, we use the recovery techniques on uniform meshes. Let us construct the recovery operators $ P_h $ and $ G_h $. Let $ P_h v $ be a continuous piecewise linear function (without the zero boundary constraint). The value of $ P_h v $ on the nodes are defined by a least squares argument on element patches surrounding the nodes; the details can be found in [25,26].
We construct the gradient recovery operator $ G_h v = (P_h v_x, P_h v_y) $ for the gradients of $ y $ and $ p $. In the piecewise linear case, it is noted to be the same as the Z-Z gradient recovery (see [25,26]). We construct the discrete co-state with the admissible set
$ ˆunh=max{0,¯pn−1h}−pn−1h. $ | (3.47) |
Now, we can derive the global superconvergence result for the control variable and state variable.
Theorem 3.2. Let $ u $ and $ u_{h}^{n} $ be the solutions of (2.4)–(2.8) and (2.29)–(2.32), respectively. Assume that all of the conditions in Lemmas 3.1–3.5 are valid. Then we have
$ |||u−ˆuh|||L2(L2)≤C(h2+Δt). $ | (3.48) |
Proof. Using (2.9), (3.47) and Theorem 3.1, we have
$ |||u−ˆuh|||2L2(L2)=N∑n=1‖un−ˆunh‖2Δt≤CN∑n=1‖max{0,¯pn}−max{0,¯pn−1h}‖2Δt+CN∑n=1‖pn−pn−1h‖2Δt≤CN∑n=1‖¯pn−¯pn−1h‖2Δt+CN∑n=1‖pn−pn−1h‖2Δt≤CN∑n=1‖pn−pn−1h‖2Δt≤CN∑n=1‖pn−pn−1‖2Δt+CN∑n=1‖pn−1−pn−1h‖2Δt≤C(h4+(Δt)2). $ | (3.49) |
Theorem 3.3. Let $ (y, p) $ and $ (y_{h}^{n}, p_{h}^{n-1}) $ be the solutions of (2.4)–(2.8) and (2.29)–(2.32), respectively. Assume that all of the conditions in Lemmas 3.1–3.5 are valid. Then we have
$ |||Ghyh−∇y|||L∞(L2)+|||Ghph−∇p|||L∞(L2)≤C(h2+Δt). $ | (3.50) |
Proof. Notice that
$ |||Ghyh−∇y|||L∞(L2)≤|||Ghyh−GhRhy|||L∞(L2)+|||GhRhy−∇y|||L∞(L2). $ | (3.51) |
It follows from Lemma 3.6 that
$ |||Ghyh−GhRhy|||L∞(L2)≤C|||∇(yh−Rhy)|||L∞(L2)≤C(h2+Δt). $ | (3.52) |
It can be proved by the standard interpolation error estimate technique (see [1]) that
$ |||GhRhy−∇y|||L∞(L2)≤Ch2. $ | (3.53) |
Therefore, it follows from (3.52) and (3.53) that
$ |||Ghyh−∇y|||L∞(L2)≤C(h2+Δt). $ | (3.54) |
Similarly, it can be proved that
$ |||Ghph−∇p|||L∞(L2)≤C(h2+Δt). $ | (3.55) |
Therefore, we complete the proof.
