In this paper, we aim to establish a new class of weak Harnack inequalities for weak supersolutions to the nonhomogeneous nonlocal equations with general growth. Our approach mainly relies on the expansion of positivity in the spirit of De Giorgi classes, along with a refined energy estimate.
Citation: Qi Xue, Ruofang Yang, Chao Zhang. Weak Harnack inequality for the nonhomogeneous nonlocal equations with general growth[J]. Mathematics in Engineering, 2025, 7(6): 695-712. doi: 10.3934/mine.2025029
In this paper, we aim to establish a new class of weak Harnack inequalities for weak supersolutions to the nonhomogeneous nonlocal equations with general growth. Our approach mainly relies on the expansion of positivity in the spirit of De Giorgi classes, along with a refined energy estimate.
| [1] |
P. Baroni, Riesz potential estimates for a general class of quasilinear equations, Calc. Var. Partial Differential Equations, 53 (2015), 803–846. https://doi.org/10.1007/s00526-014-0768-z doi: 10.1007/s00526-014-0768-z
|
| [2] |
V. Bögelein, F. Duzaar, N. Liao, G. Bisci, R. Servadei, Gradient regularity for $(s, p)$-harmonic functions, Calc. Var. Partial Differential Equations, 64 (2025), 253. https://doi.org/10.1007/s00526-025-03116-0 doi: 10.1007/s00526-025-03116-0
|
| [3] |
V. Bögelein, F. Duzaar, N. Liao, G. Bisci, R. Servadei, Regularity for the fractional $p$-Laplace equation, J. Funct. Anal., 289 (2025), 111078. https://doi.org/10.1016/j.jfa.2025.111078 doi: 10.1016/j.jfa.2025.111078
|
| [4] |
J. F. Bonder, A. Salort, H. Vivas, Global Hölder regularity for eigenfunctions of the fractional $g$-Laplacian, J. Math. Anal. Appl., 526 (2023), 127332. https://doi.org/10.1016/j.jmaa.2023.127332 doi: 10.1016/j.jmaa.2023.127332
|
| [5] |
L. Brasco, E. Lindgren, A. Schikorra, Higher Hölder regularity for the fractional $p$-Laplacian in the superquadratic case, Adv. Math., 338 (2018), 782–846. https://doi.org/10.1016/j.aim.2018.09.009 doi: 10.1016/j.aim.2018.09.009
|
| [6] |
S. S. Byun, K. Kim, A Hölder estimate with an optimal tail for nonlocal parabolic $p$-Laplace equations, Ann. Mat. Pura Appl., 203 (2024), 109–147. https://doi.org/10.1007/s10231-023-01355-6 doi: 10.1007/s10231-023-01355-6
|
| [7] |
S. S. Byun, H. Kim, J. Ok, Local Hölder continuity for fractional nonlocal equations with general growth, Math. Ann., 387 (2022), 807–846. https://doi.org/10.1007/s00208-022-02472-y doi: 10.1007/s00208-022-02472-y
|
| [8] |
S. S. Byun, H. Kim, K. Song, Nonlocal Harnack inequality for fractional elliptic equations with Orlicz growth, Bull. Lond. Math. Soc., 55 (2023), 2382–2399. https://doi.org/10.1112/blms.12869 doi: 10.1112/blms.12869
|
| [9] |
S. S. Byun, J. Ok, K. Song, Hölder regularity for weak solutions to nonlocal double phase problems, J. Math. Pures Appl., 168 (2022), 110–142. https://doi.org/10.1016/j.matpur.2022.11.001 doi: 10.1016/j.matpur.2022.11.001
|
| [10] |
M. Cozzi, Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: a unified approach via fractional De Giorgi classes, J. Funct. Anal., 272 (2016), 4762–4837. https://doi.org/10.1016/j.jfa.2017.02.016 doi: 10.1016/j.jfa.2017.02.016
|
| [11] |
C. De Filippis, G. Palatucci, Hölder regularity for nonlocal double phase equations, J. Differ. Equations, 267 (2019), 547–586. https://doi.org/10.1016/j.jde.2019.01.017 doi: 10.1016/j.jde.2019.01.017
|
| [12] |
A. Di Castro, T. Kuusi, G. Palatucci, Local behavior of fractional $p$-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1279–1299. https://doi.org/10.1016/j.anihpc.2015.04.003 doi: 10.1016/j.anihpc.2015.04.003
|
| [13] |
L. Diening, B. Stroffolini, A. Verde, Everywhere regularity of functionals with $\varphi$-growth, Manuscripta Math., 129 (2009), 449–481. https://doi.org/10.1007/s00229-009-0277-0 doi: 10.1007/s00229-009-0277-0
|
| [14] |
Y. Fang, C. Zhang, Harnack inequality for the nonlocal equations with general growth, Proc. Roy. Soc. Edinburgh: Sect. A Math., 153 (2023), 1479–1502. https://doi.org/10.1017/prm.2022.55 doi: 10.1017/prm.2022.55
|
| [15] |
P. Garain, E. Lindgren, Higher Hölder regularity for the fractional $p$-Laplace equation in the subquadratic case, Math. Ann., 390 (2024), 5753–5792. https://doi.org/10.1007/s00208-024-02891-z doi: 10.1007/s00208-024-02891-z
|
| [16] | E. Giusti, Direct methods in the calculus of variations, World Scientific Publishing Co., 2003. https://doi.org/10.1142/5002 |
| [17] |
A. Iannizzotto, S. Mosconi, M. Squassina, Global Hölder regularity for the fractional $p$-Laplacian, Rev. Mat. Iberoam., 32 (2016), 1353–1392. https://doi.org/10.4171/rmi/921 doi: 10.4171/rmi/921
|
| [18] |
M. Kassmann, A new formulation of Harnack's inequality for nonlocal operators, C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 637–640. https://doi.org/10.1016/j.crma.2011.04.014 doi: 10.1016/j.crma.2011.04.014
|
| [19] |
M. Kassmann, M. Weidner, Nonlocal operators related to nonsymmetric forms Ⅰ: Hölder estimates, Math. Ann., 393 (2025), 2307–2389. https://doi.org/10.1007/s00208-025-03237-z doi: 10.1007/s00208-025-03237-z
|
| [20] |
M. Kassmann, M. Weidner, Nonlocal operators related to nonsymmetric forms Ⅱ: Harnack inequalities, Anal. PDE, 17 (2024), 3189–3249. https://doi.org/10.2140/apde.2024.17.3189 doi: 10.2140/apde.2024.17.3189
|
| [21] |
M. Kassmann, M. Weidner, The parabolic Harnack inequality for nonlocal equations, Duke Math. J., 173 (2024), 3413–3451. https://doi.org/10.1215/00127094-2024-0008 doi: 10.1215/00127094-2024-0008
|
| [22] | M. Kim, S. C. Lee, Supersolutions and superharmonic functions for nonlocal operators with Orlicz growth, arXiv, 2023. https://doi.org/10.48550/arXiv.2311.01246 |
| [23] | N. Liao, Harnack estimates for nonlocal drift-diffusion equations, arXiv, 2024. https://doi.org/10.48550/arXiv.2402.11986 |
| [24] |
J. Ok, Regularity of $\omega$-minimizers for a class of functionals with non-standard growth, Calc. Var. Partial Differential Equations, 56 (2017), 48. https://doi.org/10.1007/s00526-017-1137-5 doi: 10.1007/s00526-017-1137-5
|
| [25] |
J. Zheng, B. Feng, Z. Zhang, Regularity of solutions to the $G$-Laplace equation involving measures, Z. Anal. Anwend., 34 (2015), 165–174. https://doi.org/10.4171/zaa/1534 doi: 10.4171/zaa/1534
|