Loading [MathJax]/jax/output/SVG/jax.js
Research article

A new detailed explanation of the Tacoma collapse and some optimization problems to improve the stability of suspension bridges

  • Received: 09 May 2022 Revised: 23 June 2022 Accepted: 10 July 2022 Published: 29 July 2022
  • MSC : 34B10, 35L57, 74B20

  • We give a new full explanation of the Tacoma Narrows Bridge collapse, occurred on November 7, 1940. Our explanation involves both structural phenomena, such as parametric resonances, and sophisticated mathematical tools, such as the Floquet theory. Contrary to all previous attempts, our explanation perfectly fits, both qualitatively and quantitatively, with what was observed that day. With this explanation at hand, we set up and partially solve some optimal control and shape optimization problems (both analytically and numerically) aiming to improve the stability of bridges. The control parameter to be optimized is the strength of a partial damping term whose role is to decrease the energy within the deck. Shape optimization intends to give suggestions for the design of future bridges.

    Citation: Filippo Gazzola, Mohamed Jleli, Bessem Samet. A new detailed explanation of the Tacoma collapse and some optimization problems to improve the stability of suspension bridges[J]. Mathematics in Engineering, 2023, 5(2): 1-35. doi: 10.3934/mine.2023045

    Related Papers:

    [1] Mahmoud Saleh, Endre Kovács, Nagaraja Kallur . Adaptive step size controllers based on Runge-Kutta and linear-neighbor methods for solving the non-stationary heat conduction equation. Networks and Heterogeneous Media, 2023, 18(3): 1059-1082. doi: 10.3934/nhm.2023046
    [2] Danielle Hilhorst, Hideki Murakawa . Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium. Networks and Heterogeneous Media, 2014, 9(4): 669-682. doi: 10.3934/nhm.2014.9.669
    [3] Changli Yuan, Mojdeh Delshad, Mary F. Wheeler . Modeling multiphase non-Newtonian polymer flow in IPARS parallel framework. Networks and Heterogeneous Media, 2010, 5(3): 583-602. doi: 10.3934/nhm.2010.5.583
    [4] Robert Carlson . Myopic models of population dynamics on infinite networks. Networks and Heterogeneous Media, 2014, 9(3): 477-499. doi: 10.3934/nhm.2014.9.477
    [5] Verónica Anaya, Mostafa Bendahmane, David Mora, Ricardo Ruiz Baier . On a vorticity-based formulation for reaction-diffusion-Brinkman systems. Networks and Heterogeneous Media, 2018, 13(1): 69-94. doi: 10.3934/nhm.2018004
    [6] Thomas Geert de Jong, Georg Prokert, Alef Edou Sterk . Reaction–diffusion transport into core-shell geometry: Well-posedness and stability of stationary solutions. Networks and Heterogeneous Media, 2025, 20(1): 1-14. doi: 10.3934/nhm.2025001
    [7] Steinar Evje, Aksel Hiorth, Merete V. Madland, Reidar I. Korsnes . A mathematical model relevant for weakening of chalk reservoirs due to chemical reactions. Networks and Heterogeneous Media, 2009, 4(4): 755-788. doi: 10.3934/nhm.2009.4.755
    [8] Narcisa Apreutesei, Vitaly Volpert . Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8(1): 23-35. doi: 10.3934/nhm.2013.8.23
    [9] Matthieu Alfaro, Thomas Giletti . Varying the direction of propagation in reaction-diffusion equations in periodic media. Networks and Heterogeneous Media, 2016, 11(3): 369-393. doi: 10.3934/nhm.2016001
    [10] Claudio Canuto, Anna Cattani . The derivation of continuum limits of neuronal networks with gap-junction couplings. Networks and Heterogeneous Media, 2014, 9(1): 111-133. doi: 10.3934/nhm.2014.9.111
  • We give a new full explanation of the Tacoma Narrows Bridge collapse, occurred on November 7, 1940. Our explanation involves both structural phenomena, such as parametric resonances, and sophisticated mathematical tools, such as the Floquet theory. Contrary to all previous attempts, our explanation perfectly fits, both qualitatively and quantitatively, with what was observed that day. With this explanation at hand, we set up and partially solve some optimal control and shape optimization problems (both analytically and numerically) aiming to improve the stability of bridges. The control parameter to be optimized is the strength of a partial damping term whose role is to decrease the energy within the deck. Shape optimization intends to give suggestions for the design of future bridges.



    Reaction-diffusion phenomena is ubiquitous occurring mostly in different fields of science and engineering in which the system components interact [1,2,3,4,5]. They are used to describe population growth, propagation of travelling waves, pattern formation, other intriguing phenomena arising in combustion theory, tumor invasion, and neural networks spanning across various temporal and spatial scales [6,7,8,9]. Mathematically, the reaction-diffusion model is a parabolic partial differential equation (PDE) involving terms which denote diffusion and local reaction kinetics as given below:

    tYD2Y=Q(Y), (1.1)

    where the first term on the left side represents the temporal part, the second term represents the diffusion component, and the term on the right side of equation denotes the local reaction kinetics. For the choice of Q(Y)=Y(1Y), the resultant model is Fisher's equation that can be used to describe population evolution and how the wave propagates in certain medium [10]. If Q(Y)=Y(1Y2), the reaction-diffusion is called Newell-Whitehead-Segel (NWS) equation which is primarily used to describe convection phenomena in fluid thermodynamics [11]. Zeldovich-Frank-Kamenetskii equation (ZFK) is obtained for the choice of Q(Y)=Y(1Y)eβ(1Y). In combustion theory, the ZFK equation is used to describe how flames propagate [12].

    In theoretical neuroscience, the most well-studied reaction diffusion equation is the FitzHugh-Nagumo (FHN) model [13,14]. The FHN model is the simplification of the Hodgkin-Huxley model for the action potentials in squid giant axon [15,16,17]. Although FHN is not phenomenological (the involved parameters are not biophysical), it is a good candidate for studying how an action potential is generated and propagated. The main advantage of the FHN is that the solution space is two-dimensional and hence geometrical phase plane tools can be utilized to show how the trajectory evolves, which gives rise to the excitability and spike mechanism of spike generation. In the phase plane diagram of the FHN neuronal model, one of the nullclines has cubic nonlinearity. Over the last few decades, due to its model simplicity, FHN gained a lot of attention in the scientific community. Besides the generation and propagation of a train of spikes, FHN is also used to explained the dynamics of various physical systems in several fields of science, typically in the propagation of flame, Brownian motion process, autocatalytic chemical reaction, growth of logistic population, and neurophysiology [18,19].

    Consider the following scaler reaction diffusion model with constant coefficients:

    tYξξY=Y(1Y)(Yη), (1.2)

    where η is a known real number and Y(ξ,t) is an unknown function to be determined. In this equation, the local reaction kinetics is denoted by the cubic function Y(1Y)(Yη). For η=1, Eq (1.2) reduces to the NWS equation.

    In literature, various analytical and numerical strategies have been used to solve FHN-type equation. Shih et al. [20] used approximate conditional Lie point symmetry method for the numerical solution of the perturbed FHN-type equations. Mehta et al. [21] solved such nonlinear time dependent problems by using a novel block method coupled with compact finite difference schemes. In the perturbed model, the term ϵY has been added to the cubic term and for ϵ=0, the problem reduces to an unperturbed FHN-type model. Li and Guo implemented an integral approach for the exact solution of FHN-type equations [22]. Abbasbandy proposed a homotopy analysis method (HAM) to calculate a solitary-type solution of the nonlinear FHN-type model [23]. Kawahara and Tanaka derived the exact solution for the interaction of traveling fronts [24]. Gorder and Vajravelua obtained exact solutions for FHN-type equations and Nagumo telegraph equation using a variational method for fixed initial conditions in order to control the error [25]. Ali et al. proposed a Galerkin finite element method for the numerical solutions of FHN-type equation[26]. Mehran and Sadegh used a non-conventional finite difference scheme for the numerical solutions of FHN-type equations [27]. Gorder implemented HAM for the approximate solutions of FHN-type reaction diffusion equations [28].

    Reaction-diffusion of FHN-type equations discusses previously involved constant coefficients. However, in general, time-dependent coefficients and dispersion-reaction terms involved in such models are more realistic physically [29,30,31]. Due to variation in problem geometry and taking into account the factor of heterogeneity in the propagating medium, FHN-type models with time-dependent coefficients are quite sophisticated to study.

