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1. Introduction

Let Ω ⊂ RN(N ≥ 2) be a bounded domain. In this paper, we consider the following nonlinear
nonlocal equations with general growth

Lu = f (x, u) in Ω (1.1)

with

Lu(x) := P.V.
∫
RN

g
(
|u(x) − u(y)|
|x − y|s

)
u(x) − u(y)
|u(x) − u(y)|

K(x, y)
|x − y|s

dy,

where P.V. stands for “in the principal value sense”, s ∈ (0, 1) and the kernel K : RN × RN → (0,∞] is
a measurable function fulfilling

λ

|x − y|N
≤ K(x, y) = K(y, x) ≤

Λ

|x − y|N
(1.2)
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for some Λ ≥ λ > 0. Moreover, the continuous function g : [0,∞) → [0,∞) is strictly increasing
satisfying g(0) = 0, limt→∞ g(t) = ∞ and

1 < p ≤
tg(t)
G(t)

≤ q < ∞ with G(t) =

∫ t

0
g(τ)dτ, (1.3)

where the conditions on G will be introduced in Section 2 in detail. The nonhomogeneous term f
satisfies

| f (x, u)| ≤ d1 + d2g(|u|) for a.a. x ∈ Ω and u ∈ R,

with some fixed positive constants d1 and d2.
Equation (1.1) is regarded as the nonlocal nonhomogeneous analogue of the G-Laplace equation,

which is typically defined as

− div
(
g(|∇u|)

∇u
|∇u|

)
= 0.

Such equations have been widely studied over the past years, and we refer the readers to [1, 13, 14, 22,
24, 25] and references therein for related results. In the special case g(t) = tp−1 and K = |x − y|−N , the
operator L in (1.1) can also be represented by (−∆)s

p, which is called fractional p-Laplacian, see [6,18]
for instance. Regarding the regularity theory for this class of problems, Di Castro et al. [12] investigated
local boundedness and Hölder continuity using the De Giorgi-Nash-Moser iteration; see also [10]
for similar results derived with the aid of fractional De Giorgi classes. Recently, Liao [23] proved
weak Harnack estimates for the nonlocal p-Laplace equation, which exhibit strong nonlocality. For
nonlocal parabolic equations, Kassmann and Weidner [21] established the Hölder regularity and a
Harnack inequality with tail terms appearing on both sides. The nonlocal operators characterized by
nonsymmetric forms can be found in [19, 20].

In terms of the higher regularity theory, Brasco, Lindgren and Schikorra [5] provided an explicit
Hölder exponent for solutions of the fractional p-Laplacian equation in the superquadratic case, while
the subquadratic case was studied by Garain-Lindgren in [15]. In [17], Cα-regularity up to the boundary
for weak solutions of the fractional p-Laplacian equation was proved by Iannizzotto, Mosconi and
Squassina using barrier arguments. Very recently, the authors in [2, 3] showed that the (s, p)-harmonic
functions have fractional differentiability of the gradient with the restriction of order s.

When g(·) has a general structure, Fang and the third author [14] employed the expansion of
positivity and energy estimates to establish a Harnack inequality. Later, Byun et al. [8] provided a
more simplified proof to obtain the Harnack inequality, under no assumptions on G other than (1.3);
see also [4, 7, 22] for further regularity results. Coming to the nonlocal double phase structure, De
Filippis and Palatucci [11] proved the Hölder regularity for the viscosity solutions and Byun, Ok and
Song [9] showed that weak solutions are locally bounded and Hölder continuous.

This paper aims to establish weak Harnack inequalities for the nonhomogeneous nonlocal equations
with general growth. Inspired by the results mentioned above, we use the expansion of positivity, which
describes the propagation of pointwise positivity based on measure information. Our approach mainly
relies on an energy estimate that accounts for the influence of the nonhomogeneous term. Unlike
typical weak Harnack inequalities that display the nonlocal tail only on one side, our result takes into
account the feature of nonlocal terms on the positive and negative parts of the weak solutions at both
sides of the inequality.
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We introduce the following tail space

Lg
s(R

N) =

{
u is a measurable function in RN :

∫
RN

g
(
|u(x)|

(1 + |x|)s

)
dx

(1 + |x|)N+s < ∞

}
.

The nonlocal tail of u is defined as

Tail(u; BR(x0)) =

∫
RN\BR(x0)

g
(
|u(x)|
|x − x0|

s

)
dx

|x − x0|
N+s .

It is known from [7] that u ∈ Lg
s(RN) if and only if Tail(u; BR(x0)) is finite for any x0 ∈ R

N and R > 0.
Set

u+ = max{u, 0} and u− = max{−u, 0}.

Now, we proceed to state our main results, which highlight the positivity contribution arising from
the long-range characteristics of the supersolution to Eq (1.1).

Theorem 1.1. Let R ∈ (0, 1] and B2r(x0) ⊂ BR(x0). Suppose that u ∈ Ws,G(Ω), satisfying u ≥ 0 in
BR(x0) ⊂ Ω, is a weak supersolution to Eq (1.1). Then there exists a constant η ∈ (0, 1) depending only
on s,N, p, q, λ,Λ, d2, such that

ess inf
B r

2
(x0)

u + rsg−1 (rs Tail (u−; BR (x0))) + rsG−1G∗ (d1rs)

≥ ηrsg−1 (rs Tail (u+; Br (x0))) .

