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1. Introduction

Let Q ¢ RY(N > 2) be a bounded domain. In this paper, we consider the following nonlinear
nonlocal equations with general growth

Lu= f(x,u) inQ (1.1)
with
Lu(n) = P.V.f g(lu(x) —u(y)l) u(x) — u(y) K(x,y) dy.
RV x—yI* ) lu(x) — u@)|x - yI*

where P.V. stands for “in the principal value sense”, s € (0, 1) and the kernel K: RY x RN — (0, o0] is
a measurable function fulfilling

T < K(x,y) = K@,x) <

(1.2)

lx = y[¥
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for some A > 4 > 0. Moreover, the continuous function g: [0, 00) — [0, c0) is strictly increasing
satisfying g(0) = 0, lim,_,, g(¢) = oo and

18(1) : '
l<p<=—=<g<oo withG() = g(r)dr, (1.3)
G(1) 0
where the conditions on G will be introduced in Section 2 in detail. The nonhomogeneous term f

satisfies

lf(x,u) <d; +dyg(lul) foraa. xeQandueR,

with some fixed positive constants d; and d,.

Equation (1.1) is regarded as the nonlocal nonhomogeneous analogue of the G-Laplace equation,

which is typically defined as

. Vu
—div (g(quI)@) =0.

Such equations have been widely studied over the past years, and we refer the readers to [1, 13, 14,22,
24,25] and references therein for related results. In the special case g() = #*~' and K = |x — y|™", the
operator £ in (1.1) can also be represented by (—A)*, which is called fractional p-Laplacian, see [6, 18]
for instance. Regarding the regularity theory for this class of problems, Di Castro et al. [12] investigated
local boundedness and Holder continuity using the De Giorgi-Nash-Moser iteration; see also [10]
for similar results derived with the aid of fractional De Giorgi classes. Recently, Liao [23] proved
weak Harnack estimates for the nonlocal p-Laplace equation, which exhibit strong nonlocality. For
nonlocal parabolic equations, Kassmann and Weidner [21] established the Holder regularity and a
Harnack inequality with tail terms appearing on both sides. The nonlocal operators characterized by
nonsymmetric forms can be found in [19,20].

In terms of the higher regularity theory, Brasco, Lindgren and Schikorra [5] provided an explicit
Holder exponent for solutions of the fractional p-Laplacian equation in the superquadratic case, while
the subquadratic case was studied by Garain-Lindgren in [15]. In [17], C*-regularity up to the boundary
for weak solutions of the fractional p-Laplacian equation was proved by lannizzotto, Mosconi and
Squassina using barrier arguments. Very recently, the authors in [2, 3] showed that the (s, p)-harmonic
functions have fractional differentiability of the gradient with the restriction of order s.

When g(-) has a general structure, Fang and the third author [14] employed the expansion of
positivity and energy estimates to establish a Harnack inequality. Later, Byun et al. [8] provided a
more simplified proof to obtain the Harnack inequality, under no assumptions on G other than (1.3);
see also [4,7,22] for further regularity results. Coming to the nonlocal double phase structure, De
Filippis and Palatucci [11] proved the Holder regularity for the viscosity solutions and Byun, Ok and
Song [9] showed that weak solutions are locally bounded and Hoélder continuous.

This paper aims to establish weak Harnack inequalities for the nonhomogeneous nonlocal equations
with general growth. Inspired by the results mentioned above, we use the expansion of positivity, which
describes the propagation of pointwise positivity based on measure information. Our approach mainly
relies on an energy estimate that accounts for the influence of the nonhomogeneous term. Unlike
typical weak Harnack inequalities that display the nonlocal tail only on one side, our result takes into
account the feature of nonlocal terms on the positive and negative parts of the weak solutions at both
sides of the inequality.
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We introduce the following tail space

d
Lf(RN) = {u is a measurable function in R : fRN g ((llb-tk()lc))cll)s) I+ |J)CC|)N” < oo} .