In this section, we will present a two-grid scheme and analyze a priori error estimates. Now, we present our two-grid algorithm which has the following two steps:
$ \bf{Step} $ $ \bf{1} $. On the coarse grid $ T_H $, find $ (y_H^n, p_H^{n-1}, u_H^n)\in V_H^{2}\times K_{H} $ that satisfies the following optimality conditions:
$ (dtynH,vH)+(A∇ynH,∇vH)=(n∑i=1ΔtB(tn,ti−1)∇yiH,∇vH)+(fn+unH,vH), ∀ vH ∈VH, $ | (4.1) |
$ y0H=RHy0, $ | (4.2) |
$ −(dtpnH,qH)+(A∇pn−1H,∇qH)=(N∑i=nΔtB∗(ti,tn−1)∇pi−1H,∇qH)+(ynH−ynd,qH), ∀ qH ∈VH, $ | (4.3) |
$ pNH=0, $ | (4.4) |
$ (unH+pn−1H,u∗H−unH)≥0, ∀ u∗H∈KH. $ | (4.5) |
$ \bf{Step} $ $ \bf{2} $. On the fine grid $ T_h $, find $ (\overline{\widetilde{y}}_h^n, \overline{\widetilde{p}}_h^{n-1}, \overline{\widetilde{u}}_h^n)\in V_h^{2}\times K_{h} $ such that
$ (dt¯˜ynh,vh)+(A∇¯˜ynh,∇vh)=(n∑i=1ΔtB(tn,ti−1)∇¯˜yih,∇vh)+(fn+ˆunH,vh), ∀ vh ∈Vh, $ | (4.6) |
$ ¯˜y0h=Rhy0, $ | (4.7) |
$ −(dt¯˜pnh,qh)+(A∇¯˜pn−1h,∇qh)=(N∑i=nΔtB∗(ti,tn−1)¯˜pi−1h,∇qh)+(¯˜ynh−ynd,qh), ∀ qh ∈Vh, $ | (4.8) |
$ ¯˜pNh=0, $ | (4.9) |
$ (¯˜unh+¯˜pn−1h,u∗h−¯˜unh)≥0, ∀ u∗h∈Kh. $ | (4.10) |
Combining Theorem 3.1 and the stability estimates, we easily get the following results.
Theorem 4.1. Let $ (y, p, u) $ and $ (\overline{\widetilde{y}}_h^n, \overline{\widetilde{p}}_h^n, \overline{\widetilde{u}}_h^n) $ be the solutions of (2.4)–(2.8) and (4.1)–(4.10), respectively. Assume that $ y $, $ y_{d} $, $ p $, $ p_d $ and $ u $ have enough regularities for our purpose; then, for $ \Delta t $ small enough and $ 1\leq n\leq N $, we have
$ |||∇(y−¯˜yh)|||L∞(L2)+|||∇(p−¯˜ph)|||L∞(L2)≤C(h+H2+Δt), $ | (4.11) |
$ |||u−¯˜uh|||L2(L2)≤C(h+H2+Δt). $ | (4.12) |
Proof. For convenience, let
$ yn−¯˜ynh=yn−Rhyn+Rhyn−¯˜ynh=:ηny+eny,pn−¯˜pnh=pn−Rhpn+Rhpn−¯˜pnh=:ηnp+enp. $ |
Taking $ t = t_{n} $ in (2.4), subtracting (4.6) from (2.4) and then using (2.12), we have
$ (dteny,vh)+(A∇eny,∇vh)=(∫tn0B(tn,s)Rh∇y(s)ds−n∑i=1ΔtB(tn,ti−1)∇¯˜yih,∇vh)+(dtyn−ynt,vh)−(dtηny,vh)+(un−ˆunH,vh), ∀ vh∈Vh. $ | (4.13) |
Selecting $ v_h = dte_y^n $ in (4.13), multiplying by $ \Delta t $ and summing over $ n $ from $ 1 $ to $ l $ $ (1\leq l\leq N) $ on both sides of (4.13), we find that
$ 12‖A12∇ely‖2+l∑n=1‖dteny‖2Δt≤−l∑n=1(dtηny,dteny)Δt+l∑n=1(dtyn−ynt,dteny)Δt+l∑n=1(∫tn0B(tn,s)Rh∇y(s)ds−n∑i=1ΔtB(tn,ti−1)∇¯˜yih,dt∇eny)Δt+l∑n=1(un−ˆunH,dteny)Δt=:4∑i=1Ii. $ | (4.14) |
Similar to Lemma 3.1, it is easy to show that
$ I1+I2≤Ch4‖yt‖2L2(H2)+C(Δt)2‖ytt‖2L2(L2)+12l∑n=1‖dteny‖2Δt. $ | (4.15) |
Similar to $ A_3 $, we find that