We also derive a weak Harnack estimate similar to the result in [22, Theorem 3.4]. However, our
approach primarily relies on energy estimates rather than the Moser iteration employed in [22].

Theorem 1.2. Let R ∈ (0, 1] and B2r(x0) ⊂ BR(x0). Suppose that u ∈ Ws,G(Ω), satisfying u ≥ 0 in
BR(x0) ⊂ Ω, is a weak supersolution to Eq (1.1). Then there exists a constant η ∈ (0, 1) depending only
on s,N, p, q, λ,Λ, d2, such that

ess inf
B r

2
(x0)

u + rsg−1 (rs Tail(u−; BR(x0))) + rsG−1G∗(d1rs) ≥ ηrsg−1
(
−

∫
Br(x0)

g
(
u(x)
rs

)
dx

)
.

The article is organized as follows. In Section 2, several basic concepts, inequalities, and function
spaces are introduced. In Section 3, we establish an energy estimate that makes an effort to obtain
the expansion of positivity and density lemmas in Section 4. Finally, we prove the weak Harnack
inequalities in Section 5.

2. Preliminaries

In this section, we shall introduce the definition of weak solutions and function spaces related to
solutions and give some basic inequalities to be used later.

Let Br(x0) = {x ∈ RN : |x − x0| < r} be an open ball with center x0 and radius r > 0, and center x0

will be omitted when there is no ambiguity. A measurable function G : [0,∞) → [0,∞) is said to be
an N-function if it is convex and increasing, and satisfies

G(0) = 0, lim
t→0+

G(t)
t

= 0 and lim
t→∞

G(t)
t

= ∞.
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For an N-function G : [0,∞)→ [0,∞), whose conjugate function G∗ : [0,∞)→ [0,∞) is defined by

G∗(t) = sup
τ≥0
{τt −G(τ)}.

From the relation (1.3), we immediately deduce several inequalities to be utilized later.

(a) For t ∈ [0,∞), a ∈ (0, 1) and c = p1/(q−1)/q1/(p−1),
aqG(t) ≤ G(at) ≤ apG(t), a

1
p G−1(t) ≤ G−1(at) ≤ a

1
q G−1(t),

p
q

aq−1g(t) ≤ g(at) ≤
q
p

ap−1g(t), ca
1

p−1 g−1(t) ≤ g−1(at) ≤ ca
1

q−1 g−1(t),
(2.1)

and for t ∈ [0,∞), a ∈ (1,∞),
apG(t) ≤ G(at) ≤ aqG(t), a

1
q G−1(t) ≤ G−1(at) ≤ a

1
p G−1(t),

q
p

ap−1g(t) ≤ g(at) ≤
p
q

aq−1g(t), ca
1

q−1 g−1(t) ≤ g−1(at) ≤ ca
1

p−1 g−1(t).
(2.2)

(b) The Young inequality with ε ∈ (0, 1]:

tτ ≤ ε1−qG(t) + εG∗(τ), t, τ ≥ 0. (2.3)

(c) For t, τ ≥ 0,
G∗(g(t)) ≤ (q − 1)G(t), (2.4)

and
2−1(G(t) + G(τ)) ≤ G(t + τ) ≤ 2q−1(G(t) + G(τ)). (2.5)

Before giving the definition of weak solutions, we shall introduce the notion of Orlicz-Sobolev
space. Providing that N-function G satisfies the condition (1.3), the Orlicz space LG(Ω) is described as

LG(Ω) =

{
u is measurable function in Ω :

∫
Ω

G(|u(x)|) dx < ∞
}
.

The norm of the above space is

‖u‖LG(Ω) = inf
{
λ > 0:

∫
Ω

G
(u(x)
λ

)
dx ≤ 1

}
.

We next introduce the fractional Orlicz-Sobolev space W s,G(Ω)

W s,G(Ω) =

{
u ∈ LG(Ω) :

∫
Ω

∫
Ω

G
(
|u(x) − u(y)|
|x − y|s

)
dx dy
|x − y|N

< ∞

}
,

equipped with the norm
‖u‖W s,G(Ω) = ‖u‖LG(Ω) + [u]W s,G(Ω),
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where the semi-norm is defined as

[u]W s,G(Ω) = inf
{
λ > 0:

∫
Ω

∫
Ω

G
( |u(x) − u(y)|
λ|x − y|s

) dx dy
|x − y|N

≤ 1
}
.

For measurable function u in RN , we define

Ws,G(Ω) =

{
u|Ω ∈ LG(Ω) :

"
CΩ

G
( |u(x) − u(y)|
|x − y|s

) dx dy
|x − y|N

< ∞

}
,

where CΩ D (Ω × RN) ∪ (RN ×Ω).
The definition of weak solutions to Eq (1.1) is provided as follows.