The nonlocal tail of « is defined as

. |ua()| dx
Tail(u; Br(xp)) = f g( S) N+s*
RV\Br(xp) \IX — Xol*) |x = xol

It is known from [7] that u € L{(R") if and only if Tail(u; Bg(x,)) is finite for any x, € RY and R > 0.
Set

u, = max{u,0} and wu_ = max{—u,O0}.
Now, we proceed to state our main results, which highlight the positivity contribution arising from

the long-range characteristics of the supersolution to Eq (1.1).

Theorem 1.1. Let R € (0, 1] and B,,(xy) C Br(xy). Suppose that u € W*%(Q), satisfying u > 0 in
Br(xo) C Q, is a weak supersolution to Eq (1.1). Then there exists a constant n € (0, 1) depending only
ons,N,p,q,A, \,d,, such that

eBss(in)f u+ g~ (r* Tail (u_; Bg (x0))) + r*'G™'G" (d,r*)
r(Xo
2

> nrg”! (r* Tail (uy; B, (x0))) .

We also derive a weak Harnack estimate similar to the result in [22, Theorem 3.4]. However, our
approach primarily relies on energy estimates rather than the Moser iteration employed in [22].

Theorem 1.2. Let R € (0, 1] and B,,(xy) C Bg(xy). Suppose that u € W*%(Q), satisfying u > 0 in
Br(xo) C Q, is a weak supersolution to Eq (1.1). Then there exists a constant n € (0, 1) depending only
ons,N,p,q, A, \,d,, such that

essinf u + r'g™' (r° Tail(u_; Br(x0))) + r*'G™'G*(d\r*) > nrig™! (][ g (u(x)) dx) .
By (xo) Bo) \ 17

The article is organized as follows. In Section 2, several basic concepts, inequalities, and function
spaces are introduced. In Section 3, we establish an energy estimate that makes an effort to obtain
the expansion of positivity and density lemmas in Section 4. Finally, we prove the weak Harnack
inequalities in Section 5.

2. Preliminaries

In this section, we shall introduce the definition of weak solutions and function spaces related to
solutions and give some basic inequalities to be used later.

Let B.(x9) = {x € RY: |x — x| < r} be an open ball with center xy and radius r > 0, and center x,
will be omitted when there is no ambiguity. A measurable function G: [0, c0) — [0, o0) is said to be
an N-function if it is convex and increasing, and satisfies

G(0)=0, g%}@ =0 and lim@ = 00

t—oo
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For an N-function G: [0, c0) — [0, o), whose conjugate function G*: [0, c0) — [0, o0) is defined by

G*(t) = sup{tt — G(1)}.

7>0

From the relation (1.3), we immediately deduce several inequalities to be utilized later.

(a) For t € [0,00), a € (0,1) and ¢ = p'/=D/g"/P=D,

a’G(t) < G(at) < d’G(1), arG(1) < GV ar) < ar G (),
p

and for 7 € [0, ), a € (1, =),

a’G(t) < G(ar) < a’G(p), ai1G\(1) < G Nar) < arG\(0),

Lar1g(r) < gla) < La'g(r), cat g™\ (1) < g (ar) < carg™\(p).
p q

(b) The Young inequality with € € (0, 1]:
1T < €79G@) + €G* (1), t,T = 0.

(c) Fort,7 > 0,
G'(g(1) < (g - DG,

and
274G + G(1) < G(t + 1) < 29°HG@) + G(1)).

Partgry < glan) < Lar'g(r), carig (1) < g™\(ar) < cai g (o),
q p

2.1)

(2.2)

(2.3)

(2.4)

(2.5)

Before giving the definition of weak solutions, we shall introduce the notion of Orlicz-Sobolev
space. Providing that N-function G satisfies the condition (1.3), the Orlicz space L¢(Q) is described as

LO(Q) = {u is measurable function in Q: f G(lu(x)|)dx < oo} .
Q

The norm of the above space is

lull () = inf{2 > 0: fg G(@)dx <1}.