    The main goal of this work is to demonstrate the numerical solutions of the generalized FitzHugh Nagumo (GFHN) equation with a linear dispersion term and time-dependent coefficients, which are given below:

    tY+α(t)ξYϑ(t)ξξYδ(t)Y(1Y)(Yη)=0,(ξ,t)[a,b]×[0,t], (1.3)

    where α(t), ϑ(t), and δ(t) are time-dependent coefficients. The associated initial condition is:

    Y(ξ,0)=ψ0(ξ),ξ[a,b], (1.4)

    and the boundary conditions are:

    Y(a,t)=ψa(t),Y(b,t)=ψb(t),t0, (1.5)

    where ψ0(ξ),ψa(t), and ψb(t) are the known functions.

    In recent literature, various authors computed the numerical solutions of GFHN equation with time-dependent coefficients. For instance, tanh and the Jacobi Gauss Lobatto collocation technique [18,29], the polynomial differential quadrature method [32], and the mixed-types discontinuous Galerkin method [33,34] were used.

    Recently, wavelet numerical procedures attracted different researchers in various scientific communities because of their good properties and easy implementation. Some interesting aspects of wavelet methods include, compact support, localization in time and space, and multi-resistant analysis. Among different families of wavelet, Haar wavelet (HW) is simple and popular. The importance of the HW has been explored in various articles: Lepik proposed HW-based methods for different problems [35], Jiwari [36] utilized the HW method for the solution of Burger's equation, Kumar and Pandit [37] solved coupled Burger's equations using the HW method, Shiralashetti et al. [38] used the HW scheme for the numerical solutions of the initial valued problems. For further analysis of the HW, interested readers are referred to [39,40,41]. The remaining parts of the paper are presented in the following pattern:

    ● The underlying motivation and preliminaries are given in Sections 2 and 3, respectively.

    ● The proposed methodology is presented in Section 4.

    ● Numerical results and stability are reported in Sections 5 and 6.

    ● Finally, conclusions are drawn in Section 7.

    The analytical solution of the time-dependent coefficients partial differential equations is quite complicated to compute. Therefore, numerical treatment is an alternative and an efficient way to cope with this issue. According to our analysis, the method of lines using the HW is not proposed for FHN-type models. In this work, we propose an HW-based method of lines for the solutions of FHN-type equations. The theoretical stability and its numerical verification will also be a part of this work.

    Here, we address some basic results. Consider an arbitrary interval [a,b) and divide it into 2L equal subintervals of length ξ=ba2L, where L=2J represents the maximum level of resolution. Define the dilation and translational parameters as j=0,1,...,J, K=0,1,...,l1, where l=2j, respectively. Using the dilation and translational parameters, define the wavelet number ι=l+K+1. Now the first and ι-th HW are given below [35]:

    h1(ξ)={1,ξ[a,b),0,elsewhere. (3.1)
    hι(ξ)={1,ξ[ζ1(ι),ζ2(ι)),1,ξ[ζ2(ι),ζ3(ι)),0,elsewhere, (3.2)

    where ζ1(ι)=a+2Kωξ, ζ1(ι)=a+(2K+1)ωδξ, ζ3(ι)=a+2(K+1)ωξ, and ω=Ll.

    In our analysis, we will use the following integrals:

    βι,α(ξ)=ξaξa,...,ξahι(z)dzα=1(α1)!ξa(ξz)α1hι(z)dz, (3.3)

    where α=1,2,3,...,n and ι=1,2,3,...,2L. Analytically, the evaluation of these integrals for Eqs (3.1) and (3.2) are given below:

    β1,α(ξ)=(ξa)αα!, (3.4)
    βι,α(ξ)={0,ξ<ζ1(ι),1α![ξζ1(ι)]α,ξ[ζ1(ι),ζ2(ι)],1α![(ξζ1(ι))α2(ξζ2(ι))α],ξ[ζ2(ι),ζ3(ι)],1α![(ξζ1(ι))α2(ξζ2(ι))α+(ξζ3(ι))α],ξ>ζ3(ι).  (3.5)

    In this section, the proposed method is described in detail. Here, an integral approach is utilized, therefore, the greatest order spatial derivative in Eq (1.3) can be approximated via the HW series as:

    ξξY(ξ,t)=2Lι=1λι(t)hι(ξ), (4.1)

    where λι(t) denotes the unknown HW coefficients and hι(ξ) are HW basis. From Eq (4.1), we deduce the following equations via twice integration:

    ξY(ξ,t)=2Lι=1λι(t)β1,ι(ξ)+ξY(ξ,t)|ξ=a, (4.2)
    Y(ξ,t)=2Lι=1λιβ2,ι(ξ)+(ξa)ξY(ξ,t)|ξ=a+Y(ξ,t)|ξ=a. (4.3)

    The evaluation of Eq (4.3) at ξ=b gives:

    ξY(a,t)=ψb(t)ψa(t)ba1ba2Lι=1λι(t)β2,ι(b). (4.4)

    Plugging ξY(a,t) in Eqs (4.2) and (4.3), we get:

    ξY(ξ,t)=2Lι=1λι(t)[β1,ι(ξ)1(ba)β2,ι(b)]+1(ba)(ψb(t)ψa(t)), (4.5)
    Y(ξ,t)=2Lι=1λι(t)[β2,ι(ξ)(ξa)(ba)β2,ι(b)]+(ξa)(ba)ψb(t)+(bξ)(ba)ψa(t). (4.6)

    Now, the corresponding matrix form of Eqs (4.1)–(4.5), and (4.6) by using ξξm are:

    ξξY(ξ,t)=H(ξm)λ(t), (4.7)
    ξY(ξ,t)=M1(ξm)λ(t)+M2(t), (4.8)
    Y(ξ,t)=N1(ξm)λ(t)+N2(t), (4.9)

    where

    M1(ξm)=2Lι=1[β1,ι(ξm)1(ba)β2,ι(b)],M2(t)=1(ba)(ψb(t)ψa(t)),
    N1(ξm)=[β2,ι(ξm)(ξma)(ba)β2,ι(b)],N2(t)=(ξma)(ba)ψb(t)+(bξm)(ba)ψa(t).

    From Eqs (4.7)–(4.9) and (1.3), the following equation can be obtained:

    dYm(t)dt=α(t)(M1(ξm)λ(t)M2(t))+ϑ(t)H(ξm))+δ(t)[(N1(ξm)λ(t)+N2(t))(1(N1(ξm)λ(t)+N2(t)))((N1(ξm)λ(t)+N2(t))η)],ξ[a,b],t>0, (4.10)

    where "*" represents an element wise product. In a more compact form, Eq (4.10) can be written as:

    dYdt=F(t,Y),Y(0)=ψ0, (4.11)

    where F(t,Y)=ϑ(t)(hλ(t))α(t)(M1λ(t)+M2(t))-δ(t)[(N1λ(t)+N2(t))(1(N1λ(t)+N2(t)))((N1λ(t)+N2(t))η)].

    Here, Eq (4.11) represents the system of first-order ordinary differential equations, which can be solved via the RK-4 scheme discussed in a later section.

    To obtain the solutions of Eq (4.11), we use the following RK-4 scheme:

    K1=F(tm,Ym),K2=F(tm+t2,Ym+K12),K3=F(tm+t2,Ym+K22),K4=F(tm+t,Y+K3).Ym+1=Ym+t6(K1+2(K2+K3)+K4),m0, (4.12)

    where t is the time step size.

    In this section, numerical solutions of GFHN with constant and time-dependent coefficient are listed. The efficiency of the proposed scheme is checked by applying different error measures, namely: L2, L, and Lrms as described below:

    L2=YEYN2δξ2Lι=1YEιYNι2, (5.1)
    L=YEYNmaxYEιYNι, (5.2)
    Lrms=2Lι=1(YEYN2L)2. (5.3)

    Here, we consider Eq (1.2) with constant coefficients and various choices of the exact solutions:

    case(i):Y(ξ,t)=12+12tanh[122(ξ2η12t)],case(ii):Y(ξ,t)=12(1+α)+12(1α)tanh[(1α)22ξ+(1α2)22t],case(iii):Y(ξ,t)=11+exp[ξ+(2(12η))t2],case(iv):Y(ξ,t)=[12][1coth(ξ22+2η14t+π4)].

    The associated initial and boundary conditions for all cases are used from the exact solutions. Simulations are done in different spatial domains to test the technique, and a comparison is made with the previously published work. The spatial domains used for case (i) are [0,1] and [10,10], for case (ii) is [22,22], for case (iii) are [0,1] and [10,10], while for case (iv) is the interval [10,10]. The obtained results of case (i) in [10,10] with different values of η are given in Tables 13, while the outcomes in the interval [0,1] with various values of η are given in Table 4.