Definition 2.1. A measurable function u ∈ Ws,G(Ω) is a weak supersolution(subsolution) of Eq (1.1),
if "

CΩ

g
(
|u(x) − u(y)|
|x − y|s

)
u(x) − u(y)
|u(x) − u(y)|

(ϕ(x) − ϕ(y))
K(x, y)
|x − y|s

dx dy ≥ (≤)
∫

Ω

f (x, u(x))ϕ(x) dx, (2.6)

for all non-negative functions ϕ ∈ Ws,G(Ω) with compact support in Ω. And u is said to be a weak
solution if and only if it is a weak supersolution and a weak subsolution.

3. Energy estimate

We will establish an energy estimate that accounts for the impact of the inhomogeneous term.

Proposition 3.1. Assume that u is a weak supersoution to (1.1), then there exists a constant γ∗ > 0
depending only on s, p, q,N, d2, λ,Λ, such that for any Br(x0) ⊂ BR(x0) ⊂ Ω (R < 1) and any k ∈ R,∫

Br

∫
Br

G
(
|ω−(x) − ω−(y)|
|x − y|s

)
dx dy
|x − y|N

+

∫
Br

ω−(x)
∫
RN

g
(
ω+(y)
|x − y|s

)
dy dx
|x − y|N+s

≤ γ∗

[
G∗(d1Rs) + G

(
k
Rs

)]
|A−(k,R)| + γ∗

Rq

(R − r)q

∫
Br

G
(
ω−(x)

Rs

)
dx

+ γ∗
RN+sq

(R − r)N+sq ‖ω−‖L1(BR) Tail(ω−; BR(x0)),

where ω− = (u − k)− and A−(k,R) = {x ∈ BR : u(x) ≤ k}.

Proof. Assume x0 = 0 for simplicity. Let ω± = (u − k)±. Now we take a cutoff function η ∈ C∞0 (BR)
with 0 ≤ η ≤ 1, vanishing outside B r+R

2
and equal to 1 in Br, such that |∇η| ≤ 4

R−r . Now we select
ϕ := ηqω− as a test function in the weak formulation (2.6) to obtain that∫

RN
f (x, u(x))ϕ(x) dx

≤

∫
BR

∫
BR

g
(
|u(x) − u(y)|
|x − y|s

)
u(x) − u(y)
|u(x) − u(y)|

ϕ(x) − ϕ(y)
|x − y|s

K(x, y) dx dy

+ 2
∫
RN\BR

∫
BR

g
(
|u(x) − u(y)|
|x − y|s

)
u(x) − u(y)
|u(x) − u(y)|

ϕ(x)
|x − y|s

K(x, y) dx dy := I1 + I2. (3.1)
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Estimate of I1. If x, y < A−(k,R), then using the fact that suppϕ ⊂⊂ A−(k,R) we know

g
(
|u(x) − u(y)|
|x − y|s

)
u(x) − u(y)
|u(x) − u(y)|

ϕ(x) − ϕ(y)
|x − y|s

= 0. (3.2)

If x ∈ A−(k,R), y < A−(k,R), it holds that

g
(
|u(x) − u(y)|
|x − y|s

)
u(x) − u(y)
|u(x) − u(y)|

(ϕ(x) − ϕ(y)) = −ηq(x)ω−(x)g
(
ω−(x) + ω+(y)
|x − y|s

)
.

Due to the strictly increasing monotonicity of g, it follows that

g
(
ω−(x) + ω+(y)
|x − y|s

)
≥

1
2

[
g
(
ω−(x)
|x − y|s

)
+ g

(
ω+(y)
|x − y|s

)]
.

By (1.3), we get

g
(
|u(x) − u(y)|
|x − y|s

)
u(x) − u(y)
|u(x) − u(y)|

ϕ(x) − ϕ(y)
|x − y|s

≤ −
p
2
ηq(x)G

(
ω−(x)
|x − y|s

)
−

1
2
ηq(x)

ω−(x)
|x − y|s

g
(
ω+(y)
|x − y|s

)
≤ −

p
2

min{ηq(x), ηq(y)}G
(
|ω−(x) − ω−(y)|
|x − y|s

)
−

1
2

min{ηq(x), ηq(y)}
ω−(x)
|x − y|s

g
(
ω+(y)
|x − y|s

)
. (3.3)

If x, y ∈ A−(k,R), we assume without loss of generality that k ≥ u(x) ≥ u(y). Therefore

g
(
|u(x) − u(y)|
|x − y|s

)
u(x) − u(y)
|u(x) − u(y)|

ϕ(x) − ϕ(y)
|x − y|s

= g
(
|ω−(x) − ω−(y)|
|x − y|s

)
ηq(x)ω−(x) − ηq(y)ω−(y)

|x − y|s
:= K.

Notice that, if η(x) ≤ η(y), we have

K ≤ −g
(
|ω−(x) − ω−(y)|
|x − y|s

)
|ω−(x) − ω−(y)|
|x − y|s

ηq(y)

≤ −pηq(y)G
(
|ω−(x) − ω−(y)|
|x − y|s

)
≤ −pG

(
|ω−(x) − ω−(y)|
|x − y|s

)
min{ηq(x), ηq(y)}.