$ I3≤C(Δt)2(‖∇Rhyt‖2L2(L2)+‖∇Rhy‖2L2(L2))+Cl∑n=1‖∇eny‖2Δt+Cl∑n=1Δtn∑i=1‖∇eiy‖2Δt+a∗4‖∇ely‖2. $ | (4.16) |
For $ I_4 $, using Theorem 3.2, we have
$ I4≤C(H4+(Δt)2)+14l∑n=1‖dteny‖2Δt. $ | (4.17) |
Combining (4.15)–(4.17), the discrete Gronwall inequality, the triangle inequality and (2.13), we get
$ |||∇(y−¯˜yh)|||L∞(L2)≤C(h+H2+Δt). $ | (4.18) |
By taking $ t = t_{n-1} $ in (2.6), subtracting (4.8) from (2.6) and using (2.12), we have
$ −(dtenp,qh)+(A∇en−1p,∇qh)=(∫Ttn−1B∗(s,tn−1)∇Rhp(s)ds−N∑i=nB∗(ti,tn−1)¯˜pi−1hΔt,∇qh)−(dtpn−pn−1t,qh)+(dtηnp,qh)+(δynd−δyn,qh)+(yn−¯˜ynh,qh), ∀ qh∈Vh. $ | (4.19) |
By selecting $ q_h = -dte_p^n $ in (4.19), multiplying by $ \Delta t $ and summing over $ n $ from $ l+1 $ to $ N $ $ (0\leq l\leq N-1) $ on both sides of (4.19), we find that using (2.15), (4.18) and the triangle inequality, similar to (3.14), gives
$ |||∇(p−¯˜ph)|||L∞(L2)≤C(h+H2+Δt). $ | (4.20) |
Note that
$ ¯˜unh=max{0,¯¯˜pn−1h}−πh¯˜pn−1h,un=max{0,¯pn}−pn. $ |
Using (2.19), (4.20) and the mean value theorem, we have
$ |||u−¯˜uh|||2L2(L2)=N∑n=1‖un−¯˜unh‖2Δt≤CN∑n=1‖max{0,¯pn}−max{0,¯¯˜pn−1h}‖2Δt+CN∑n=1‖pn−πh¯˜pn−1h‖2Δt≤CN∑n=1‖¯pn−¯¯˜pn−1h‖2Δt+CN∑n=1‖pn−pn−1‖2Δt+CN∑n=1‖pn−1−πhpn−1‖2Δt+CN∑n=1‖πhpn−1−πh¯˜pn−1h‖2Δt≤CN∑n=1‖pn−¯˜pn−1h‖2Δt+CN∑n=1‖pn−pn−1‖2Δt+CN∑n=1‖pn−1−πhpn−1‖2Δt+CN∑n=1‖πhpn−1−πh¯˜pn−1h‖2Δt≤CN∑n=1‖pn−pn−1‖2Δt+CN∑n=1‖pn−1−πhpn−1‖2Δt+CN∑n=1‖pn−1−¯˜pn−1h‖2Δt≤C(h2+H4+(Δt)2), $ | (4.21) |
which completes the proof.
In this section, we present the following numerical experiment to verify the theoretical results. We consider the following two-dimensional parabolic integro-differential optimal control problems
$ minu∈K{12∫10(‖y−yd‖2+‖u‖2)dt} $ |
subject to
$ (yt,v)+(∇y,∇v)=∫t0(∇y(s),∇v)ds+(f+u,v), ∀ v∈V,y(x,0)=y0(x), ∀ x∈Ω, $ |
where $ \Omega = (0, 1)^2 $.
We applied a piecewise linear finite element method for the state variable $ y $ and co-state variable $ p $. The stopping criterion of the finite element method was chosen to be the abstract error of control variable $ u $ between two adjacent iterates less than a prescribed tolerance, i.e.,
$ \|u_h^{l+1}-u_h^{l}\|\leq\epsilon, $ |
where $ \epsilon = 10^{-5} $ was used in our numerical tests. For the linear system of equations, we used the algebraic multigrid method with tolerance $ 10^{-9} $.
The numerical experiments were conducted on a desktop computer with a 2.6 GHz 4-core Intel i7-6700HQ CPU and 8 GB 2133 MHz DDR4 memory. The MATLAB finite element package iFEM was used for the implementation [27].