    Table 1.  Outcomes of problem 1 for case (i) with η=0.75.
    Present (t=0.0001) Present (t=0.001) Present (t=0.1)
    t L Lrms CPU time (Seconds) L Lrms CPU time (Seconds) L Lrms CPU time (Seconds)
    0.2 6.387×106 1.844×107 6.240240 1.203×105 1.782×106 2.195968 8.339×104 1.835×104 1.624090
    0.5 1.414×105 4.959×107 8.821217 2.809×105 4.515×106 2.954488 2.027×103 4.626×104 1.805044
    1.0 2.419×105 1.124×106 13.053880 5.211×105 9.234×106 3.111479 3.917×103 9.362×104 1.839039
    1.5 3.230×105 1.899×106 18.199838 7.429×105 1.415×105 5.149131 5.822×103 1.418×103 1.942381
    2.0 3.926×105 2.816×106 23.565382 9.548×105 1.924×105 4.562245 7.718×103 1.906×103 1.919129
    5.0 7.276×105 1.0461×105 54.294368 2.174×104 5.217×105 8.126805 1.840×102 4.896×103 2.256312
    [42] (t=0.0001) [32] (t=0.001) [43] (t=0.1)
    t L Lrms L Lrms L Lrms
    0.2 1.889×105 2.196×107 4.741×105 1.588×105 1.887×105 7.455×106
    0.5 4.155×105 1.569×106 1.231×104 3.843×105 4.151×105 1.641×105
    1.0 6.989×105 7.144×106 2.626×104 8.187×105 6.973×105 2.743×105
    1.5 9.168×105 1.726×105 4.209×104 1.338×104 9.118×105 3.534×105
    2.0 1.096×104 3.185×105 5.999×103 1.943×104 1.085×104 4.128×105
    5.0 1.896×104 1.880×104 2.305×103 7.863×104 1.800×104 6.134×105

     | Show Table
    DownLoad: CSV
    Table 2.  Outcomes of problem 1 for case (i) with η=1.
    t=0.1 t=0.5 t=1.0
    ξ Exact Numerical Error Exact Numerical Error Exact Numerical Error
    Present
    -10 1.013383×103 1.013382×103 8.713×1010 1.844968×103 1.844963×103 4.687×109 3.897765×103 3.897749×103 1.573×108
    -7 8.209472×103 8.209430×103 4.275×108 1.485835×102 1.485800×102 3.444×107 3.094160×102 3.094052×102 1.078×106
    -3 1.216556×101 1.216557×101 1.920×107 2.015162×101 2.015188×101 2.553×106 3.482263×101 3.482340×101 7.646×106
    0 5.305565×101 5.305566×101 1.619×107 6.731305×101 6.731300×101 5.918×107 8.134186×101 8.134174×101 1.247×106
    3 9.069410×101 9.069410×101 2.120×107 9.466898×101 9.466899×101 1.552×107 9.740892×101 9.740895×101 3.233×107
    7 9.939053×101 9.939053×101 3.713×108 9.966459×101 9.966460×101 1.017×107 9.984128×101 9.984129×101 9.444×108
    10 9.992490×101 9.992490×101 7.370×1010 9.995877×101 9.995877×101 1.214×109 9.998052×101 9.998052×101 9.589×1010
    [33]
    -10 0.123172E×102 0.123147×102 2.974×106 0.273123×102 0.273299×102 1.086×106 0.639709×102 0.639771×102 4.544×106
    -7 0.799954×102 0.800058×102 1.005×106 0.149620×101 0.149662×101 1.086×106 0.639709×102 0.639771×102 4.544×106
    -3 0.122814×10+0 0.122808×10+0 1.352×106 0.198331×10+0 0.198340×10+0 2.984×106 0.351539×10+0 0.351533×10+0 9.543×103
    0 0.537579×10+0 0.537585×10+0 1.550×106 0.680017×10+0 0.680007×10+0 8.287×106 0.819036×10+0 0.819048×10+0 4.715×106
    3 0.909059×10+0 0.909004×10+0 2.442×106 0.9487161×10+0 0.948717×10+0 9.415×106 0.975932×10+0 0.975967×10+0 3.343×106
    7 0.994343×10+0 0.994331×10+0 2.683×106 0.997526×10+0 0.997569×10+0 9.821×107 0.999603×10+0 0.999694×10+0 1.900×106
    10 0.999376×10+0 0.999372×10+0 9.138×107 0.9999983×10+0 0.100002×10+1 7.363×107 0.999998×10+0 0.100001×10+1 1.930×107

     | Show Table
    DownLoad: CSV
    Table 3.  Solutions of problem 1 for case (i) with η=2.
    t=0.1 t=0.5 t=1.0
    ξ Exact Numerical Error Exact Numerical Error Exact Numerical Error
    -10 1.119842×103 1.119841×103 9.172×1010 3.038202×103 3.038195×103 7.248×109 1.052473×102 1.052469×102 3.677×108
    -7 9.065044×103 9.064999×103 4.448×108 2.426341×102 2.426292×102 4.832×107 7.986202×102 7.986054×102 1.479×106
    -3 1.327517×101 1.327520×101 2.791×107 2.938320×101 2.938363×101 4.239×106 5.922212×101 9.922280×101 6.850×106
    0 5.553666×101 5.553666×101 2.417×107 7.724818×101 7.724813×101 4.934×107 9.221826×101 9.221826×101 3.423×108
    3 9.150444×101 9.150445×101 4.741×108 9.669729×101 9.669732×101 2.824×107 9.903092×101 9.903095×101 2.634×107
    7 9.944820×101 9.944821×101 3.521×108 9.979629×101 9.979630×101 6.559×108 9.994155×101 9.994155×101 3.733×108
    10 9.993204×101 9.993204×101 6.943×1010 9.997499×101 9.997477×101 7.674×1010 9.999283×101 9.999283×101 3.684×1010

     | Show Table
    DownLoad: CSV
    Table 4.  L norm of problem 1 for case (i) with various values of η.
    η=0.25 η=0.5 η=0.75
    t Present [44] Present [44] Present [44]
    0.01 4×109 5×108 7×1011 5×108 4×1010 5×108
    0.1 3×108 3×107 4×109 3×107 3×108 3×107
    1.0 1×107 1×106 6×109 5×107 1×107 1×106
    L2
    η=0.25 η=0.5 η=0.75
    t Present [44] Present [44] Present [44]
    0.01 5×108 5×108 8×1010 5×108 5×109 5×108
    0.1 4×107 3×107 4×108 3×107 4×107 3×107
    1.0 2×106 1×106 7×108 5×107 2×107 9×107

     | Show Table
    DownLoad: CSV

    In these tables, the obtained solutions are compared with the existing results in the literature [32,42,43,44]. Through comparison, it is obvious that the present technique shows better performance than the cited work [32,42,44]. The present method is based on RK-4 which gives good results using a small step size.

    In Table 5, the computed values of the constants K1,K2,K3,andK4, for η = 0.75, t = 0.001, and L = 2 in the spatial domain [10,10] at distinct time levels are reported.