If η(x) > η(y), then

K = −g
(
|ω−(x) − ω−(y)|
|x − y|s

)
|ω−(x) − ω−(y)|ηq(x)

|x − y|s

+ g
(
|ω−(x) − ω−(y)|
|x − y|s

)
ω−(y)(ηq(x) − ηq(y))

|x − y|s
:= K1 + K2.
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Using (1.3), we have

K1 ≤ −pηq(x)G
(
|ω−(x) − ω−(y)|
|x − y|s

)
. (3.4)

Considering the fact that ηq(x) − ηq(y) ≤ qηq−1(x)(η(x) − η(y)), we further compute

K2 ≤ qg
(
|ω−(x) − ω−(y)|
|x − y|s

)
ηq−1(x)

η(x) − η(y)
|x − y|s

ω−(y). (3.5)

Then, we apply (2.3) and (2.4) with ε = min
{

p
2q(q−1) ,

1
2q

}
to obtain that

g
(
|ω−(x) − ω−(y)|
|x − y|s

)
ηq−1(x)

η(x) − η(y)
|x − y|s

ω−(y)

≤ εG∗
(
g
(
|ω−(x) − ω−(y)|
|x − y|s

)
ηq−1(x)

)
+ γ(ε)G

(
η(x) − η(y)
|x − y|s

ω−(y)
)

≤
p

2q
G

(
|ω−(x) − ω−(y)|
|x − y|s

)
ηq(x) + γ(p, q)G

(
η(x) − η(y)
|x − y|s

ω−(y)
)
. (3.6)

By means of (3.4)–(3.6), we finally derive

g
(
|u(x) − u(y)|
|x − y|s

)
u(x) − u(y)
|u(x) − u(y)|

ϕ(x) − ϕ(y)
|x − y|s

≤ −
p
2

G
(
|ω−(x) − ω−(y)|
|x − y|s

)
min{ηq(x), ηq(y)}

+ γ(p, q)G
(
|η(x) − η(y)|
|x − y|s

max{ω−(x), ω−(y)}
)
. (3.7)

Utilizing (1.2), (3.2), (3.3) and (3.7) and considering the fact that η = 1 in Br, we derive"
BR×BR

g
(
|u(x) − u(y)|
|x − y|s

)
u(x) − u(y)
|u(x) − u(y)|

ϕ(x) − ϕ(y)
|x − y|s

K(x, y) dx dy

≤ γ(p, q,Λ)
"

BR×BR

G
(
|η(x) − η(y)|
|x − y|s

max{ω−(x), ω−(y)}
)

1
|x − y|N

dx dy

−
λp
2

"
Br×Br

G
(
|ω−(x) − ω−(y)|
|x − y|s

)
1

|x − y|N
dx dy

−
λ

2

"
Br×Br

ω−(x)
|x − y|N+s g

(
ω+(y)
|x − y|s

)
dx dy. (3.8)

Recalling that |∇η| ≤ 4
R−r , we may apply (2.2) and Mean Value Theorem to yield∫

BR

∫
BR

G
(
|η(x) − η(y)|
|x − y|s

max{ω−(x), ω−(y)}
)

1
|x − y|N

dx dy

≤ 2
∫

BR

∫
BR

G
(
|η(x) − η(y)|
|x − y|s

ω−(x)
)

1
|x − y|N

dx dy
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≤ 2
∫

BR

∫
BR

G
(
|∇η||x − y|
|x − y|s

ω−(x)
)

1
|x − y|N

dx dy

≤ 2
∫

BR

∫
BR

G
(

8R
R − r

(2R)s

|x − y|s
ω−(x)
(2R)s

)
1

|x − y|N
dx dy

≤ γ(N, s, p, q)
Rsq+q

(R − r)q

∫
BR

G
(
ω−(x)

Rs

) ∫
BR

1
|x − y|N+sq dy dx

≤ γ(N, s, p, q)
Rq

(R − r)q

∫
BR

G
(
ω−(x)

Rs

)
dx,

in which the penultimate inequality arises from the facts R
R−r > 1 and 2R

|x−y| > 1. Substituting the above
inequality into (3.8) shows that∫

BR

∫
BR

g
(
|u(x) − u(y)|
|x − y|s

)
u(x) − u(y)
|u(x) − u(y)|

ϕ(x) − ϕ(y)
|x − y|s

K(x, y) dx dy

≤ −
λp
2

∫
Br

∫
Br

G
(
|ω−(x) − ω−(y)|
|x − y|s

)
1

|x − y|N
dx dy

−
λ

2

∫
Br

∫
Br

ω−(x)
|x − y|N+s g

(
ω+(y)
|x − y|s

)
dx dy

+ γ(N, s, p, q,Λ)
Rq

(R − r)q

∫
BR

G
(
ω−(x)

Rs

)
dx. (3.9)

Next, we will deal with the second term on the right-hand side of (3.1).
Estimate of I2. We now turn our attention to the term integrated on BR × (RN \ BR).

2
∫

BR

ηq(x)ω−(x)
∫
RN\BR

g
(
|u(x) − u(y)|
|x − y|s

)
u(x) − u(y)
|u(x) − u(y)|

K(x, y)
|x − y|s

dy dx

≤ 2Λ

∫
A−(k, r+R

2 )
ω−(x)

∫
RN∩{u(y)<u(x)}\BR

g
(
|u(x) − u(y)|
|x − y|s

)
1

|x − y|N+s dy dx

− 2λ
∫

A−(k,r)
ω−(x)

∫
RN∩{u(y)≥u(x)}\BR

g
(
|u(x) − u(y)|
|x − y|s

)
1

|x − y|N+s dy dx

:= J1 − J2.