We next introduce the fractional Orlicz-Sobolev space W*(Q)

WS,G(Q) = {u € LG(Q); ffG(lu(X) - u(y)l) dxdy - Oo} ’
aJa x—y* Jlx=yV

equipped with the norm

||M||WS~G(Q) = ||M||LG(Q) + [u]WLG(Q)’
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where the semi-norm is defined as

. lu(x) — u(y)l\ dxdy }
ulws. =inf{A1>0: G <1;.
elweo@ { fgfg G oo
For measurable function u in RY, we define
- dxd
WHO(Q) = {mg e L9(Q): f f G0 Z 1l dxdy oo},
Co x—=yl* 7lx =yl

where Co -— (Q X RYYU RN x Q).
The definition of weak solutions to Eq (1.1) is provided as follows.

Definition 2.1. A measurable function u € W°(Q) is a weak supersolution(subsolution) of Eq (1.1),

if

- - K
I g('“(x) “fy)') I ) — )7 P dedy > () [ fruedr, 26)
Ca |x =yl |u(x) = u(y)| lx =yl Q

for all non-negative functions ¢ € W*%(Q) with compact support in Q. And u is said to be a weak
solution if and only if it is a weak supersolution and a weak subsolution.

3. Energy estimate

We will establish an energy estimate that accounts for the impact of the inhomogeneous term.

Proposition 3.1. Assume that u is a weak supersoution to (1.1), then there exists a constant y. > 0
depending only on s, p,q, N, d,, A, A\, such that for any B,(xy) C Bg(xp) C Q (R < 1) and any k € R,

ffG(lw-(X)—w-(y)l) dxdy +f“’—(x) g(w+(y)) dydx
B JB, lx = yI* lx—yIN s, gy \Jx =I5 Jx = y[Nts

K R4 w_(x)
<y |G @R + G )| A kR +y.—— | G d
Sy ( 1 ) (Rs)]| ( )l Y (R—i’)q ‘[Bvr ( RS ) o
N+sq
+ y*m”w_HLI(BR) Tall(w—, BR(-XO)),

where w_ = (u—k)_ and A_(k,R) = {x € Bg: u(x) < k}.

Proof. Assume xo = 0 for simplicity. Let w. = (u — k).. Now we take a cutoff function n € C;(Bg)
with 0 < 5 < 1, vanishing outside B and equal to 1 in B,, such that |Vn| < %. Now we select
¢ := nlw_ as a test function in the weak formulation (2.6) to obtain that

fR S u(0)p(x) dx

< f f g(lu(X) - M(y)l) u(x) — u(y) ¢x) — ¢(y) K(x.y)dxdy
Br VB

lx =yl ) u(x) —u@y)] |x=yP

+ 2f f g(W(x) - “(y)|) ult0 =uQ) ¢ g dedy = 1, + I, 3.1)
RM\Bg JBg lx — yI* lu(x) — uy)| |x — yl*
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Estimate of I;. If x,y ¢ A_(k, R), then using the fact that supp ¢ cC A_(k, R) we know

(Iu(x) - u(y)l) u(x) —u@) ¢(x) - () _ 0. (3.2)
lx=yI* ) lu(x) —u@)l |x =yl
Ifxe A_(k,R),y ¢ A_(k,R), it holds that
(lu(x) - ufy)l) u(x) B u(y) (QD(X) _ ‘,0()7)) — —nq(x)a)_(x)g ((U_(X) + LL);.()’)) )
|x =yl |e(x) — u(y)l lx =yl
Due to the strictly increasing monotonicity of g, it follows that
(w—(X) +w+(y)) 1 [ (w—(x)) ( w4 (y) )]
gl 12587 t& .
X =yl 27 \lx—yP lx =P
By (1.3), we get
(IM(X) - u(y)l) u(x) —uy) ¢(x) — ()
e =y ) luC) —ul lx =yl
< _Eﬂq(X)G( w—(x)s) _ lnq(x) w_(X)Sg( w+(y)s)
2 lx—yI°) 2 lx = yI°~ \lx =yl
< L mingyo. o)1 ("“‘(x) - “"(y)')
2 lx =P
- S minfC), ) ( -0 )S). (3.3)
2 lx = 1" \lx =yl

If x,y € A_(k, R), we assume without loss of generality that &k > u(x) > u(y). Therefore
(IM(X) - u(y)l) u(x) — u(y) o(x) —@(y)
=yl Jlu(x) —u)l  |x—yl°
_ g(|w_<x> - w_(y>|) 7w () — 1 Ow-() _
lx =yl x = yl* '

K.