    Table 5.  The coefficients values K1,K2,K3,andK4 of problem 1 for case (i) with η=0.75, t=0.001, and L=2.
    t K1 K2 K3 K4 Exact solution Approximate Solution
    0.1 0.000550127435708 0.000550134504350 -0.000550134504441 0.000550141573170 0.002000842010538 0.001998228498937
    0.003944143032133 0.003944200185466 -0.003944200186294 0.003944257340322 0.011607626920875 0.011488174877494
    0.013201078042744 0.013201383972046 -0.013201383979136 0.013201689914171 0.064365301508760 0.064570374111189
    0.051365677465119 0.051368265656579 -0.051368265786992 0.051370854097156 0.287228366819168 0.287197745055223
    0.051813540724938 0.051816722723024 -0.051816722918439 0.051819905116762 0.702427327811607 0.702470418192179
    0.017916749446516 0.017917560559869 -0.017917560596589 0.017918371748347 0.932557185568827 0.932334691176706
    0.001827678052741 0.001827749308296 -0.001827749311074 0.001827820569427 0.987804495301507 0.987929599908556
    0.000469739827336 0.000469757565601 -0.000469757566270 0.000469775305206 0.997896788384635 0.997899530906305
    0.5 0.000577059786102 0.000577067177572 -0.000577067177666 0.000577074569228 0.001810781501093 0.001767463721627
    0.003051640090534 0.003051683586188 -0.003051683586808 0.003051727083001 0.010514629756167 0.010105627339338
    0.013080724367551 0.013081016714371 -0.013081016720905 0.013081309072915 0.058599062346241 0.059295267046785
    0.048329726367191 0.048332073109897 -0.048332073223848 0.048334420069440 0.267198413052228 0.267262778290452
    0.053763565954023 0.053766904699846 -0.053766904907184 0.053770243864621 0.681111275379947 0.681347627307882
    0.019155289006543 0.019156170889244 -0.019156170929845 0.019157052855031 0.925989123684090 0.924926841938356
    0.002566491484946 0.002566591819423 -0.002566591823345 0.002566692161784 0.986539147932092 0.987046273168589
    0.000386965519072 0.000386980139663 -0.000386980140215 0.000386994761360 0.997676105725876 0.997732428060447
    1.0 0.000492580802813 0.000492587089040 -0.000492587089121 -0.000492593375426 0.001598349150613 0.001497994290761
    0.002423286399790 0.002423320374624 -0.002423320375100 -0.002423354350360 0.009290606750817 0.008752036768966
    0.012362148938809 0.012362412752656 -0.012362412758286 0.012362676576548 0.052072036738247 0.052916126005743
    0.044718979445185 0.044721048624543 -0.044721048720285 0.044723117985214 0.243445131323980 0.244007643848355
    0.055982628284796 0.055986143692980 -0.055986143913729 0.055989659546008 0.653369506436006 0.653900188317205
    0.020946593575349 0.020947579113019 -0.020947579159389 0.020948564745616 0.916953070453016 0.914910265106938
    0.003363560269563 0.003363692368992 -0.003363692374180 0.003363824478866 0.984774145473912 0.985560005959086
    0.000411345006904 0.000411360558612 -0.000411360559200 0.000411376111496 0.997367497354861 0.997536946415740

     | Show Table
    DownLoad: CSV

    In Figure 1, numerical and exact solutions are plotted for various values of η for case (i) while in Figure 2, the absolute error at distinct points are plotted with various time levels. Similar simulations are obtained for case (ii) and its absolute error at distinct points are compared with the existing results [33,45,46] in Table 6, which show the superiority of the method.

    Figure 1.  Exact and numerical measures of problem 1 for case (i). The arrow shows the direction of the travelling wave.
    Figure 2.  Absolute error of problem 1 case (i) at different time levels for η=1 (on the left) and for η=4 (on the right).
    Table 6.  Solutions comparison of problem 1 case (ii) via absolute error with η=0.2.
    t=0.001 t=0.002 t=0.003
    ξ [45] [46] [33] Present [45] [46] [33] Present [45] [46] [33] Present
    -22 1.680×107 1.367×107 1.435×107 2.139×1010 3.362×107 2.888×107 2.955×107 3.158×1010 5.045×107 4.561×107 4.097×107 3.955×1010
    -6 5.184×106 4.611×106 4.844×107 4.987×106 1.037×105 9.740×106 9.990×106 9.980×106 1.556×105 1.538×105 1.567×105 1.497×105
    2 2.956×105 2.669×105 2.751×105 2.924×105 5.915×105 5.633×105 5.811×105 5.847×105 8.876×105 8.875×105 8.620×105 8.768×105
    10 1.073×106 9.152×107 1.006×107 5.511×107 2.146×106 1.931×106 2.011×106 1.101×106 3.218×106 3.047×106 4.992×106 1.651×106
    18 5.458×107 4.272×107 5.130×107 6.036×109 1.091×106 9.016×107 9.215×107 1.206×108 1.636×106 1.423×106 1.610×106 1.808×108

     | Show Table
    DownLoad: CSV

    In Figures 3 and 4, the solutions profiles are shown for different values of η in the form two- and three- dimensions plots, respectively, for the same case. Both figures reveal the mutual agreement of exact and numerical solutions.

    Figure 3.  Exact and numerical measures of problem 1 case (ii) for different values of η at t = 0.01 (on the left) and at t = 0.3 (on the right).
    Figure 4.  Three dimensional plots of exact and numerical solutions of problem 1 case (ii) for different values of η at t = 0.01.

    The obtained results of case (iii) and those available in [44] are given in Tables 7 and 8, where the small error norm shows the high quality of the scheme. The computed norms of case (iv) are listed in Table 9.

    Table 7.  L norm problem 1 for case (iii) with various values of t.
    t=104 t=105
    t Present [44] Present [44]
    0.01 4×108 2×107 6×109 2×107
    0.1 3×107 9×107 4×108 9×107
    10.0 9×108 3×107 7×109 3×107
    L2
    t=104 t=105
    t Present [44] Present [44]
    0.01 2×107 1×107 3×108 1×107
    0.1 1×106 6×107 2×107 6×107
    10.0 3×107 2×107 4×108 2×107

     | Show Table
    DownLoad: CSV
    Table 8.  Outcome of problem 1 for case (iii).
    η=1 η=0.75 η=4
    t L L2 Lrms L L2 Lrms L L2 Lrms
    0.1 9.677×107 4.969×106 5.559×108 7.961×107 4.699×106 9.270×109 3.662×106 1.361×105 1.464×107
    0.2 1.890×106 9.619×106 1.166×107 1.514×1076 8.965×106 1.950×108 7.200×106 2.596×105 3.349×107
    0.3 2.773×106 1.399×105 1.834×107 2.168×106 1.286×105 3.081×108 1.042×106 3.687×105 5.497×107
    0.4 3.617×106 1.814×105 2.555×107 2.771×106 1.643×105 4.330×108 1.320×105 4.624×105 7.665×107
    0.5 4.424×106 2.208×105 3.325×107 3.326×106 1.973×105 5.702×108 1.544×105 5.399×105 9.573×107
    1.0 7.881×106 3.949×105 7.631×107 5.641×106 3.310×105 1.460×107 1.650×105 6.607×105 9.066×107
    1.5 1.031×105 5.316×105 1.186×107 7.452×106 4.300×105 2.707×107 8.097×106 2.564×105 1.411×107
    2.0 1.168×105 6.187×105 1.525×106 8.979×106 5.088×105 4.305×107 5.428×106 1.746×105 3.026×107

     | Show Table
    DownLoad: CSV
    Table 9.  Outcome of problem 1 for case (iv).
    η=1 η=1 η=0.75
    t L L L2 Lrms L L2 Lrms L L2 Lrms
    0.01 1 2.145×104 2.173×104 6.515×105 2.022×104 2.049×104 6.193×105 2.307×104 2.064×104 6.232×105
    3 3.599×105 5.573×105 9.275×106 3.319×105 5.171×105 8.652×106 3.352×105 5.219×105 8.727×106
    5 2.625×106 8.187×106 6.643×107 2.234×106 7.016×106 5.751×107 2.281×106 7.155×106 5.857×107
    7 3.131×107 1.946×106 7.687×108 9.539×108 5.991×107 2.520×108 1.209×107 7.573×107 3.128×108
    0.1 1 2.132×103 2.288×103 8.423×104 1.142×103 1.270×103 4.984×104 1.228×103 1.359×103 5.304×104
    3 2.519×104 5.146×104 9.770×105 1.177×104 2.562×104 5.065×105 1.284×104 2.774×104 5.461×105
    5 1.753×105 7.158×105 6.734×106 7.536×106 3.263×105 3.211×106 8.298×106 3.571×105 3.497×106
    7 2.065×106 1.679×105 7.777×107 3.194×107 2.818×106 1.422×107 4.636×107 3.783×106 1.870×107
    0.2 1 5.512×103 6.009×103 2.238×103 1.147×103 1.763×103 7.469×104 1.693×103 2.009×103 8.449×104
    3 6.614×104 1.396×103 2.723×104 1.335×104 3.243×104 6.846×105 1.565×104 3.765×104 7.901×105
    5 4.613×105 1.948×104 1.887×105 8.413×106 4.091×105 4.311×106 9.990×106 4.802×105 5.027×106
    7 5.276×106 4.482×105 2.163×106 3.610×107 3.597×106 1.931×107 5.271×107 5.111×106 2.695×107
    0.3 1 1.295×102 1.394×102 4.660×103 1.537×103 1.926×103 8.404×104 1.886×103 2.331×103 1.008×103
    3 1.796×103 3.661×103 6.980×104 1.295×104 3.375×104 7.358×105 1.636×104 4.182×104 9.059×105
    5 1.306×104 5.218×104 4.930×105 8.177×106 4.242×105 4.621×106 1.040×105 5.313×105 5.748×106
    7 1.400×105 1.144×104 5.458×106 3.564×107 3.791×106 2.094×107 5.505×107 5.677×106 3.088×107
    0.4 1 3.446×102 3.905×102 7.273×103 1.487×103 1.917×103 8.488×104 1.941×103 2.461×103 1.080×103
    3 7.093×103 1.220×102 2.140×103 1.211×104 3.264×104 7.239×105 1.616×104 4.305×104 9.485×105
    5 5.414×104 1.867×103 1.605×104 7.588×106 4.095×105 4.540×106 1.029×105 5.458×105 6.009×106
    7 5.169×105 3.698×104 1.635×105 3.368×107 3.721×106 2.085×107 5.465×107 5.851×106 3.236×107
    0.5 1 1.921×101 2.391×101 5.616×101 1.386×103 1.821×103 8.130×104 1.921×103 2.477×103 1.095×103
    3 6.222×102 7.995×102 1.088×102 1.103×104 3.042×104 6.809×105 1.570×104 4.261×104 9.479×105
    5 7.028×103 1.727×102 1.144×103 6.897×106 3.813×105 4.268×106 9.935×106 5.395×105 5.999×106
    7 5.741×104 2.903×103 9.948×105 3.121×107 3.525×106 1.990×107 5.295×107 5.804×106 3.139×107