Given x ∈ B r+R
2

and y ∈ RN \ BR, we have |x − y| ≥ R−r
2R |y|. This together with (2.2) results in

J1 ≤ 2Λ

∫
B r+R

2

ω−(x)
∫
RN\BR

g
(
ω−(y)
|y|s

(
2R

R − r

)s) 1
|y|N+s

(
2R

R − r

)N+s

dy dx

≤ γ(N, s, p, q,Λ)
RN+sq

(R − r)N+sq

∫
B r+R

2

ω−(x)
∫
RN\BR

g
(
ω−(y)
|y|s

)
1
|y|N+s dy dx

≤ γ(N, s, p, q,Λ)
RN+sq

(R − r)N+sq ‖ω−(x)‖L1(BR) Tail(ω−; BR). (3.10)

It’s easy to check that
{u(y) ≥ k} ⊂ {u(y) ≥ u(x)},
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which leads to

J2 ≥ 2λ
∫

Br

ω−(x)
∫
RN∩A+(k)\BR

g
(
ω+(y) + ω−(x)
|x − y|s

)
1

|x − y|N+s dy dx

≥ 2λ
∫

Br

ω−(x)
∫
RN∩A+(k)\BR

g
(
ω+(y)
|x − y|s

)
1

|x − y|N+s dy dx

= 2λ
∫

Br

ω−(x)
∫
RN\BR

g
(
ω+(y)
|x − y|s

)
1

|x − y|N+s dy dx, (3.11)

where A+(k) = {x ∈ RN : u(x) ≥ k}. Here, to obtain the last line we use the fact that ω+(y) = 0, while
y < RN ∩ A+(k). It follows from (3.10) and (3.11) that∫

BR

∫
RN\BR

g
(
|u(x) − u(y)|
|x − y|s

)
u(x) − u(y)
|u(x) − u(y)|

ϕ(x) − ϕ(y)
|x − y|N+s dx dy

≤ γ(N, s, p, q,Λ)
RN+sq

(R − r)N+sq ‖ω−(x)‖L1(BR) Tail(ω−; BR)

− γ(N, s, p, q, λ)
∫

Br

ω−(x)
∫
RN\BR

g
(
ω+(y)
|x − y|s

)
1

|x − y|N+s dy dx. (3.12)

To finish the proof, we shall estimate the term on the left-hand side of (3.1). Recalling the property
of f (x, u(x)), we get∫

RN
| f (x, u(x))|ϕ(x) dx ≤

∫
A−(k, r+R

2 )

(
d1 + d2g(|u(x)|)

)
ηq(x)ω−(x) dx. (3.13)

For the first term of the inequality above, we may apply the Young inequality (2.3) with

ε =

( R
R − r

) q
1−q

< 1,

to obtain ∫
A−(k, r+R

2 )
d1η

q(x)ω−(x) dx

≤

( R
R − r

) q
1−q

G∗(d1Rs)|A−(k,R)| +
( R
R − r

)q ∫
BR

G
(
ω−(x)

Rs

)
dx. (3.14)

For the second term of the inequality (3.13), we notice that if x ∈ A−(k)

g(|u(x)|) = g(|ω−(x) − k|) ≤ g(ω−(x) + k) ≤ γ(p, q)g(ω−(x)) + γ(p, q)g(k),

then ∫
A−(k, r+R

2 )
d2g(|u(x)|)ηq(x)ω−(x) dx

≤ γ(N, s, p, q)
∫

A−(k, r+R
2 )
ηqd2

[
g(ω−(x))ω−(x) + g(k)ω−(x)

]
dx

≤ γ(N, s, p, q, d2)
[( R

R − r

)q ∫
BR

G
(
ω−(x)

Rs

)
dx + G

(
k
Rs

)
|A−(k,R)|

]
, (3.15)

where we use (2.3), (2.4) and the fact that R < 1. By putting together (3.9), (3.12), (3.14) and (3.15)
and adjusting the constants, we finally complete the proof. �
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4. Density lemma

The following lemma shows the spread of pointwise positivity in space.

Lemma 4.1. Let k ≥ 0 and R ≤ 1 be parameters. Assume that u is a supersolution of (1.1), nonnegative
in BR (x0) ⊂ Ω. Then there exists a constant ν ∈ (0, 1) depending only on the data s, p, q,N, d1, d2, λ,Λ,
such that if

|{u ≤ k} ∩ Br (x0)| ≤ ν |Br (x0)| ,

then either
rsg−1 (rs Tail (u−; BR (x0))) + rsG−1G∗ (d1rs) > k,

or
u ≥

1
2

k, ∀x ∈ B 1
2 r (x0) ,

where Br (x0) ⊂ BR (x0).

Proof. Without loss of generality, we suppose x0 = 0 and

rsg−1 (rs Tail(u−; BR)) + rsG−1G∗(d1rs) ≤ k. (4.1)

For all n ∈ N0, set 

kn =
k
2

+
k

2n+1 ,

rn =
r
2

+
r

2n+1 , r̃n =
rn + rn+1

2
,

r̂n =
3rn + rn+1

4
, rn =

rn + 3rn+1

4
,

Bn = Brn , B̃n = Br̃n , B̂n = Br̂n , Bn = Brn .