Example: We chose the following source function $ f $ and the desired state $ y_d $ as
$ f(x,t)=(2e2t+4π2e2t+4π2+sin(πt))sin(πx)sin(πy)−4π2sin(πt),yd(x,t)=(πcos(πt)−8π2sinπt+8π2(cos(πt)π)−cosπTπ+e2t)sin(πx)sin(πy) $ |
such that the exact solutions for $ y $, $ p $, $ u $ are respectively,
$ y=e2tsin(πx)sin(πy),p=sin(πt)sin(πx)sin(πy),u=sin(πt)(4π2−sin(πx)sin(πy)). $ |
In order to see the convergence order with respect to time step size $ \triangle t $ and mesh size $ h $, we choose $ \triangle t = h $ or $ \triangle t = h_2 $ with $ h = \frac{1}{4}, \frac{1}{16}, \frac{1}{64} $. To see the convergence order of the two-grid method, we choose the coarse and fine mesh size pairs $ (\frac{1}{2}, \frac{1}{4}), (\frac{1}{4}, \frac{1}{16}), (\frac{1}{8}, \frac{1}{64}) $. Let us use $ y^h, p^h $ and $ u^h $ as two-grid solutions in the following tables. In Tables 1 and 2, we let $ \triangle t = h_2 $ and present the errors of the finite element method and two-grid method for $ y $ and $ p $ in the $ L^2 $-norm. Next, in Tables 3 and 4, we set $ \triangle t = h $ and show the errors of the two methods for $ y $ and $ p $ in the $ H^1 $-norm and $ u $ in the $ L^2 $-norm. We can see that the two-grid method maintains the same convergence order as the finite element method. Moreover, we also display the computing times of the finite element method and the two-grid method in these tables. By comparison, we find that the two-grid method is more effective for solving the optimal control problems (1.1)–(1.4).
$ h $ | $ \|y-y_h\| $ | $ \|p-p_h\| $ | $ CPU $ $ time\ (s) $ |
$ \frac{1}{4} $ | $ 0.1095 $ | $ 0.0856 $ | $ 0.7031 $ |
$ \frac{1}{16} $ | $ 0.0079 $ | $ 0.0045 $ | $ 8.8702 $ |
$ \frac{1}{64} $ | $ 0.0005 $ | $ 0.0002 $ | $ 2253.6396 $ |
$ (h, H) $ | $ \|y-y^h\| $ | $ \|p-p^h\| $ | $ CPU $ $ time\ (s) $ |
$ (\frac{1}{4}, \frac{1}{2}) $ | $ 0.1059 $ | $ 0.0853 $ | $ 0.4335 $ |
$ (\frac{1}{16}, \frac{1}{4}) $ | $ 0.0056 $ | $ 0.0043 $ | $ 5.0842 $ |
$ (\frac{1}{64}, \frac{1}{8}) $ | $ 0.0006 $ | $ 0.0002 $ | $ 1027.9740 $ |
$ h $ | $ \|y-y_h\|_1 $ | $ \|p-p_h\|_1 $ | $ \|u-u_h\| $ | $ CPU $ $ time\ (s) $ |
$ \frac{1}{4} $ | $ 1.6604 $ | $ 1.1385 $ | $ 0.1358 $ | $ 0.4720 $ |
$ \frac{1}{16} $ | $ 0.6187 $ | $ 0.2143 $ | $ 0.0367 $ | $ 0.6320 $ |
$ \frac{1}{64} $ | $ 0.1687 $ | $ 0.0578 $ | $ 0.0090 $ | $ 24.0800 $ |
$ (h, H) $ | $ \|y-y^h\|_1 $ | $ \|p-p^h\|_1 $ | $ \|u-u^h\| $ | $ CPU $ $ time\ (s) $ |
$ (\frac{1}{4}, \frac{1}{2}) $ | $ 1.6755 $ | $ 1.1375 $ | $ 0.0988 $ | $ 0.2880 $ |
$ (\frac{1}{16}, \frac{1}{4}) $ | $ 0.6288 $ | $ 0.2142 $ | $ 0.0346 $ | $ 0.3870 $ |
$ (\frac{1}{64}, \frac{1}{8}) $ | $ 0.1716 $ | $ 0.0579 $ | $ 0.0089 $ | $ 7.3120 $ |
In this paper, we presented a two-grid finite element scheme for linear parabolic integro-differential control problems (1.1)–(1.4). A priori error estimates for the two-grid method and finite element method have been derived. We have used recovery operators to prove the superconvergence results. These results seem to be new in the literature. In our future work, we will investigate a posteriori error estimates. Furthermore, we shall consider a priori error estimates and a posteriori error estimates for optimal control problems governed by hyperbolic integro-differential equations.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors declare there is no conflict of interest.