     | Show Table
    DownLoad: CSV

    From this table, an obvious relation between the resolution level and accuracy is observed, which predicts when resolution increases the accuracy also increases. Similarly, one can see that when time increases, the accuracy reduces due to round-off errors.

    Graphically, the solutions for case (iii) are displayed in Figures 5 and 6, respectively. Likewise, solutions for case (iv) are presented in Figures 7 and 8. In both cases, the numerical and exact solutions show good agreement. From all tabulated and graphical solutions, we conclude that the presented scheme is quite suitable for solving constant coefficient FHN models.

    Figure 5.  Exact and numerical measures of problem 1 for case (iii), η=1 on the left and η=4 on the right. The arrow shows the direction of the travelling wave.
    Figure 6.  Three dimensional plots of exact and numerical solutions of problem 1 for case (iii) at different values of η at t = 0.5.
    Figure 7.  Exact and numerical measures of problem 1 case (iv) for η=1 on the left and for η=1 on the left. The arrow shows the direction of the travelling wave.
    Figure 8.  Three dimensional plots of exact and numerical solutions of problem 1 case (iv) for different values of η at t=0.5.

    Here, we considered Eq (1.3) with α(t)=cos(t)=ϑ(t) and δ(t)=2cos(t). The associated exact solution is given by:

    Y(ξ,t)=η2+η2tanh[η2(ξ(3η)sin(t))]. (5.4)

    The corresponding initial and boundary conditions are used from the given solution. This problem is solved in the spatial domain [10,10] for comparison purposes. The numerical experiments are conducted with different values of η at time. The extracted findings are reported and matched with the existing results [32,33] in Table 10. The table demonstrates noticeable accuracy versus the cited work.

    Table 10.  Outcome of problem 2 for η=0.75.
    L L2 Lrms
    t Present [32] [33] Present [32] [33] Present [32] [33]
    0.2 5.325×107 1.235×105 1.122×105 3.626×106 1.312×106 7.154×106 1.124×108 4.567×105 ....
    0.5 1.203×106 5.198×104 7.584×105 8.234×106 6.099×106 7.489×106 6.344×108 5.642×105 ....
    1.0 2.158×106 6.328×104 9.127×105 1.521×105 2.121×105 8.689×105 2.164×107 8.167×105 ....
    1.5 2.996×106 8.538×104 9.242×105 2.213×105 3.234×105 7.027×105 4.160×107 2.368×104 ....

     | Show Table
    DownLoad: CSV

    Moreover, the exact and numerical solutions at different time levels are presented graphically in Figure 9 for mutual comparison. The solution comparison is also illustrated in the form of surfaces in Figure 10 for different values of η. In Figure 11, solutions are shown for different values of η which discloses the travelling front as η increases. The corresponding error at different time levels are pictured in Figure 12. Again, it is evident that the scheme produces pretty good results for time-dependent variable coefficient problems.

    Figure 9.  Exact and numerical measures of problem 2: (η=0.5) on the left and (η=0.75) on the right.
    Figure 10.  Exact and numerical solutions of problem 2 for different values of η at t=0.1.
    Figure 11.  Exact and numerical measures of problem 2 for different values of η left (t=0.1), right (t = 0.5).
    Figure 12.  Absolute error norm for different values of η at t=0.5 on the left and for η=0.75 at different time levels on the right for problem 2.

    Here, we discuss the stability of the present scheme computationally. Consider the aforementioned model as:

    tY=g(Y,ξY,ξξY), (6.1)

    with the associated initial and boundary conditions. Discretization of Eq (6.1) in space by the truncated Haar wavelet series gives rise to the ordinary differential equations system in a time grid as:

    ddt[Y]=[Θ][Y]+Ξ, (6.2)

    where [Y] describes the vector of unknowns, Θ is the coefficient matrix, and Ξ is a vector comprised of a nonhomogeneous part and boundary conditions. The stability of Eq (6.2) based on the coefficient matrix Θ which is as defined as follows:

    (a) For a constant coefficient: Θ=H+(diag(Y(t)))(1β2)(β2η),

    (b) For a time-dependent coefficient: Θ=ϑ(t)Hα(t)β1δ(t)(diag(Y(t)))(1β2)(β2η), where denotes the element-wise product. To discuss the stability of the proposed method, we debate on the eigenvalues of Θ. Let λi be the eigenvalues of Θ and t the time step size. As t, the stable solution Y needs to satisfy the following conditions:

    ● For real eigenvalues: 2.78<tλι<0,

    ● For imaginary eigenvalues: 22<tλι<22,

    ● For complex eigenvalues: tλι lies in the stability region addressed in [47,48].

    As stated in [48], if the eigenvalues are complex, the Re(tλι) may be a small positive number. For different problems the eigenvalues are calculated and plotted in Figures 1315, which show that the eigenvalues lie in the stable region. So, the method is stable and condition 3 is fulfilled. In Figures, the values of Re(tλι) are small, which is shown by the value of 103.

    Figure 13.  A scattering of eigenvalues of the jacobian matrix of problem 1 case (i) for η=1 (on the left) and for η=0.75 (on the right) at t=0.1.
    Figure 14.  A scattering of eigenvalues of the jacobian matrix of problem 1 case (iv) for η=1 (on the left) and for η = 4 (on the right) at t=0.1.
    Figure 15.  A scattering of eigenvalues of the jacobian matrix of problem 2 for η=0.5 (on the left) and for η=0.75 (on the right) at t=0.1.

    In this work, the Haar wavelet method of lines is implemented for the numerical solutions of the FHN reaction diffusion model with constant and time-dependent coefficients. The collocation procedure has been adopted in Haar wavelet basis for the estimation of the derivatives and solution. In this way, the nonlinear FHN models has been transformed to the initial value problems. Thereafter, the initial value problems have been solved with RK-4 scheme. The resultant outcomes have been matched with some existing literature work. Moreover, the stability of the scheme has been verified computationally. It has been noticed that the proposed numerical strategy is a good tool to estimate the solutions of the FHN models with constant and time-dependent coefficients.

    Aslam Khan: Software, writing original draft preparation; Abdul Ghafoor: Supervision, conceptualization, methodology; Emek Khan: reviewing original draft; Kamal Shah: formal analysis, Funding acquisition; Thabet Abdeljawad: validation, project administration.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors would like to thank Prince Sultan University for paying the APC and for their support through the TAS research lab.

    The authors declare there is no conflict of interest.