Observe that Bn+1 ⊂ Bn ⊂ B̃n ⊂ B̂n ⊂ Bn. Now we take a cutoff function φ in Bn, vanishing outside B̂n,
and equal to the identity in B̃n, such that

|Dφ| ≤
2n

r
.

Selecting k = kn, Br = B̃n and BR = Bn, we can make use of the energy estimate of Proposition 3.1. As
a result, we have ∫

Bn+1

∫
Bn+1

G
(
|ω−(x) − ω−(y)|
|x − y|s

)
dx dy
|x − y|N

≤ γ∗
[
G∗(d1rs) + G

(kn

rs

)]
|Bn ∩ {u < kn}| + γ∗

rq
n

(rn − r̃n)q

∫
Bn

G
(ω−(x)

rs
n

)
dx

+ γ∗
rN+sq

n

(rn − r̃n)N+sq ‖ω−‖L1(Bn) Tail(ω−; Bn), (4.2)

where ω− = (u−kn)−. Firstly, we shall focus on estimating the first term on the right-hand side of (4.2).
Recalling (4.1) that rsG−1G∗(d1rs) ≤ k, we arrive that[

G∗(d1rs) + G
(
kn

rs

)]
|Bn ∩ {u < kn}| ≤ γ(p, q)G

(
kn

rs

)
|Bn ∩ {u < kn}|. (4.3)
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From the definitions of rn and r̃n, there holds

rn

rn − r̃n
= 2n+2 + 4.

Consequently, we estimate the second term as

rq
n

(rn − r̃n)q

∫
Bn

G
(ω−(x)

rs
n

)
dx ≤ γ(p, q)2nq

∫
Bn

G
(
ω−(x)

rs

)
dx

≤ γ(p, q)2nqG
(
kn

rs

)
|Bn ∩ {u < kn}|. (4.4)

The last term in (4.2) shall be estimated as follows. An application of (2.5) and (1.3) gives that

g
(

kn + u−
|x0 − y|s

)
≤

q2q−1

p

[
g
(

kn

|x0 − y|s

)
+ g

(
u−(y)
|x0 − y|s

)]
.

We further get

rN+sq
n

(rn − r̃n)N+sq ‖ω−‖L1(Bn) Tail(ω−; Bn)

≤ γ(p, q)2n(N+sq)kn|Bn ∩ {u < kn}|

∫
RN\Bn

g
(
kn + u−(y)
|x0 − y|s

)
dy

|x0 − y|N+s

≤ γ(p, q)2n(N+sq)kn|Bn ∩ {u < kn}|

∫
RN\Bn

[
g
(
kn

rs
n

)
+ g

(
u−(y)
|x0 − y|s

)]
dy

|x0 − y|N+s

≤ γ(p, q)2n(N+sq)kn|Bn ∩ {u < kn}|

[
r−sg

(
kn

rs

)
+ Tail(u−; BR)

]
.

By means of (1.3) and rsg−1(rs Tail(u−; BR)) ≤ k in (4.1), we arrive at

rN+sq
n

(rn − r̃n)N+sq ‖ω−‖L1(Bn) Tail(ω−; Bn) ≤ γ2n(N+sq)kn |Bn ∩ {u < kn}| r−sg
(kn

rs

)
. (4.5)

Combining (4.2)–(4.5), we can get∫
Bn+1

∫
Bn+1

G
(
|ω−(x) − ω−(y)|
|x − y|s

)
dx dy
|x − y|N

≤ γ2n(N+sq+q)G
(
kn

rs

)
|Bn ∩ {u < kn}|.

According to Lemma 4.1 in [7], there exists a constant θ > 1 depending only on N, s, such that[
−

∫
Bn+1

Gθ

(
|ω− − (ω−)Bn+1 |

rs
n+1

)
dx

] 1
θ

≤ γ−

∫
Bn+1

∫
Bn+1

G
(
|ω−(x) − ω−(y)|
|x − y|s

)
dx dy
|x − y|N

≤ γ2n(N+sq+q)G
(
kn

rs

)
|Bn ∩ {u < kn}|

|Bn|
.
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We further employ the Jensen inequality to get the following display

[
−

∫
Bn+1

Gθ

(
ω−
rs

n+1

)
dx

] 1
θ

≤ γ−

∫
Bn+1

G
(
ω−
rs

n+1

)
dx + γ

[
−

∫
Bn+1

Gθ

(
|ω− − (ω−)Bn+1 |

rs
n+1

)
dx

] 1
θ

.

Recall the definition of rn+1 with r
2 ≤ rn+1 ≤ r, then

Gθ

(
ω−
rs

n+1

)
≥ Gθ

(
kn − kn+1

rs
n+1

)
χ{u<kn+1} ≥ γ

′2−nqθGθ

(
kn

rs

)
χ{u<kn+1}.