[1] |
Goodrich JA,Tjian R (1994) TBP-TAF complexes: selectivity factors for eukaryotic transcription. Curr Opin Cell Biol 6: 403-409. doi: 10.1016/0955-0674(94)90033-7
![]() |
[2] |
Buratowski S (1994) The basics of basal transcription by RNA polymerase II. Cell 77: 1-3. doi: 10.1016/0092-8674(94)90226-7
![]() |
[3] | Evans RM (1998) The steroid and thyroid hormone receptor superfamily. Science 240: 889-895. |
[4] |
Dasgupta AB,Lonard DM,O'Malley BW (2014) Nuclear receptor coactivators: master regulators of human health and disease. Annu Rev Med 65: 279-292. doi: 10.1146/annurev-med-051812-145316
![]() |
[5] |
Xu J,Li Q (2003) Review of the in vivo Functions of the p160 Steroid Receptor Coactivator Family. Mol Endocrinol 17:1681-1692. doi: 10.1210/me.2003-0116
![]() |
[6] |
Smith CL,DeVera DG,Lamb DJ,et al. (2002) Genetic ablation of the steroid receptor coactivator-ubiquitin ligase,E6-AP,results in tissue-selective steroid hormone resistance and defects in reproduction. Mol Cell Biol 22: 525-535. doi: 10.1128/MCB.22.2.525-535.2002
![]() |
[7] |
Beitel LK,Elhaji YA,Lumbroso R,et al. (2002) Cloning and characterization of an androgen receptor N-terminal-interacting protein with ubiquitin-protein ligase activity. J Mol Endocrinol 29: 41-60. doi: 10.1677/jme.0.0290041
![]() |
[8] | Khan SH,Ling J,Kumar R (2011) TBP binding-induced folding of the glucocorticoid receptor AF1 domain facilitates its interaction with steroid receptor coactivator-1. PLoS One 6: e21939 |
[9] | Kumar R,Moure CM,Khan SH,et al. (2013) Regulation of the structurally dynamic N-terminal domain of progesterone receptor by protein-induced folding. J Biol 288: 30285-3099. |
[10] |
Warnmark A,Wikstrom A,Wright AP,et al. (2001) The N-terminal regions of estrogen receptor alpha and beta are unstructured in vitro and show different TBP binding properties. J Biol Chem 276: 45939-45944. doi: 10.1074/jbc.M107875200
![]() |
[11] |
Keaveney M,Berkenstam A,Feigenbutz M,et al. (1993) Residues in the TATA-binding protein required to mediate a transcriptional response to retinoic acid in EC cells. Nature 365: 562-566. doi: 10.1038/365562a0
![]() |
[12] |
Pugh BF,Tjian R (1990) Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell 61: 1187-1197. doi: 10.1016/0092-8674(90)90683-6
![]() |
[13] |
Strubin M,Struhl K (1992) Yeast and human TFIID with altered DNA-binding specificity for TATA elements. Cell 68:721-730. doi: 10.1016/0092-8674(92)90147-5
![]() |
[14] | Nordeen SK,Moyer ML,Bona BJ (1995) Modulation of glucocorticoid-regulated transcription by purines: novel characteristics and implications for tissue specificity of steroid responses. Endocrinology 136: 1120-1127. |
[15] |
Beck CA,Weigel NL,Moyer ML,et al. (1993) The progesterone antagonist RU486 acquires agonist activity upon stimulation of cAMP signaling pathways. Proc Natl Acad Sci U S A 90: 4441-4445. doi: 10.1073/pnas.90.10.4441
![]() |
[16] | Nordeen SK,Bona BJ,Moyer ML (1993) Latent agonist activity of the steroid antagonist,RU486,is unmasked in cells treated with activators of protein kinase A. Mol Endocrinol 7: 731-742. |