Notice that, if (x) < n(y), we have

< ()

K < _g(lw-(X) - w—(y)l) lw-(x) — w-)

lx — y[* lx — yI*
< _pnq(y)G(lw-(x) - ws-(y)l)
lx =yl
< _pG(Iw-(X) —w-_(y)l
lx — yI*

) min{n?(x), n(y)}.

If n(x) > n(y), then

K = —g("”‘(x) - “’-(y>') () — I
|x - yls |.X — yls

+ g(lw_(x) —w_W\ w-(@(x) = n?(y)) =K + K;.
lx = y|* lx — yI*
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Using (1.3), we have

(3.4)

X, < _pnq(x)G(w_(x) - w_(y>|) |

|x =yl
Considering the fact that n%(x) — n7(y) < g7 (x)(n(x) — n(y)), we further compute

K < qg Iw-(X)—w‘—(\/)I 1y )77() n(y)
lx =P lx =P

w_(y). (3.5)

Then, we apply (2.3) and (2.4) with € = mln{ } to obtain that

2q(g-1)’ 2q

(|w_<x)—w_<y>|) IO I0), )
=P =P

< G (g(lw_(x) ~ ws-(y)l)nq_l (x)) YOG (n( X) = nfy) ) (y))
lx =yl lx =yl
P |lw-(x) = w_(y)| n(x) —n(y)
: TqG( = yF FEETER ))'

)nq(X) +¥(p, q)G( (3.6)

By means of (3.4)—(3.6), we finally derive

(IM(X) - u(y)l) u(x) — u(y) e(x) — @(y)
x—=yI* Jlux) —u()| |x—yI

P (lw_(x) - Ci_(y)l)min{nq(x),ﬂq(y)}
2 lx — I

+¥(p, q)G(ln(lx) '7|fy)|

Utilizing (1.2), (3.2), (3.3) and (3.7) and considering the fact that 7 = 1 in B,, we derive

ff . (lu(x) - M(y)l) u(x) — u(y) ¢(x) — () K(x,y)dxdy
BrXBpr

max{w-_(x), w_ (y)}) . (3.7)

=yl G = ul =l
() = 70| !
=) fBB ( x=f ma"{“"(x)"‘"(”}) o

= G(|w_<x>—w_<y>|) Lo
BB, =y -y

__ff w-(x) ( +(y))dxdy. (3.8)
B,xB, 1X — yIN” lx — yI*

Recalling that [Vyg| < =, we may apply (2.2) and Mean Value Theorem to yield

f f (In(x) no)| max{w_(x)’w_(y)}) . a
Bk J Bk lx = yl* |x — y[V

<2ff (In() no)l ()) dxdy
Br J B lx =yl lx — y[V
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< ff (Ianlx Yl ()) dxdy
Br J B lx — y[* lx — y[V
S8R (2R w_(v)\ 1
2 G dxd
: J;J; (R—rw—yP@RP)M—yW *dy

Rs1+4 w_(x) 1
=YD LR G( R? )fBR Joc =y by

R4 -
<¥(N,s,p.q) R fB G (wR(Sx)) dx,

in which the penultimate inequality arises from the facts 2= > 1 and
inequality into (3.8) shows that

[u(x) — u(y)|\ u(x) —u(y) e(x)— @)
K dxd
f ‘L;Rg( lx — yI* ) lu(x) —u@y) |x—yl* (x,y)dxdy

<__ff (Iw_(x)—wf(y)l) 1 dxdy
lx — yl* lx = yI¥
w_(x) w.(y)
-z dxd
fflx le“ (Ix—yls) i