It can be deduced that

γ2−nqG
(
kn

rs

) (
−

∫
Bn+1

χ{u<kn+1} dx
) 1
θ

≤ γ2n(N+sq+q)G
(
kn

rs

)
|Bn ∩ {u < kn}|

|Bn|
,

which means (
|Bn+1 ∩ {u < kn+1}|

|Bn+1|

) 1
θ

≤ γ2n(N+sq+2q) |Bn ∩ {u < kn}|

|Bn|
.

Denote

An :=
|Bn ∩ {u < kn}|

Bn
.

Then we have

An+1 ≤ γ2n(N+sq+2q)θAθ
n.

According to [16, Lemma 7.1], we have to make sure that

A0 =
|Br ∩ {u < k}|

|Br|
≤ γ

−1
θ−1 2−(N+sq+2q) θ

(θ−1)2

to obtain An → 0 as n→ ∞. Notice that

γ
−1
θ−1 2−(N+sq+2q) θ

(θ−1)2 < 1

and γ depending only on N, s, p, q, d2, λ,Λ, so there exists a constant ν ∈ (0, 1) depending on
N, s, p, q, d2, λ,Λ to justify the desired result

lim
n→∞

An = 0.

In other words, we draw a conclusion

u ≥
k
2

in B r
2
.

We now complete the proof. �
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5. Proof of main results

The following two lemmas apply the energy estimate to obtain two different measure density
inequalities, which play a key role in proving our main results, Theorems 1.1 and 1.2. The first lemma
shows that a measure shrinking inequality depends on a local integral associated with g.

Lemma 5.1. Let k ≥ 0 and R ≤ 1. Let u ∈ Ws,G(Ω) be a non-negative supersolution of (1.1) in
BR (x0) ⊂ Ω. There exists a constant γ1 > 1 depending only on s, p, q,N, d2, λ,Λ, such that either

rsg−1 (rs Tail (u−; BR (x0))) + rsG−1G∗ (d1rs) > k,

or

|{u ≤ k} ∩ Br (x0)| ≤
γ1 g

(
k
rs

)
−

∫
Br

g
( u(x)

rs

)
dx
|Br| ,

where B2r (x0) ⊂ BR (x0).

Proof. Without loss of generality, we suppose x0 = 0, and

rsg−1(rs Tail(u−; BR)) + rsG−1G∗(d1rs) ≤ k.

Apply the energy estimate Proposition 3.1 in Br ⊂ B2r to get∫
Br

ω−(x)
∫
RN

g
(
ω+(y)
|x − y|s

)
1

|x − y|N+s dy dx

≤ γ∗

∫
B2r

G
(
ω−(x)

rs

)
dx + γ∗‖ω−‖L1(B2r) Tail(ω−; B2r)

+ γ∗

[
G∗(d1rs) + G

(
k
rs

)]
|A−(k, 2r)|

≤ γG
(

k
rs

)
|Br| + γk|Br|Tail(ω−; B2r) + γG∗(d1rs)|Br|. (5.1)

According to the assumption rsg−1(rs Tail(u−; BR)) ≤ k, we can estimate the tail term as follows

Tail(ω−; B2r) =

∫
RN\B2r

g
(
ω−(x)
|x|s

)
1
|x|N+s dx

=

∫
BR\B2r

g
(
ω−(x)
|x|s

)
1
|x|N+s dx +

∫
RN\BR

g
(
ω−(x)
|x|s

)
1
|x|N+s dx

≤ γr−sg
(

k
rs

)
, (5.2)

where in the last inequality we note that, by (2.1),

g
(
ω−(x)
|x|s

)
≤

q
p

2(1−p)sg
(

k
rs

)
for all x ∈ B2r ⊂ BR.
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Due to (1.3), (5.2), and the assumption that rsG−1G∗(d1rs) ≤ k, (5.1) turns into∫
Br

ω−(x)
∫
RN

g
(
ω+(y)
|x − y|s

)
1

|x − y|N+s dy dx ≤ γ
k
rs g

(
k
rs

)
|Br|. (5.3)

In the following, we will focus on the left part of (5.3). From (1.3) and (2.5), we know

g
(

u+(y)
|x − y|s

)
≤ g

(
(u(y) − k)+ + k
|x − y|s

)
≤ γ(p, q)

[
g
(
ω+(y)
|x − y|s

)
+ g

(
k

|x − y|s

)]
.

Based on the above inequality, we can see∫
Br

ω−(x)
∫
RN

g
(
ω+(y)
|x − y|s

)
1

|x − y|N+s dy dx

≥

∫
Br

∫
Br

ω−(x)g
(
ω+(y)
|x − y|s

)
1

|x − y|N+s dy dx

≥ C
∫

Br

∫
Br

ω−(x)
|x − y|N+s

[
g
(

u(y)
|x − y|s

)
− g

(
k

|x − y|s

)]
dy dx

≥ Cr−(N+s)
∫

Br

∫
Br

ω−(x)g
(
u(y)
rs

)
dy dx − γ

k
rs g

(
k
rs

)
|Br|.

Combine this with (5.3) to reach∫
Br

ω−(x)−
∫

Br

g
(
u(y)
rs

)
dy dx ≤ γkg

(
k
rs

)
|Br|.