[17] | Moyer ML,Borror KC,Bona BJ,et al. (1993) Modulation of cell signaling pathways can enhance or impair glucocorticoid-induced gene expression without altering the state of receptor phosphorylation. J Biol Chem 268: 22933-22940. |
[18] | Nordeen SK,Moyer ML,Bona BJ (1994) The coupling of multiple signal transduction pathways with steroid response mechanisms. Endocrinology 134: 1723-1732. |
[19] |
Nordeen SK (1994) Potentiation of glucocorticoid-mediated induction of the mouse mammary tumor virus promoter in mammary carcinoma cells by activation of protein kinase C. Biochem Biophys Res Commun 198: 1183-1188. doi: 10.1006/bbrc.1994.1167
![]() |
[20] |
Dutertre M,Smith CL (2003) Ligand-independent interactions of p160/steroid receptor coactivators and CREB-binding protein (CBP) with estrogen receptor-alpha: regulation by phosphorylation sites in the A/B region depends on other receptor domains. Mol Endocrinol 17: 1296-1314. doi: 10.1210/me.2001-0316
![]() |
[21] |
Wu RC,Smith CL,O'Malley BW (2005) Transcriptional regulation by steroid receptor coactivator phosphorylation. Endocr Rev 26: 393-399. doi: 10.1210/er.2004-0018
![]() |
[22] |
Kato S,Masuhiro Y,Watanabe M (2000) Molecular mechanism of a cross-talk between oestrogen and growth factor signaling pathways. Genes Cells 5: 593-601. doi: 10.1046/j.1365-2443.2000.00354.x
![]() |
[23] |
Kit S,Dubbs DR,Piekarksi LJ,et al. (1963) Deletion of thymidine kinase activity from L cells resistant to bromodeoxyuridine. Exp Cell Res 31: 297-312. doi: 10.1016/0014-4827(63)90007-7
![]() |
[24] |
Ralph P,Moore MA,Milsson K (1976) Lysozyme synthesis by established human and murine histiocytic lymphoma cell lines. J Exp Med 143: 1528-1533. doi: 10.1084/jem.143.6.1528
![]() |
[25] | Gatlin J,Campbell LH,Schmidt MG,et al. (1995) Direct-rapid (DR) mutagenesis of large plasmids using PCR. Biotechniques 19: 559-564. |
[26] | Nordeen SK (1988) Luciferase reporter gene vectors for analysis of promoters and enhancers. Biotechniques 6: 454-458. |
[27] | Lieberman BA,Bona BJ,Edwards DP,et al. (1993) The constitution of a progesterone response element. Mol Endocrinol 7: 515-527. |
[28] | Biggs JR,Ahn NG,Kraft AS (1998) Activation of the mitogen-activated protein kinase pathway in U937 leukemic cells induces phosphorylation of the amino terminus of the TATA-binding protein. Cell Growth Differ 9: 667-676. |
[29] | Fujimoto N,Katzenellenbogen BS (1994) Alteration in the agonist/antagonist balance of antiestrogens by activation of protein kinase A signaling pathways in breast cancer cells: antiestrogen selectivity and promoter dependence. Mol Endocrinol 8: 296-304. |
[30] | Keenan CR,Mok JS,Harris T,et al (2014) Bronchial epithelial cells are rendered insensitive to glucocorticoid transactivation by transforming growth factor-β1. Respiratory Res 15: 55 |
[31] |
Piovan E,Yu J,Tosello V,et al. (2013) Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. Cancer Cell 24: 766-776. doi: 10.1016/j.ccr.2013.10.022
![]() |
[32] |
Beck IM,Vanden Berghe W,Vermeulen L (2009) Crosstalk in inflammation: the interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases. Endocr Rev 30: 830-882. doi: 10.1210/er.2009-0013
![]() |
[33] | Kumar R,Calhoun WJ (2008) Differential regulation of the transcriptional activity of the glucocorticoid receptor through site-specific phosphorylation. Biologics 2: 845-854. |
[34] |
Ward RD,Weigel NL (2009) Steroid receptor phosphorylation: Assigning function to site-specific phosphorylation. Biofactors 35: 528-536. doi: 10.1002/biof.66
![]() |
[35] |
Chen W,Dang T,Blind RD,et al. (2008) Glucocorticoid receptor phosphorylation differentially affects target gene expression. Mol Endocrinol 22: 1754-66. doi: 10.1210/me.2007-0219
![]() |
[36] | Espinas ML,Roux J,Pictet R,et al. (1995) Glucocorticoids and protein kinase A coordinately modulate transcription factor recruitment at a glucocorticoid-responsive unit. Mol Cell Biol 15: 5346-5354. |
[37] |
Rowan BG,Garrison N,Weigel NL,et al. (2000) 8-Bromo-cyclic AMP induces phosphorylation of two sites in SRC-1 that facilitate ligand-independent activation of the chicken progesterone receptor and are critical for functional cooperation between SRC-1 and CREB binding protein. Mol Cell Biol 20: 8720-8730. doi: 10.1128/MCB.20.23.8720-8730.2000
![]() |
[38] |
Johnson AB,O'Malley BW (2012) Steroid receptor coactivators 1,2,and 3: critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Mol Cell Endocrinol 348: 430-439. doi: 10.1016/j.mce.2011.04.021
![]() |
[39] |
Das D,Scovell WM (2001) The binding interaction of HMG-1 with the TATA-binding protein/TATA complex. J Biol Chem 276: 32597-32605. doi: 10.1074/jbc.M011792200
![]() |
[40] | Boonyaratanakornkit V,Melvin V,Prendergast P,et al. (1998) High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol Cell Biol 18: 4471-4487. |
[41] |
Melvin VS,Edwards DP (1999) Coregulatory proteins in steroid hormone receptor action: the role of chromatin high mobility group proteins HMG-1 and -2. Steroids 64: 576-586. doi: 10.1016/S0039-128X(99)00036-7
![]() |
[42] |
Hernandez N (1993) TBP,a universal eukaryotic transcription factor? Genes Dev 7:1291-1308. doi: 10.1101/gad.7.7b.1291
![]() |
[43] |
Mittal V,Hernandez N (1997) Role for the amino-terminal region of human TBP in U6 snRNA transcription. Science 275: 1136-1140. doi: 10.1126/science.275.5303.1136
![]() |
[44] |
Mittal V,Ma B,Hernandez N (1999) SNAP(c): a core promoter factor with a built-in DNA-binding damper that is deactivated by the Oct-1 POU domain. Genes Dev 13: 1807-1821. doi: 10.1101/gad.13.14.1807
![]() |
[45] |
Zhao X,Herr W (2002) A regulated two-step mechanism of TBP binding to DNA: a solvent-exposed surface of TBP inhibits TATA box recognition. Cell 108: 615-627. doi: 10.1016/S0092-8674(02)00648-7
![]() |
[46] |
Um M,Yamauchi J,Kato S,et al. (2001) Heterozygous disruption of the TATA-binding protein gene in DT40 cells causes reduced cdc25B phosphatase expression and delayed mitosis. Mol Cell Biol 21: 2435-2448. doi: 10.1128/MCB.21.7.2435-2448.2001
![]() |
[47] |
Schmidt EE,Bondareva AA,Radke JR,et al. (2003) Fundamental cellular processes do not require vertebrate-specific sequences within the TATA-binding protein. J Biol Chem 278: 6168-6174. doi: 10.1074/jbc.M211205200
![]() |
[48] |