R? w_(x)
Ry LRG( R )dx. 3.9

Next, we will deal with the second term on the right-hand side of (3.1).
Estimate of I,. We now turn our attention to the term integrated on Bz X (R \ By).

zjﬂn%xmLuo gCuQ)_MQN)qu_u@)Ktn”chx
e e S\ ol ) — uG) b P

- 1

cn [ ww 4M@uw) _
A (k, 58 RN A{u(y)<u(x)}\Br lx — yI* |x — y[V*

- 1

[ e gwm ww _
A_(kr) RN {u(y)=u(x)}\Br lx — yl* lx — y|V*s

= Jl —Jz.

|x yl > 1. Substituting the above

+vy(N, s, p,q, \)

dydx

dydx

Given x € B% and y € RV \ Bg, we have |x — y| > %lyl. This together with (2.2) results in

_ 2R\ 1 (2R \'™
11§2Af w_(x) g(“’ (y)( )) - ( ) dy dx
Brr RN\Bg I* \R=r) J " \R—-r
2

RN+sq w_(y) 1
< N5 s e Y A T \Nao — d d
YN 5. p.4 h%ﬂMwﬂﬂw”)wwg(w)wwSyx
2
N+sq
<vy(N,s,p,q, A)WHM—(X)”LI(BR) Tail(w_; Bg). (3.10)

It’s easy to check that
{u(y) = k} C {u(y) = u(x)},
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which leads to

W%

_ 1
J> 2/1f a)_(x)f g(w+(y) T (x)) ~— dydx
B, RVA, (k)\Bg lx — y[* |x — y|N*s

1
2/lf w_(x)f g( w+(y)‘) ~— dydx
B, RVAA, (\Bx  \IX = YI°) [x — Vs

|
2/lfa)_(x) g(er(Y)) — dydx, (3.11)
B, RN\Be . \ X = Y7 [x = y|Ns

where A, (k) = {x € RY: u(x) > k}. Here, to obtain the last line we use the fact that w,(y) = 0, while
y ¢ RV N A, (k). It follows from (3.10) and (3.11) that

f f g(lu(x) - M(Y)|) u(x) — u(y) ¢(x) — @(y) dx dy
Br JRN\Bg lx — y[* lu(x) — u(y)| |x —y[N*s

\%

N+sq
<vy(N,s,p.q, A)m”w—(x)”Ll(BR) Tail(w_; Bg)
1
-y, S,P,Cl,/l)f w_(x) g( er(y)v) ~ dydx. (3.12)
B, RV\Bg  \IX = Y/ [x — y[V*s

To finish the proof, we shall estimate the term on the left-hand side of (3.1). Recalling the property
of f(x,u(x)), we get

fR G uCx)lp(x) dx < f; . HR)(dl + dag(Ju(x)D)n’ (Vw-(x) dx. (3.13)

For the first term of the inequality above, we may apply the Young inequality (2.3) with

R \1=4
e:( ) <1,
R-r

to obtain

f din?(x)w_(x)dx
A_(k, 2R
R \™ R _
< ( ) G*(d\R*)IA_(k, R)| + (—) f G (‘” (x)) dx. (3.14)
R—r R—-r) Jg,
For the second term of the inequality (3.13), we notice that if x € A_(k)

RS
glu(x)l) = glw-(x) = kl) < glw-(x) + k) < ¥(p, Pg(w-(x)) + ¥(p, 9)g(k),

then
f drg(Ju(x)Dn? ()w-(x) dx
A_(k, 2R
< y(N, s, p,q) | N'dafg(w-(D)w-(0) + gkw-(0] dx
A_(k, 23R
R \? _ k
<yspad|(7) [ G(“’ (X))dx + G(—) AR, (3.15)
R-r] Jg, R¢ Rs
where we use (2.3), (2.4) and the fact that R < 1. By putting together (3.9), (3.12), (3.14) and (3.15)
and adjusting the constants, we finally complete the proof. O
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4. Density lemma

The following lemma shows the spread of pointwise positivity in space.