    [1] B. Akesson, Understanding bridges collapses, London: CRC Press, Taylor & Francis Group, 2008.
    [2] O. H. Ammann, T. von Kármán, G. B. Woodruff, The failure of the Tacoma Narrows Bridge, Technical Report, Washington D.C.: Federal Works Agency, 1941.
    [3] Annales des ponts et chaussées: Rapport de la Commission d'enquête nommée par arrêté de M. le Préfet de Maine-et-Loire, en date du 20 avril 1850, pour rechercher les causes et les circonstances qui ont amené la chûte du pont suspendu de la Baisse-Chaîne, 1850.
    [4] Anonymous, Fall of the Broughton Suspension Bridge, near Manchester, The Manchester Guardian, Vol. 9, No. 53, 1831,384–389.
    [5] P. R. S. Antunes, F. Gazzola, Some solutions of minimaxmax problems for the torsional displacements of rectangular plates, ZAMM-Z. Angew. Math. Mech., 98 (2018), 1974–1991. http://doi.org/10.1002/zamm.201800065 doi: 10.1002/zamm.201800065
    [6] E. Arioglu, Importance of "heuristics" in suspension bridge engineering and 1915 Çanakkale bridge, In: Developments in international bridge engineering, Cham: Springer, 2021, 19–41. http://doi.org/10.1007/978-3-030-59169-4_2
    [7] G. Arioli, F. Gazzola, A new mathematical explanation of what triggered the catastrophic torsional mode of the Tacoma Narrows Bridge collapse, Appl. Math. Model., 39 (2015), 901–912. http://doi.org/10.1016/j.apm.2014.06.022 doi: 10.1016/j.apm.2014.06.022
    [8] G. Arioli, F. Gazzola, On a nonlinear nonlocal hyperbolic system modeling suspension bridges, Milan J. Math., 83 (2015), 211–236. http://doi.org/10.1007/s00032-015-0239-9 doi: 10.1007/s00032-015-0239-9
    [9] G. Arioli, F. Gazzola, Torsional instability in suspension bridges: the Tacoma Narrows Bridge case, Commun. Nonlinear Sci. Numer. Simulat., 42 (2017), 342–357. http://doi.org/10.1016/j.cnsns.2016.05.028 doi: 10.1016/j.cnsns.2016.05.028
    [10] A Great bridge falls, The New York Times, November 9, 1940.
    [11] J. R. Banerjee, A simplified method for the free vibration and flutter analysis of bridge decks, J. Sound Vib., 260 (2003), 829–845. http://doi.org/10.1016/S0022-460X(02)00929-X doi: 10.1016/S0022-460X(02)00929-X
    [12] U. Battisti, E. Berchio, A. Ferrero, F. Gazzola, Energy transfer between modes in a nonlinear beam equation, J. Math. Pure. Appl., 108 (2017), 885–917. http://doi.org/10.1016/j.matpur.2017.05.010 doi: 10.1016/j.matpur.2017.05.010
    [13] J. A. Bello, E. Fernández-Cara, J. Lemoine, J. Simon, The differentiability of the drag with respect to the variations of a Lipschitz domain in a Navier-Stokes flow, SIAM J. Control Optim., 35 (1997), 626–640. http://doi.org/10.1137/S0363012994278213 doi: 10.1137/S0363012994278213
    [14] V. Benci, D. Fortunato, F. Gazzola, Existence of torsional solitons in a beam model of suspension bridge, Arch. Rational Mech. Anal., 226 (2017), 559–585. http://doi.org/10.1007/s00205-017-1138-8 doi: 10.1007/s00205-017-1138-8
    [15] E. Berchio, D. Buoso, F. Gazzola, A measure of the torsional performances of partially hinged rectangular plates, In: Integral methods in science and engineering, Cham: Birkäuser, 2017, 35–46. http://doi.org/10.1007/978-3-319-59384-5_4
    [16] E. Berchio, D. Buoso, F. Gazzola, On the variation of longitudinal and torsional frequencies in a partially hinged rectangular plate, ESAIM: COCV, 24 (2018), 63–87. http://doi.org/10.1051/cocv/2016076 doi: 10.1051/cocv/2016076
    [17] E. Berchio, D. Buoso, F. Gazzola, D. Zucco, A minimaxmax problem for improving the torsional stability of rectangular plates, J. Optim. Theory Appl., 177 (2018), 64–92. http://doi.org/10.1007/s10957-018-1261-1 doi: 10.1007/s10957-018-1261-1
    [18] E. Berchio, A. Falocchi, About symmetry in partially hinged composite plates, Appl. Math. Optim., 84 (2021), 2645–2669. http://doi.org/10.1007/s00245-020-09722-y doi: 10.1007/s00245-020-09722-y
    [19] E. Berchio, A. Falocchi, Maximizing the ratio of eigenvalues of non-homogeneous partially hinged plates, J. Spectr. Theory, 11 (2021), 743–780. http://doi.org/10.4171/JST/355 doi: 10.4171/JST/355
    [20] E. Berchio, A. Falocchi, Some remarks about a worst-case problem for the torsional response of a plate, In: Interactions between elasticity and fluid dynamics, EMS Press, in press.
    [21] E. Berchio, A. Falocchi, A. Ferrero, D. Ganguly, On the first frequency of reinforced partially hinged plates, Commun. Contemp, Math., 23 (2021), 1950074. http://doi.org/10.1142/S0219199719500743 doi: 10.1142/S0219199719500743
    [22] E. Berchio, A. Falocchi, M. Garrione, On the stability of a nonlinear nonhomogeneous multiply hinged beam, SIAM J. Appl. Dyn. Syst., 20 (2021), 908–940. http://doi.org/10.1137/20M1374109 doi: 10.1137/20M1374109
    [23] E. Berchio, A. Ferrero, F. Gazzola, Structural instability of nonlinear plates modelling suspension bridges: mathematical answers to some long-standing questions, Nonlinear Anal. Real, 28 (2016), 91–125. http://doi.org/10.1016/j.nonrwa.2015.09.005 doi: 10.1016/j.nonrwa.2015.09.005
    [24] E. Berchio, F. Gazzola, A qualitative explanation of the origin of torsional instability in suspension bridges, Nonlinear Anal. Theor., 121 (2015), 54–72. http://doi.org/10.1016/j.na.2014.10.026 doi: 10.1016/j.na.2014.10.026
    [25] E. Berchio, F. Gazzola, The role of aerodynamic forces in a mathematical model for suspension bridges, Conference Publications, 2015 (2015), 112–121. http://doi.org/10.3934/proc.2015.0112 doi: 10.3934/proc.2015.0112
    [26] E. Berchio, F. Gazzola, C. Zanini, Which residual mode captures the energy of the dominating mode in second order Hamiltonian systems?, SIAM J. Appl. Dyn. Syst., 15 (2016), 338–355. http://doi.org/10.1137/140990577 doi: 10.1137/140990577
    [27] K. Y. Billah, R. H. Scanlan, Resonance, Tacoma Narrows Bridge failure, and undergraduate physics textbooks, Amer. J. Phys., 59 (1991), 118–124. http://doi.org/10.1119/1.16590 doi: 10.1119/1.16590
    [28] D. Bonheure, F. Gazzola, I. Lasiecka, J. Webster, Long-time dynamics of a hinged-free plate driven by a nonconservative force, Ann. Inst. H. Poincaré Anal. Non Linéaire, 39 (2022), 457–500. http://doi.org/10.4171/AIHPC/13 doi: 10.4171/AIHPC/13
    [29] D. Bonheure, F. Gazzola, E. M. dos Santos, Periodic solutions and torsional instability in a nonlinear nonlocal plate equation, SIAM J. Math. Anal., 51 (2019), 3052–3091. http://doi.org/10.1137/18M1221242 doi: 10.1137/18M1221242
    [30] D. Bonheure, F. Gazzola, G. Sperone, Eight(y) mathematical questions on fluids and structures, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., 30 (2019), 759–815. http://doi.org/10.4171/RLM/870 doi: 10.4171/RLM/870
    [31] P. Cannarsa, F. Gazzola, Dynamic optimization for beginners – with prerequisites and applications, EMS, 2021.
    [32] H. Cao, X. Qian, Z. Chen, H. Zhu, Layout and size optimization of suspension bridges based on coupled modelling approach and enhanced particle swarm optimization, Eng. Struct., 146 (2017), 170–183. http://doi.org/10.1016/j.engstruct.2017.05.048 doi: 10.1016/j.engstruct.2017.05.048
    [33] A. Capsoni, R. Ardito, A. Guerrieri, Stability of dynamic response of suspension bridges, J. Sound Vib., 393 (2017), 285–307. http://doi.org/10.1016/j.jsv.2017.01.009 doi: 10.1016/j.jsv.2017.01.009
    [34] S. Chanillo, C. E. Kenig, T. To, Regularity of the minimizers in the composite membrane problem in R2, J. Funct. Anal., 255 (2008), 2299–2320. http://doi.org/10.1016/j.jfa.2008.04.015 doi: 10.1016/j.jfa.2008.04.015