Hobbs NK,Bondareva AA,Barnett S,et al. (2002) Removing the vertebrate-specific TBP N terminus disrupts placental beta2m-dependent interactions with the maternal immune system. Cell 110: 43-54. doi: 10.1016/S0092-8674(02)00806-1
![]() |
1. | Akanksha Singh, Ankur Kanaujiya, Jugal Mohapatra, Euler wavelets method for optimal control problems of fractional integro-differential equations, 2025, 454, 03770427, 116178, 10.1016/j.cam.2024.116178 | |
2. | Sida Lin, Lixia Meng, Jinlong Yuan, Changzhi Wu, An Li, Chongyang Liu, Jun Xie, Sequential adaptive switching time optimization technique for maximum hands-off control problems, 2024, 32, 2688-1594, 2229, 10.3934/era.2024101 | |
3. | Akanksha Singh, Ankur Kanaujiya, Jugal Mohapatra, An efficient generalized Lucas wavelet operational matrix method for optimal control problems, 2026, 471, 03770427, 116749, 10.1016/j.cam.2025.116749 |
$ h $ | $ \|y-y_h\| $ | $ \|p-p_h\| $ | $ CPU $ $ time\ (s) $ |
$ \frac{1}{4} $ | $ 0.1095 $ | $ 0.0856 $ | $ 0.7031 $ |
$ \frac{1}{16} $ | $ 0.0079 $ | $ 0.0045 $ | $ 8.8702 $ |
$ \frac{1}{64} $ | $ 0.0005 $ | $ 0.0002 $ | $ 2253.6396 $ |
$ (h, H) $ | $ \|y-y^h\| $ | $ \|p-p^h\| $ | $ CPU $ $ time\ (s) $ |
$ (\frac{1}{4}, \frac{1}{2}) $ | $ 0.1059 $ | $ 0.0853 $ | $ 0.4335 $ |
$ (\frac{1}{16}, \frac{1}{4}) $ | $ 0.0056 $ | $ 0.0043 $ | $ 5.0842 $ |
$ (\frac{1}{64}, \frac{1}{8}) $ | $ 0.0006 $ | $ 0.0002 $ | $ 1027.9740 $ |
$ h $ | $ \|y-y_h\|_1 $ | $ \|p-p_h\|_1 $ | $ \|u-u_h\| $ | $ CPU $ $ time\ (s) $ |
$ \frac{1}{4} $ | $ 1.6604 $ | $ 1.1385 $ | $ 0.1358 $ | $ 0.4720 $ |
$ \frac{1}{16} $ | $ 0.6187 $ | $ 0.2143 $ | $ 0.0367 $ | $ 0.6320 $ |
$ \frac{1}{64} $ | $ 0.1687 $ | $ 0.0578 $ | $ 0.0090 $ | $ 24.0800 $ |
$ (h, H) $ | $ \|y-y^h\|_1 $ | $ \|p-p^h\|_1 $ | $ \|u-u^h\| $ | $ CPU $ $ time\ (s) $ |
$ (\frac{1}{4}, \frac{1}{2}) $ | $ 1.6755 $ | $ 1.1375 $ | $ 0.0988 $ | $ 0.2880 $ |
$ (\frac{1}{16}, \frac{1}{4}) $ | $ 0.6288 $ | $ 0.2142 $ | $ 0.0346 $ | $ 0.3870 $ |
$ (\frac{1}{64}, \frac{1}{8}) $ | $ 0.1716 $ | $ 0.0579 $ | $ 0.0089 $ | $ 7.3120 $ |
$ h $ | $ \|y-y_h\| $ | $ \|p-p_h\| $ | $ CPU $ $ time\ (s) $ |
$ \frac{1}{4} $ | $ 0.1095 $ | $ 0.0856 $ | $ 0.7031 $ |
$ \frac{1}{16} $ | $ 0.0079 $ | $ 0.0045 $ | $ 8.8702 $ |
$ \frac{1}{64} $ | $ 0.0005 $ | $ 0.0002 $ | $ 2253.6396 $ |
$ (h, H) $ | $ \|y-y^h\| $ | $ \|p-p^h\| $ | $ CPU $ $ time\ (s) $ |
$ (\frac{1}{4}, \frac{1}{2}) $ | $ 0.1059 $ | $ 0.0853 $ | $ 0.4335 $ |
$ (\frac{1}{16}, \frac{1}{4}) $ | $ 0.0056 $ | $ 0.0043 $ | $ 5.0842 $ |
$ (\frac{1}{64}, \frac{1}{8}) $ | $ 0.0006 $ | $ 0.0002 $ | $ 1027.9740 $ |
$ h $ | $ \|y-y_h\|_1 $ | $ \|p-p_h\|_1 $ | $ \|u-u_h\| $ | $ CPU $ $ time\ (s) $ |
$ \frac{1}{4} $ | $ 1.6604 $ | $ 1.1385 $ | $ 0.1358 $ | $ 0.4720 $ |
$ \frac{1}{16} $ | $ 0.6187 $ | $ 0.2143 $ | $ 0.0367 $ | $ 0.6320 $ |
$ \frac{1}{64} $ | $ 0.1687 $ | $ 0.0578 $ | $ 0.0090 $ | $ 24.0800 $ |
$ (h, H) $ | $ \|y-y^h\|_1 $ | $ \|p-p^h\|_1 $ | $ \|u-u^h\| $ | $ CPU $ $ time\ (s) $ |
$ (\frac{1}{4}, \frac{1}{2}) $ | $ 1.6755 $ | $ 1.1375 $ | $ 0.0988 $ | $ 0.2880 $ |
$ (\frac{1}{16}, \frac{1}{4}) $ | $ 0.6288 $ | $ 0.2142 $ | $ 0.0346 $ | $ 0.3870 $ |
$ (\frac{1}{64}, \frac{1}{8}) $ | $ 0.1716 $ | $ 0.0579 $ | $ 0.0089 $ | $ 7.3120 $ |