Lemma4.1. Let k > 0 and R < 1 be parameters. Assume that u is a supersolution of (1.1), nonnegative
in Bg (xg) C . Then there exists a constant v € (0, 1) depending only on the data s, p,q, N, d,, d>, A, A,
such that if

{u < k} N B, (xo)| < vIB, (xo)l,

then either
r*g~ ! (r* Tail (u_; Bg (x0))) + *G~'G" (d,r*) > k,
or

u> =k, VxEB%r(xo),

| =

where B, (xy) C Bg (xp).

Proof. Without loss of generality, we suppose xy, = 0 and

r'g”! (r° Tail(u-; Br)) + r'G™'G"(dir*) < k. (4.1)
For all n € Ny, set
_k k
k, = 3 + ST
r r ~ Iy + 'yt
r, = E + W’ ry, = 2 R
A 3rn"'rn+l - rn+3rn+1
P, = ———" 7 =T
4 4
B,=B,.B,=B;.B,=B;.B,=B;,

Observe that B,.; € B, C B, C B, C B,. Now we take a cutoff function ¢ in B, vanishing outside B,
and equal to the identity in B,, such that

n

2
|Dg| < —.
r

Selecting k = k,,, B, = B, and Bg = B,, we can make use of the energy estimate of Proposition 3.1. As

a result, we have
f f G(Iw(X) - w(y)l) dxdy
Bysi Bt lx — yl* |x — yIV

* s k” r’ql (L)_(X)
<y |G @) + G IBy Ol <l + v fB 6( r ) dax
N+sq
ey 19l Taillw-: By), (4.2)

where w_ = (u—k,)_. Firstly, we shall focus on estimating the first term on the right-hand side of (4.2).
Recalling (4.1) that *G~'G*(d,r*) < k, we arrive that

[G*(dl Y+ G (%)

ky
1By N {u < ku}l < ¥(p, q)G( s) 1By N {u < kn}l. (4.3)

r
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From the definitions of r,, and 7,, there holds

-
L =244

Fn =Ty

Consequently, we estimate the second term as

r w_(x) ; w_(x)
—(i’n ~ «an G( " )dx <vy(p,q)2 ‘Ian G( " )dx

<y(p.92"G (k';) 1By 0 {u < k. (4.4)

r

The last term in (4.2) shall be estimated as follows. An application of (2.5) and (1.3) gives that
k, + u_ q297! ky, u_(y)
ey Rt e M e |
X0 — ¥l p X0 — ¥l X0 — ¥l

N+s
ry 4

(rn - Fn)N-Hq

< Y(p, 2"V Pk, | By 0 {u < Ky )| g(
RM\B,

We further get

llw-llps,) Tail(w-; B,)

ky + u_(y)) dy

Ixo = yI¥ ) lxo — yIN*s
< V(P )2k B, O {1 < Ky lg ("—) + g( u0) )] dy
’RN\B, | \Tn |xo = yI* /| Ixo — yIV*s
< ¥(p, 92" NPk, |B, N {u < k)| [F_Sg (%) + Tail(u_; BR)] :
By means of (1.3) and r*g~!(r* Tail(u_; Bg)) < k in (4.1), we arrive at
Nsq .
mllw—lluwn) Tail(w_; B,) < y2" "k, |B, N {u < k,}| r_sg(r—Z). 4.5)

Combining (4.2)—(4.5), we can get

() - w-y)]\ dxd k,
f f G(lw (¥) —w (y)l) X yN < ,yzn(N+sq+lI)G (_) 1B, N {u < k).
Bn+l Bn+l |x - ;yl‘Y |'x - yl }"S

According to Lemma 4.1 in [7], there exists a constant § > 1 depending only on N, s, such that

1
[ o),
Bu+1 rn+1

<y f G(Iw-(X)—w-(Y)I) dxdy
Byt By

lx = yI* lx —yIV
< wssasag () B0 < o)
rt |B,|
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We further employ the Jensen inequality to get the following display

g . :
b( G’ (%) dx] < )/J( G (%) dx+vy ]( G’ (—Iw_ (Sw_)B”” | ) dx] :
By1 rn+l Bu+1 rl’l+1 Byt rl’l+1

Recall the definition of 7, with 5 < 7,41 < 7, then

w- kn - kn r~—11 kn
GG( - ) > G? (S—H)X{“d‘"”} >vy'2 el (;)X{ud@wl}'

rn+1 rn+1

It can be deduced that

1
k 4 k,\ |B, N k,
yz—an( ) (}[ Xu<kor) dx) < yzn(N+sq+q)G (_) w’
Bn+l

_n
re re |B,|

which means

1
(an+1 N {u < kn+1}|)9 < ,yzn(N+sq+2q)|Bn N {Ll < kn}l
|Bu1l |B,|

Denote
_B. N {u <kl

A,
B,

Then we have

An+l < ,yzn(N+sq+2q)9A9.
According to [16, Lemma 7.1], we have to make sure that

_0
6-1)2

BN <kl _

=L S —(N+sq+2q)
Ay = < yo-l 2
|B:|

to obtain A, — 0 as n — oo. Notice that

0

—(N+sq+2q) =g <1

yer2

and y depending only on N, s, p,q,d>, A, A, so there exists a constant v € (0,1) depending on
N, s, p,q,d>, A, A to justify the desired result

lim A, =0.
In other words, we draw a conclusion
k .
u> 5 mn B%
We now complete the proof. O
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5. Proof of main results

The following two lemmas apply the energy estimate to obtain two different measure density
inequalities, which play a key role in proving our main results, Theorems 1.1 and 1.2. The first lemma
shows that a measure shrinking inequality depends on a local integral associated with g.

Lemma 5.1. Letk > O and R < 1. Let u € W*%(Q) be a non-negative supersolution of (1.1) in
Br (x9) C Q. There exists a constant y, > 1 depending only on s, p,q, N, d,, A, A\, such that either

r'g”! (r* Tail (u_; Bg (X)) + *G™'G* (d1 1) > k,
or
71g(%)
ffu < K} OV B, (x0)] < ot |B,l,
£, (5 dx
where B, (xy) C Bg (xp).
Proof. Without loss of generality, we suppose xy = 0, and

r* ¢~ (r* Tail(u_; Br)) + r*'G'G*(d,r*) < k.

Apply the energy estimate Proposition 3.1 in B, C B, to get

fw_(x)f g(w+(y)‘) ! -dydx
B, ey \lx =yl o=yl

w_(x) .
= Vs f G (T) dx + yullw_llL1(s,,) Taill(w_; B,,)
By

k
+7. |G (dr*)+G (—)] |A_(k,2r)|
rA
k . x 5
< 7G5 1B+ yHIB | Tail(@; Byy) + vG*(dyr)IB,| 5.1)

According to the assumption r*g~!(r* Tail(u_; Bg)) < k, we can estimate the tail term as follows

. w_(x) 1
Tail(w_; By,) = f ( ) dx
7 S, ST Tl

_ 1 _ 1
:f g(w (X)) ¥ dx+f g(w (x)) ~— dx
Br\Ba, x| ) [x|N*s RN\Bg [x[* ) |x[V+s

k
<yrig (7) (52)

where in the last inequality we note that, by (2.1),

i k
o) < Doa-msg (K} forati x e By, c Be.
|x|* p re
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Due to (1.3), (5.2), and the assumption that *G~'G*(d,r*) < k, (5.1) turns into