    [35] S. Chanillo, C. E. Kenig, Weak uniqueness and partial regularity for the composite membrane problem, J. Eur. Math. Soc., 10 (2008), 705–737. http://doi.org/10.4171/JEMS/127 doi: 10.4171/JEMS/127
    [36] C. Chicone, Ordinary differential equations with applications, 2 Eds., New York: Springer, 2006. http://doi.org/10.1007/0-387-35794-7
    [37] J. Chu, M. Garrione, F. Gazzola, Stability analysis in some strongly prestressed rectangular plates, Evol. Equ. Control Theory, 9 (2020), 275–299. http://doi.org/10.3934/eect.2020006 doi: 10.3934/eect.2020006
    [38] G. Crasta, A. Falocchi, F. Gazzola, A new model for suspension bridges involving the convexification of the cables, Z. Angew. Math. Phys., 71 (2020), 93. http://doi.org/10.1007/s00033-020-01316-6 doi: 10.1007/s00033-020-01316-6
    [39] Destruction of the Wheeling Suspension Bridge, The Intelligencer, Wheeling, Va., Vol. 2, no. 225, p. 3, Thursday, May 18, 1854.
    [40] Eurocode 1: Actions on structures – Part 1–4: General actions-Wind actions, The European Union Per Regulation 305/2011, Directive 98/34/EC & 2004/18/EC. Available from: http://www.phd.eng.br/wp-content/uploads/2015/12/en.1991.1.4.2005.pdf.
    [41] A. Falocchi, Torsional instability in a nonlinear isolated model for suspension bridges with fixed cables and extensible hangers, IMA J. Appl. Math., 83 (2018), 1007–1036. http://doi.org/10.1093/imamat/hxy032 doi: 10.1093/imamat/hxy032
    [42] A. Falocchi, Torsional instability and sensitivity analysis in a suspension bridge model related to the Melan equation, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 60–75. http://doi.org/10.1016/j.cnsns.2018.07.005 doi: 10.1016/j.cnsns.2018.07.005
    [43] A. Falocchi, Optimization of the structural performance of non-homogeneous partially hinged rectangular plates, In: Geometric properties for parabolic and elliptic PDE's, Cham: Springer, 2021, 43–65. http://doi.org/10.1007/978-3-030-73363-6_3
    [44] S. Farhangdoust, P. Eghbali, D. Younesian, Bistable tuned mass damper for suppressing the vortex induced vibrations in suspension bridges, Earthq. Struct., 18 (2020), 313–320. http://doi.org/10.12989/eas.2020.18.3.313 doi: 10.12989/eas.2020.18.3.313
    [45] F. B. Farquharson, Letter to the Editor, ENR, July 3, 1941, 1–37.
    [46] V. Ferreira, F. Gazzola, E. M. dos Santos, Instability of modes in a partially hinged rectangular plate, J. Differ. Equations, 261 (2016), 6302–6340. http://doi.org/10.1016/j.jde.2016.08.037 doi: 10.1016/j.jde.2016.08.037
    [47] A. Ferrero, An orthotropic plate model for decks of suspension bridges, Nonlinear Anal. Real, 68 (2022), 103701. http://doi.org/10.1016/j.nonrwa.2022.103701 doi: 10.1016/j.nonrwa.2022.103701
    [48] A. Ferrero, A note on an orthotropic plate model describing the deck of a bridge, 2021, arXiv: 2110.00421.
    [49] A. Ferrero, F. Gazzola, A partially hinged rectangular plate as a model for suspension bridges, Discrete Cont. Dyn. Syst., 35 (2015), 5879–5908. http://doi.org/10.3934/dcds.2015.35.5879 doi: 10.3934/dcds.2015.35.5879
    [50] J. Finley, A description of the patent Chain Bridge, Philadelphia: Bradford & Inskeep, 1810.
    [51] I. Fragalà, F. Gazzola, G. Sperone, Solenoidal extensions in domains with obstacles: explicit bounds and applications to Navier-Stokes equations, Calc. Var., 59 (2020), 196. http://doi.org/10.1007/s00526-020-01844-z doi: 10.1007/s00526-020-01844-z
    [52] K. Friedrichs, Die randwert und eigenwertprobleme aus der theorie der elastischen platten. (Anwendung der direkten methoden der variationsrechnung), Math. Ann., 98 (1928), 205–247. http://doi.org/10.1007/BF01451590 doi: 10.1007/BF01451590
    [53] M. Garrione, Beams with an intermediate pier: spectral properties, asymmetry and stability, Mathematics in Engineering, 3 (2021), 1–21. http://doi.org/10.3934/mine.2021016 doi: 10.3934/mine.2021016
    [54] M. Garrione, F. Gazzola, Loss of energy concentration in nonlinear evolution beam equations, J. Nonlinear Sci., 27 (2017), 1789–1827. http://doi.org/10.1007/s00332-017-9386-1 doi: 10.1007/s00332-017-9386-1
    [55] M. Garrione, F. Gazzola, Nonlinear equations and stability for beams and degenerate plates with several intermediate piers, Cham: Springer, 2019. http://doi.org/10.1007/978-3-030-30218-4
    [56] M. Garrione, F. Gazzola, Linear theory for beams with intermediate piers, Commun. Contemp. Math., 22 (2020), 1950081. http://doi.org/10.1142/S0219199719500810 doi: 10.1142/S0219199719500810
    [57] C. Gasparetto, F. Gazzola, Resonance tongues for the Hill equation with Duffing coefficients and instabilities in a nonlinear beam equation, Commun. Contemp. Math., 20 (2018), 1750022. http://doi.org/10.1142/S0219199717500225 doi: 10.1142/S0219199717500225
    [58] F. Gazzola, Hexagonal design for stiffening trusses, Annali di Matematica, 194 (2015), 87–108. http://doi.org/10.1007/s10231-013-0366-2 doi: 10.1007/s10231-013-0366-2
    [59] F. Gazzola, Mathematical models for suspension bridges, Cham: Springer, 2015. http://doi.org/10.1007/978-3-319-15434-3
    [60] F. Gazzola, H. C. Grunau, G. Sweers, Polyharmonic boundary value problems, Berlin, Heidelberg: Springer, 2010. http://doi.org/10.1007/978-3-642-12245-3
    [61] F. Gazzola, M. Jleli, B. Samet, On the Melan equation for suspension bridges, J. Fixed Point Theory Appl., 16 (2014), 159–188. http://doi.org/10.1007/s11784-014-0200-5 doi: 10.1007/s11784-014-0200-5
    [62] F. Gazzola, R. Pavani, Wide oscillations finite time blow up for solutions to nonlinear fourth order differential equations, Arch. Rational Mech. Anal., 207 (2013), 717–752. http://doi.org/10.1007/s00205-012-0569-5 doi: 10.1007/s00205-012-0569-5
    [63] F. Gazzola, V. Racič, A model of synchronisation in crowd dynamics, Appl. Math. Model., 59 (2018), 305–318. http://doi.org/10.1016/j.apm.2018.02.001 doi: 10.1016/j.apm.2018.02.001
    [64] F. Gazzola, A. Soufyane, Long-time behavior of partially damped systems modeling degenerate plates with piers, Nonlinearity, 34 (2021), 7705–7727. http://doi.org/10.1088/1361-6544/ac24e2 doi: 10.1088/1361-6544/ac24e2
    [65] F. Gazzola, G. Sperone, Thresholds for hanger slackening and cable shortening in the Melan equation for suspension bridges, Nonlinear Anal. Real, 39 (2018), 520–536. http://doi.org/10.1016/j.nonrwa.2017.08.001 doi: 10.1016/j.nonrwa.2017.08.001
    [66] F. Gazzola, G. Sperone, Steady Navier-Stokes equations in planar domains with obstacle and explicit bounds for unique solvability, Arch. Rational Mech. Anal., 238 (2020), 1283–1347. http://doi.org/10.1007/s00205-020-01565-9 doi: 10.1007/s00205-020-01565-9
    [67] F. Gazzola, G. Sperone, T. Weth, A connection between symmetry breaking for Sobolev minimizers and stationary Navier-Stokes flows past a circular obstacle, Appl. Math. Optim., 85 (2022), 10. http://doi.org/10.1007/s00245-022-09831-w doi: 10.1007/s00245-022-09831-w
    [68] F. Gazzola, Y. Wang, R. Pavani, Variational formulation of the Melan equation, Math. Method. Appl. Sci., 41 (2018), 943–951. http://doi.org/10.1002/mma.3962 doi: 10.1002/mma.3962
    [69] D. Green, W. G. Unruh, The failure of the Tacoma Bridge: A physical model, Amer. J. Phys., 74 (2006), 706–716. http://doi.org/10.1119/1.2201854 doi: 10.1119/1.2201854
    [70] J. D. Holmes, Wind loading of structures, 3 Eds., CRC Press, 2007. http://doi.org/10.1201/b18029
    [71] H. M. Irvine, Cable structures, Massachusetts: The MIT Press, 1981.