Noticing that ∫
Br

ω−(x) dx ≥
1
2

k|{u <
1
2

k} ∩ Br|,

we arrive that

|{u <
1
2

k} ∩ Br| ≤
γg

(
k
rs

)
−

∫
Br

g
(

u(x)
rs

)
dx
|Br|.

In this way, we complete our proof. �

The next lemma measures the shrinking set with a nonlocal integral.

Lemma 5.2. Let k ≥ 0 and 0 < R ≤ 1. Let u ∈ Ws,G(Ω) be a non-negative supersolution of (1.1) in
BR (x0) ⊂ Ω. There exists a constant γ2 > 1 depending only on s, p, q,N, d2, λ,Λ, such that either

rsg−1 (rs Tail (u−; BR (x0))) + rsG−1G∗ (d1rs) > k,

or

|{u ≤ k} ∩ Br (x0)| ≤
γ2 g

(
k
rs

)
rs Tail(u+; Br (x0))

|Br| ,

where B2r (x0) ⊂ BR (x0).
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Proof. Without sacrificing generality, we also assume that x0 = 0, and

rsg−1(rs Tail(u−; BR)) + rsG−1G∗(d1rs) ≤ k.

Using the similar proceed as in Lemma 5.1, we can get∫
Br

ω−(x)
∫
RN

g
(
ω+(y)
|x − y|s

)
1

|x − y|N+s dy dx ≤ γ
k
rs g

(
k
rs

)
|Br|, (5.4)

and

g
(

u+(y)
|x − y|s

)
≤ g

(
(u(y) − k)+ + k
|x − y|s

)
≤ C

[
g
(
ω+(y)
|x − y|s

)
+ g

(
k

|x − y|s

)]
.

Then, we know ∫
Br

ω−(x)
∫
RN

g
(
ω+(y)
|x − y|s

)
1

|x − y|N+s dy dx

≥

∫
Br

∫
RN\Br

ω−(x)g
(
ω+(y)
|x − y|s

)
1

|x − y|N+s dy dx

≥ C
∫

Br

∫
RN\Br

ω−(x)
(2|y|)N+s

[
g
(

u+(y)
(2|y|)s

)
− g

(
k

(2|y|)s

)]
dy dx

≥ C
∫

Br

∫
RN\Br

ω−(x)
|y|N+s g

(
u+(y)
|y|s

)
dy dx − γ

k
rs g

(
k
rs

)
|Br|.

Combine the above inequality and (5.4) to get∫
Br

∫
RN\Br

ω−(x)
|y|N+s g

(
u+(y)
|y|s

)
dy dx ≤ γ

k
rs g

(
k
rs

)
|Br|.

Besides, we can obtain the following result by the method of Lemma 5.2:∣∣∣∣∣∣
{

u <
1
2

k
}
∩ Br

∣∣∣∣∣∣ ≤ γg
(

k
rs

)
rs Tail(u+; Br)

|Br|.

Then the proof is complete. �

Finally, we present the proof of Theorems 1.1 and 1.2.

Proof of Theorems 1.1 and 1.2. For simplicity, we choose to omit the symbol x0. From Lemma 4.1,
we know there exists a constant ν ∈ (0, 1) depending only on s,N, p, q, λ,Λ, which means we shall
choose k1 and k2 to satisfy the following conditions

γ1g
(

k1
rs

)
−

∫
Br

g
(

u(x)
rs

)
dx
≤ ν and

γ2g
(

k2
rs

)
rs Tail(u+; Br)

≤ ν,

where γ1 and γ2 are determined by Lemmas 5.1 and 5.2. Utilizing the inequality (2.1), we can choose

k1 = rsg−1
[
ν

γ1
−

∫
Br

g
(
u(x)
rs

)
dx

]
≥ η1rsg−1

[
−

∫
Br

g
(
u(x)
rs

)]
,
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and

k2 = rsg−1
(
ν

γ2
rs Tail(u+; Br)

)
≥ η2rsg−1 (rs Tail(u+; Br)) ,

where η1 and η2 can be described respectively by

η1 = p1/(q−1)/q1/(p−1)
(
ν

γ1

) 1
p−1

and η2 = p1/(q−1)/q1/(p−1)
(
ν

γ2

) 1
p−1

.

It comes to us from Lemma 4.1 that for i = 1, 2, either

rsg−1(rs Tail(u−; BR)) + rsG−1G∗(d1rs) > ki,

or
u ≥

1
2

ki.

Therefore, the proof is finished. �

6. Conclusions

This paper establishes two weak Harnack inequalities for weak supersolutions to nonhomogeneous
nonlocal equations with general growth. Using the expansion of positivity and a refined energy
estimate, our results incorporate nonlocal tail terms for both the positive and negative parts of solutions
on both sides of the inequalities addressing strong nonlocality more comprehensively. These findings
advance the regularity theory of such nonlocal equations, and the preliminary energy and density
lemmas offer foundational tools for future related research.
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11. C. De Filippis, G. Palatucci, Hölder regularity for nonlocal double phase equations, J. Differ.
Equations, 267 (2019), 547–586. https://doi.org/10.1016/j.jde.2019.01.017

12. A. Di Castro, T. Kuusi, G. Palatucci, Local behavior of fractional p-minimizers, Ann. Inst. H.
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