+ 1 k
fmquwa NMwMyg(ﬁA (5.3)
B, rv X =Y [x =yl

In the following, we will focus on the left part of (5.3). From (1.3) and (2.5), we know

u,(y) () -k, +k w.(y) k
g( +(yS)Sg(—y - )Sy(p,q)[g( +(ys)+g( )]
lx =yl |x =yl lx =yl |x =yl
Based on the above inequality, we can see
w.(y) ) 1
w_(x dydx
Lf 0 (u ) e @
(y)) 1
w_(x)g ( . dydx
jwfﬂ o) e
w_(x) u(y) k
e [, [, e ()<l o
o B\ —or ) e )]
k (k
> Cr_(N”)f f w_(x)g(@)dydx—y—g(—)lBrl.
Br Br ’/-S rS rS
Combine this with (5.3) to reach

fw(x))( ( )dydx<ykg( )|B,|

1 1
f w_(x)dx > —kl{u < =k} N B,|,
B, 2 2

Noticing that

we arrive that

1 Y8\
|{I/t < Ek} N Br| < u—(xlBrl
g(=5)dx

In this way, we complete our proof. O
The next lemma measures the shrinking set with a nonlocal integral.

Lemma 5.2. Letk > 0 and 0 < R < 1. Let u € W*9(Q) be a non-negative supersolution of (1.1) in
Br (xo) C Q. There exists a constant y, > 1 depending only on s, p,q, N, d>, A, \, such that either

r*g~ ' (r* Tail (u_; Bg (x0))) + r*G~'G* (d,r*) > k,

r28(%)

ré Tail(u,; B, (xo))

or

[{u < k} N B, (xo)| < B/,

where B, (xg) C B (xp).
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Proof. Without sacrificing generality, we also assume that xy = 0, and
r*g ' (r* Tail(u_; Bg)) + r*'G™'G*(d,r*) < k.

Using the similar proceed as in Lemma 5.1, we can get

. 1 k [k
[row [ o 20 ) mmmavar< e X8 (54
B, RV lx —yI*) |x =yl r r
g( u+(y)') Sg((u(y)—k)ﬁk) < C[g( w+(y)v)+g( k )]
lx — yl* lx — yI* lx — yI* lx — yl*

fa) (x)f g(w+(y)) ! dydx
lx = yI5 ) |x = yIV+s
ff w_ (x)g( +(y)) ! -dydx
RM\B, lx = yIs ) |x = y|N+s
o[ [ )
w00 (o) ~ S\ @) |
STNRC X
RN\B, |)’|N+s Iyl*
Combine the above inequality and (5.4) to get

ff w-() (u+(y))dyd _ng(k)lBrl
RN\B, |}’|N” yl*

Besides, we can obtain the following result by the method of Lemma 5.2:
k
1 Y8\
{l/l < Ek} NB ( )

I I r=srrram—y
r$ Tail(u,; B,)
Then the proof is complete. O

and

Then, we know

|B,|.

Finally, we present the proof of Theorems 1.1 and 1.2.

Proof of Theorems 1.1 and 1.2. For simplicity, we choose to omit the symbol xy,. From Lemma 4.1,
we know there exists a constant v € (0, 1) depending only on s, N, p, g, A, A, which means we shall
choose k; and k;, to satisfy the following conditions

72 (%)

Cng(®)
) <v and S Tal B i B) <v,
f g ( ) dx

where vy, and vy, are determined by Lemmas 5.1 and 5.2. Utilizing the inequality (2.1), we can choose

ki = rg”! lj[ g(u(x))dx > g J( g(u(x)) ,
Y1JB, rt B, re
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and

kp=r'g" (ir‘ Tail(u, ; Br)) > mr'g”! (r Tail(uy; B)),
Y2

where 17; and 7, can be described respectively by

1
_ _ 4 p-1 _ _ v\~
= pllaD gl 1)(_) and 1, = pl@D gl 1)(_) _
Vi V2

It comes to us from Lemma 4.1 that for i = 1, 2, either
r*g~'(r* Tail(u_; Bg)) + r*'G~'G*(d\r*) > ki,

or

| =

Therefore, the proof is finished. O
6. Conclusions

This paper establishes two weak Harnack inequalities for weak supersolutions to nonhomogeneous
nonlocal equations with general growth. Using the expansion of positivity and a refined energy
estimate, our results incorporate nonlocal tail terms for both the positive and negative parts of solutions
on both sides of the inequalities addressing strong nonlocality more comprehensively. These findings
advance the regularity theory of such nonlocal equations, and the preliminary energy and density
lemmas offer foundational tools for future related research.
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