We establish a Harnack inequality for weak solutions of nonlocal nonlinear equations in a disconnected region. The inequality compares the value of a solution on one connected component with that on another, capturing a purely nonlocal phenomenon with no local analogue. We provide three different approaches based on a new weak Harnack inequality, the Poisson formula and the localized maximum principle.
Citation: Se-Chan Lee. Nonlocal Harnack inequality in a disconnected region[J]. Mathematics in Engineering, 2025, 7(6): 678-694. doi: 10.3934/mine.2025028
We establish a Harnack inequality for weak solutions of nonlocal nonlinear equations in a disconnected region. The inequality compares the value of a solution on one connected component with that on another, capturing a purely nonlocal phenomenon with no local analogue. We provide three different approaches based on a new weak Harnack inequality, the Poisson formula and the localized maximum principle.
| [1] |
R. F. Bass, M. Kassmann, Harnack inequalities for non-local operators of variable order, Trans. Amer. Math. Soc., 357 (2005), 837–850. https://doi.org/10.1090/S0002-9947-04-03549-4 doi: 10.1090/S0002-9947-04-03549-4
|
| [2] |
R. F. Bass, M. Kassmann, Hölder continuity of harmonic functions with respect to operators of variable order, Commun. Part. Diff. Eq., 30 (2005), 1249–1259. https://doi.org/10.1080/03605300500257677 doi: 10.1080/03605300500257677
|
| [3] | A. Björn, J. Björn, M. Kim, Perron solutions and boundary regularity for nonlocal nonlinear Dirichlet problems, arXiv, 2024. https://doi.org/10.48550/arXiv.2406.05994 |
| [4] |
R. M. Blumenthal, R. K. Getoor, D. B. Ray, On the distribution of first hits for the symmetric stable processes, Trans. Amer. Math. Soc., 99 (1961), 540–554. https://doi.org/10.1090/S0002-9947-1961-0126885-4 doi: 10.1090/S0002-9947-1961-0126885-4
|
| [5] |
K. Bogdan, T. Kulczycki, A. Nowak, Gradient estimates for harmonic and $q$-harmonic functions of symmetric stable processes, Illinois J. Math., 46 (2002), 541–556. https://doi.org/10.1215/ijm/1258136210 doi: 10.1215/ijm/1258136210
|
| [6] | C. Bucur. Some observations on the Green function for the ball in the fractional Laplace framework, Commun. Pure Appl. Anal., 15 (2016), 657–699. https://doi.org/10.3934/cpaa.2016.15.657 |
| [7] |
S. S. Byun, H. Kim, J. Ok, Local Hölder continuity for fractional nonlocal equations with general growth, Math. Ann., 387 (2023), 807–846. https://doi.org/10.1007/s00208-022-02472-y doi: 10.1007/s00208-022-02472-y
|
| [8] |
L. Caffarelli, L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Commun. Pure Appl. Math., 62 (2009), 597–638. https://doi.org/10.1002/cpa.20274 doi: 10.1002/cpa.20274
|
| [9] |
L. Caffarelli, L. Silvestre, Regularity results for nonlocal equations by approximation, Arch. Rational Mech. Anal., 200 (2011), 59–88. https://doi.org/10.1007/s00205-010-0336-4 doi: 10.1007/s00205-010-0336-4
|
| [10] |
L. A. Caffarelli, Interior a priori estimates for solutions of fully non-linear equations, Ann. Math., 130 (1989), 189–213. https://doi.org/10.2307/1971480 doi: 10.2307/1971480
|
| [11] |
J. Chaker, M. Kim, M. Weidner, Harnack inequality for nonlocal problems with non-standard growth, Math. Ann., 386 (2023), 533–550. https://doi.org/10.1007/s00208-022-02405-9 doi: 10.1007/s00208-022-02405-9
|
| [12] |
Z. Q. Chen, P. Kim, R. Song, Heat kernel estimates for the Dirichlet fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1307–1329. https://doi.org/10.4171/jems/231 doi: 10.4171/jems/231
|
| [13] |
Z. Q. Chen, R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann., 312 (1998), 465–501. https://doi.org/10.1007/s002080050232 doi: 10.1007/s002080050232
|
| [14] | Z. Q. Chen, R. Song, A note on the Green function estimates for symmetric stable processes, In: Recent developments in stochastic analysis and related topics, 2004,125–135. https://doi.org/10.1142/9789812702241_0008 |
| [15] |
M. Cozzi, Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: a unified approach via fractional De Giorgi classes, J. Funct. Anal., 272 (2017), 4762–4837. https://doi.org/10.1016/j.jfa.2017.02.016 doi: 10.1016/j.jfa.2017.02.016
|
| [16] | E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., 3 (1957), 25–43. |
| [17] |
A. Di Castro, T. Kuusi, G. Palatucci, Nonlocal Harnack inequalities, J. Funct. Anal., 267 (2014), 1807–1836. https://doi.org/10.1016/j.jfa.2014.05.023 doi: 10.1016/j.jfa.2014.05.023
|
| [18] |
A. Di Castro, T. Kuusi, G. Palatucci, Local behavior of fractional $p$-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1279–1299. https://doi.org/10.1016/j.anihpc.2015.04.003 doi: 10.1016/j.anihpc.2015.04.003
|
| [19] |
E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
|
| [20] | X. Fernández-Real, X. Ros-Oton, Integro-differential elliptic equations, Vol. 350, Progress in Mathematics, Birkhäuser Cham, 2024. https://doi.org/10.1007/978-3-031-54242-8 |
| [21] |
A. Iannizzotto, S. J. N. Mosconi, M. Squassina, Global Hölder regularity for the fractional $p$-Laplacian, Rev. Mat. Iberoam., 32 (2016), 1353–1392. https://doi.org/10.4171/rmi/921 doi: 10.4171/rmi/921
|
| [22] | M. Kassmann, The classical Harnack inequality fails for non-local operators, preprint 360, Collaborative Research Center SFB 611, University of Bonn, 2007. |
| [23] |
M. Kassmann, Harnack inequalities: an introduction, Bound. Value Probl., 2007 (2007), 081415. https://doi.org/10.1155/2007/81415 doi: 10.1155/2007/81415
|
| [24] |
M. Kassmann, A priori estimates for integro-differential operators with measurable kernels, Calc. Var., 34 (2009), 1–21. https://doi.org/10.1007/s00526-008-0173-6 doi: 10.1007/s00526-008-0173-6
|
| [25] |
M. Kassmann, A new formulation of Harnack's inequality for nonlocal operators, C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 637–640. https://doi.org/10.1016/j.crma.2011.04.014 doi: 10.1016/j.crma.2011.04.014
|
| [26] |
M. Kassmann, M. Kim, K. A. Lee, Robust near-diagonal Green function estimates, Int. Math. Res. Not., 2023 (2023), 16957–16993. https://doi.org/10.1093/imrn/rnad106 doi: 10.1093/imrn/rnad106
|
| [27] |
M. Kassmann, M. Weidner, The parabolic Harnack inequality for nonlocal equations, Duke Math. J., 173 (2024), 3413–3451. https://doi.org/10.1215/00127094-2024-0008 doi: 10.1215/00127094-2024-0008
|
| [28] |
M. Kim, K. A. Lee, S. C. Lee, Wolff potential estimates and Wiener criterion for nonlocal equations with Orlicz growth, J. Funct. Anal., 288 (2025), 110690. https://doi.org/10.1016/j.jfa.2024.110690 doi: 10.1016/j.jfa.2024.110690
|
| [29] | M. Kim, S. C. Lee, Supersolutions and superharmonic functions for nonlocal operators with Orlicz growth, arXiv, 2023. https://doi.org/10.48550/arXiv.2311.01246 |
| [30] | M. Kim, S. C. Lee, Singularities of solutions of nonlocal nonlinear equations, arXiv, 2024. https://doi.org/10.48550/arXiv.2410.13292 |
| [31] | M. Kim, S. C. Lee, Liouville theorem for singular solutions to nonlocal equations, arXiv, 2025. https://doi.org/10.48550/arXiv.2507.09587 |
| [32] | M. Kim, M. Weidner, Optimal boundary regularity and Green function estimates for nonlocal equations in divergence form, arXiv, 2024. https://doi.org/10.48550/arXiv.2408.12987 |
| [33] | P. Kim, A. Mimica, Green function estimates for subordinate Brownian motions: stable and beyond, Trans. Amer. Math. Soc., 366 (2014), 4383–4422. |
| [34] |
J. Korvenpää, T. Kuusi, G. Palatucci, The obstacle problem for nonlinear integro-differential operators, Calc. Var., 55 (2016), 63. https://doi.org/10.1007/s00526-016-0999-2 doi: 10.1007/s00526-016-0999-2
|
| [35] |
J. Korvenpää, T. Kuusi, G. Palatucci, Fractional superharmonic functions and the Perron method for nonlinear integro-differential equations, Math. Ann., 369 (2017), 1443–1489. https://doi.org/10.1007/s00208-016-1495-x doi: 10.1007/s00208-016-1495-x
|
| [36] | N. V. Krylov, M. V. Safonov, An estimate for the probability of a diffusion process hitting a set of positive measure, Dokl. Akad. Nauk SSSR, 245 (1979), 18–20. |
| [37] | N. V. Krylov, M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980), 345–361. |
| [38] | N. S. Landkof, Foundations of modern potential theory, Vol. 180, Springer-Verlag, 1972. |
| [39] | N. Liao, Harnack estimates for nonlocal drift-diffusion equations, arXiv, 2024. https://doi.org/10.48550/arXiv.2402.11986 |
| [40] |
E. Lindgren, Hölder estimates for viscosity solutions of equations of fractional $p$-Laplace type, Nonlinear Differ. Equ. Appl., 23 (2016), 55. https://doi.org/10.1007/s00030-016-0406-x doi: 10.1007/s00030-016-0406-x
|
| [41] | E. Lindgren, P. Lindqvist, Fractional eigenvalues, Calc. Var., 49 (2014), 795–826. https://doi.org/10.1007/s00526-013-0600-1 |
| [42] |
J. Moser, A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 13 (1960), 457–468. https://doi.org/10.1002/cpa.3160130308 doi: 10.1002/cpa.3160130308
|
| [43] |
J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math., 14 (1961), 577–591. https://doi.org/10.1002/cpa.3160140329 doi: 10.1002/cpa.3160140329
|
| [44] |
J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., 80 (1958), 931–954. https://doi.org/10.2307/2372841 doi: 10.2307/2372841
|
| [45] |
J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math., 111 (1964), 247–302. https://doi.org/10.1007/BF02391014 doi: 10.1007/BF02391014
|
| [46] |
N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Commun. Pure Appl. Math., 20 (1967), 721–747. https://doi.org/10.1002/cpa.3160200406 doi: 10.1002/cpa.3160200406
|