    [72] J. A. Jurado, S. Hernández, F. Nieto, A. Mosquera, Bridge aeroelasticity: sensitivity analysis and optimum design (high performance structures and materials), WIT Press, 2011.
    [73] I. B. Karintsev, I. V. Pavlenko, Hydroaeroelasticity, Sumy State University, 2017.
    [74] G. R. Kirchhoff, Über das gleichgewicht und die bewegung einer elastischen scheibe, J. Reine Angew. Math., 1850 (1850), 51–88. http://doi.org/10.1515/crll.1850.40.51 doi: 10.1515/crll.1850.40.51
    [75] B. Kawohl, J. Stará, G. Wittum, Analysis and numerical studies of a problem of shape design, Arch. Rational Mech. Anal., 114 (1991), 349–363. http://doi.org/10.1007/BF00376139 doi: 10.1007/BF00376139
    [76] W. Lacarbonara, Nonlinear structural mechanics, New York: Springer, 2013. http://doi.org/10.1007/978-1-4419-1276-3
    [77] A. C. Lazer, P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537–578. http://doi.org/10.1137/1032120 doi: 10.1137/1032120
    [78] W. J. Lewis, Tension cables in suspension bridges. A case of form-finding, In: Tension structures, form and behaviour, ICE Publishing, 2017,101–133. http://doi.org/10.1680/tsfab.61736.101
    [79] J. H. Lienhard, Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders, Research Division Bulletin, Washington State University College of Engineering, 1966.
    [80] A. E. H. Love, A treatise on the mathematical theory of elasticity, 4 Eds., Cambridge University Press, 1927.
    [81] M. Matsumoto, H. Matsumiya, S. Fujiwara, Y. Ito, New consideration on flutter properties based on step-by-step analysis, J. Wind Eng. Ind. Aerod., 98 (2010), 429–437. http://doi.org/10.1016/j.jweia.2010.02.001 doi: 10.1016/j.jweia.2010.02.001
    [82] P. J. McKenna, Large torsional oscillations in suspension bridges revisited: fixing an old approximation, Amer. Math. Mon., 106 (1999), 1–18. http://doi.org/10.1080/00029890.1999.12005001 doi: 10.1080/00029890.1999.12005001
    [83] P. J. McKenna, Oscillations in suspension bridges, vertical and torsional, Discrete. Cont. Dyn. Syst. S, 7 (2014), 785–791. http://doi.org/10.3934/dcdss.2014.7.785 doi: 10.3934/dcdss.2014.7.785
    [84] J. Melan, Theory of arches and suspension bridges, London: Myron Clark Pul. Comp., 1913.
    [85] O. Pironneau, On optimum profiles in Stokes flow, J. Fluid Mech., 59 (1973), 117–128. http://doi.org/10.1017/S002211207300145X doi: 10.1017/S002211207300145X
    [86] O. Pironneau, On optimum design in fluid mechanics, J. Fluid Mech., 64 (1974), 97–110. http://doi.org/10.1017/S0022112074002023 doi: 10.1017/S0022112074002023
    [87] W. Podolny, Cable-suspended bridges, In: Structural steel designer's handbook: AISC, AASHTO, AISI, ASTM, AREMA, and ASCE-07 design standards, 5 Eds., New York: McGraw-Hill, 2011.
    [88] W. A. Provis, Observations on the effects produced by wind on the suspension bridge over the Menai Strait, more especially as relates to the injuries sustained by the roadways during the storm of January, 1839; together with brief notices of various suggestions for repairing the structure, Transactions of the Institution of Civil Engineers, 3 (1842), 357–370. http://doi.org/10.1680/itrcs.1842.24373 doi: 10.1680/itrcs.1842.24373
    [89] W. Reid, A short account of the failure of a part of the Brighton Chain Pier, in the gale of the 30th of November 1836, Papers on Subjects Connected with the Duties of the Corps of Royal Engineers, Professional Papers of the Corps of Royal Engineers, Vol.I, 1844.
    [90] Y. Rocard, Dynamic instability: automobiles, aircraft, suspension bridges, London: Crosby Lockwood, 1957.
    [91] R. H. Scanlan, The action of flexible bridges under wind, I: flutter theory, J. Sound Vib., 60 (1978), 187–199. http://doi.org/10.1016/S0022-460X(78)80028-5 doi: 10.1016/S0022-460X(78)80028-5
    [92] R. H. Scanlan, The action of flexible bridges under wind, II: buffeting theory, J. Sound Vib., 60 (1978), 201–211. http://doi.org/10.1016/S0022-460X(78)80029-7 doi: 10.1016/S0022-460X(78)80029-7
    [93] R. H. Scanlan, J. J. Tomko, Airfoil and bridge deck flutter derivatives, Journal of the Engineering Mechanics Division, 97 (1971), 1717–1737. http://doi.org/10.1061/JMCEA3.0001526 doi: 10.1061/JMCEA3.0001526
    [94] R. Scott, In the wake of Tacoma. Suspension bridges and the quest for aerodynamic stability, ASCE Press, 2001. http://doi.org/10.1061/9780784405420
    [95] A. Selberg, Oscillation and aerodynamic instability of suspension bridges, Acta Polytechnica Scandinavica, Civil Engineering and Construction Series, 1961.
    [96] B. Semper, A mathematical model for suspension bridge vibration, Math. Comput. Model., 18 (1993), 17–28. http://doi.org/10.1016/0895-7177(93)90203-B doi: 10.1016/0895-7177(93)90203-B
    [97] B. Semper, Finite element methods for suspension bridge models, Comput. Math. Appl., 26 (1993), 77–91. http://doi.org/10.1016/0898-1221(93)90076-8 doi: 10.1016/0898-1221(93)90076-8
    [98] B. Semper, Finite element approximation of a fourth order integro-differential equation, Appl. Math. Lett., 7 (1994), 59–62. http://doi.org/10.1016/0893-9659(94)90054-X doi: 10.1016/0893-9659(94)90054-X
    [99] E. Simiu, R. H. Scanlan, Wind effects on structures: fundamentals and applications to design, 3 Eds., New York: John Wiley, 1996.
    [100] F. C. Smith, G. S. Vincent, Aerodynamic stability of suspension bridges: with special reference to the Tacoma Narrows Bridge, Part II: Mathematical analysis, University of Washington Press, 1950.
    [101] Tacoma Narrows Bridge collapse, Video from Youtube, 1940. Available from: http://www.youtube.com/watch?v=3mclp9QmCGs.
    [102] E. Ventsel, T. Krauthammer, Thin plates and shells: theory, analysis, and applications, New York: CRC Press, 2001. http://doi.org/10.1201/9780203908723
    [103] F. Verantii, Machinae novae, Venetiis cum Privilegiis, 1595.
    [104] F. Verhulst, Nonlinear differential equations and dynamical systems, Berlin: Springer, 1990. http://doi.org/10.1007/978-3-642-97149-5
    [105] H. Wagner, Über die entstehung des dynamischen auftriebes von tragflügeln, ZAMM-Z. Angew. Math. Mech., 5 (1925), 17–35. http://doi.org/10.1002/zamm.19250050103 doi: 10.1002/zamm.19250050103
    [106] L. Xu, Y. Hui, W. Zhu, X. Hua, Three-to-one internal resonance analysis for a suspension bridge with spatial cable through a continuum model, Eur. J. Mech. A-Solid., 90 (2021), 104354. http://doi.org/10.1016/j.euromechsol.2021.104354 doi: 10.1016/j.euromechsol.2021.104354
    [107] M. Zurru, Non-linear normal modes of plane cable trusses, Comput. Struct., 257 (2021), 106662. http://doi.org/10.1016/j.compstruc.2021.106662 doi: 10.1016/j.compstruc.2021.106662
  • This article has been cited by:

    1. Muhammad Bilal, Abdul Ghafoor, Manzoor Hussain, Kamal Shah, Thabet Abdeljawad, Numerical Scheme for the Computational Study of Two Dimensional Diffusion and Burgers’ Systems with Stability and Error Estimate, 2025, 32, 1776-0852, 10.1007/s44198-025-00277-6
    2. Ibrahim Abbas, Aboelnour Abdalla, Areej Almuneef, Alaa A. El-Bary, Generalized thermoelastic interactions in porous asphaltic material under fractional time derivative, 2025, 72, 2214157X, 106304, 10.1016/j.csite.2025.106304
    3. Aslam Khan, Abdul Ghafoor, Zahir Shah, Mansoor H. Alshehri, Narcisa Vrinceanu, Solving Nonlinear Burgers' Type Problems Via Haar Wavelet Method of Lines, 2025, 0170-4214, 10.1002/mma.11055
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6054) PDF downloads(303) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog