
We investigate the boundary Harnack principle for uniformly elliptic operators in divergence form in Hölder domains of exponent α>0. We also deal with operators in nondivergence form with coefficient that remain constant in the graph direction.
Citation: Daniela De Silva, Ovidiu Savin. On the boundary Harnack principle in Hölder domains[J]. Mathematics in Engineering, 2022, 4(1): 1-12. doi: 10.3934/mine.2022004
[1] | Daphiny Pottmaier, Marcello Baricco . Materials for hydrogen storage and the Na-Mg-B-H system. AIMS Energy, 2015, 3(1): 75-100. doi: 10.3934/energy.2015.1.75 |
[2] | Daido Fujita, Takahiko Miyazaki . Techno-economic analysis on the balance of plant (BOP) equipment due to switching fuel from natural gas to hydrogen in gas turbine power plants. AIMS Energy, 2024, 12(2): 464-480. doi: 10.3934/energy.2024021 |
[3] | Daido Fujita . The prospects of clean hydrogen utilization in power generation industry. AIMS Energy, 2023, 11(5): 991-1011. doi: 10.3934/energy.2023047 |
[4] | Peter Majewski, Fatemeh Salehi, Ke Xing . Green hydrogen. AIMS Energy, 2023, 11(5): 878-895. doi: 10.3934/energy.2023042 |
[5] | Vui Thi Hoang, Diem Huong Hoang, Ngoc Duc Pham, Hanh My Tran, Ha Thi Viet Bui, Tien Anh Ngo . Hydrogen production by newly isolated Clostridium species from cow rumen in pure- and co-cultures on a broad range of carbon sources. AIMS Energy, 2018, 6(5): 846-865. doi: 10.3934/energy.2018.5.846 |
[6] | Dheeraj Rathore, Anoop Singh, Divakar Dahiya, Poonam Singh Nigam . Sustainability of biohydrogen as fuel: Present scenario and future perspective. AIMS Energy, 2019, 7(1): 1-19. doi: 10.3934/energy.2019.1.1 |
[7] | Kharisma Bani Adam, Jangkung Raharjo, Desri Kristina Silalahi, Bandiyah Sri Aprilia, IGPO Indra Wijaya . Integrative analysis of diverse hybrid power systems for sustainable energy in underdeveloped regions: A case study in Indonesia. AIMS Energy, 2024, 12(1): 304-320. doi: 10.3934/energy.2024015 |
[8] | Patrick Moriarty, Damon Honnery . When will the hydrogen economy arrive?. AIMS Energy, 2022, 10(6): 1100-1121. doi: 10.3934/energy.2022052 |
[9] | Lifita N. Tande, Valerie Dupont . Autothermal reforming of palm empty fruit bunch bio-oil: thermodynamic modelling. AIMS Energy, 2016, 4(1): 68-92. doi: 10.3934/energy.2016.1.68 |
[10] | Lawrence Moura, Mario González, Jéssica Silva, Lara Silva, Izaac Braga, Paula Ferreira, Priscila Sampaio . Evaluation of technological development of hydrogen fuel cells based on patent analysis. AIMS Energy, 2024, 12(1): 190-213. doi: 10.3934/energy.2024009 |
We investigate the boundary Harnack principle for uniformly elliptic operators in divergence form in Hölder domains of exponent α>0. We also deal with operators in nondivergence form with coefficient that remain constant in the graph direction.
Fractional calculus (FC) is a subject that dates back to 1695 and is regarded to be as old as ordinary calculus. Ordinary calculus made it impossible to model nonlinear real-world phenomenon in nature, hence fractional calculus became popular among researchers. The fractional derivative is the derivative of arbitrary order in applied mathematics and mathematical analysis. In the nineteenth century, Riemann Liouville [1] implemented the fractional derivative when simulating real-world problems. Some of the Nobel contributions of mathematicians are listed here, Caputo [2], Kemple and Beyer [3], Abbasbandy [4], Jafari and Seifi [5, 6], Miller and Ross [7], Podlubny [8], Kilbas and Trujillo [9], Diethelm et al. [10], Hayat et al. [11], Debanth [12], Momani and Shawagfeh [13], etc. Fractional calculus has become one of the fascinating science and engineering research areas in recent years. Viscoelasticity and damping, diffusion and wave propagation, electromagnetism and heat transfer, biology, signal processing, robotics system classification, physics, mechanics, chemistry, and control theory are the most important scientific fields that use fractional calculus at the moment.
Researchers are interested in FC because of its wide applications in physics, engineering, and real-life sciences. Fractional differential equations accurately represent these physical facts. Fractional differential equations are significantly greater generalizations of integer-order differential equations. Fractional differential equations (FDEs) have generated much interest in recent years. As a result of their frequent appearance in diverse applications, such as quantum mechanics [14], chaotic dynamics [15], plasma physics [16, 17], theory of long-range interaction [18], mechanics of non-Hamiltonian systems [19], physical kinetics [20], anomalous diffusion and transport theory [21], mechanics of fractional media [22], astrophysics [23], and so on. FDEs have been the subject of numerous investigations. Many works have been dedicated to developing efficient methods for solving FDEs, but it is important to remember that finding an analytical or approximate solution is difficult, therefore, accurate methods for obtaining FDE solutions are still being researched. In the literature, there are several analytical and numerical approaches for solving FDEs. For example, the generalized differential transform method (GDTM) [24], adomian decomposition method (ADM) [25], homotopy analysis method (HAM) [26], variational iteration method (VIM) [27], homotopy perturbation method (HPM) [28], Elzaki transform decomposition method (ETDM) [29], iterative Laplace transform method (ILTM) [30], fractional wavelet method (FWM) [31, 32], residual power series method (RPSM) [33, 34].
In this paper, we used two powerful techniques with the aid of the Antagana-Baleanu fractional derivative operator and Laplace transform for solving time fractional NWSEs. The two well-known methods that we implement are LTDM and VITM. The suggested techniques give series form solutions having quick convergence towards the exact solutions. Four non-linear NWSEs case study issues are resolved using the given methodology. Newell and Whitehead [35] developed the non-linear NWSE. The diffusion term's influence interacts with the reaction term's nonlinear effect in the Newell-Whitehead-Segel equation model. The fractional NWSE is written in the following way:
Dℑτμ(ξ,τ)=kD2ξμ(ξ,τ)+gμ−hμr, | (1.1) |
where r is a positive integer and g,h are real numbers with k>0. The first term Dℑτμ(ξ,τ) on the left hand side in (1.1) shows the deviations of μ(ξ,τ) with time at a fixed location, while the right hand side first term D2ξμ(ξ,τ) shows the deviations with spatial variable ξ of μ(ξ,τ) at a specific time and the right hand side remaining terms gμ−hμr, is the source terms. μ(ξ,τ) is a function of the spatial variable ξ and the temporal variable τ in (1.1), with ξ∈R and τ≥0. The function μ(ξ,τ) might be considered the (nonlinear) temperature distribution in an infinitely thin and long rod or as the fluid flow velocity in an infinitely long pipe with a small diameter. Many researchers find the analytical solution of NWSEs [36, 37] due to their wide range of applications in mechanical and chemical engineering, ecology, biology, and bioengineering.
Some basic definitions related to fractional calculus are expressed here in this section.
Definition 2.1. The Caputo fractional-order derivative is given as
LCDℑτ{g(τ)}=1(n−ℑ)∫τ0(τ−k)n−ℑ−1gn(k)dk, | (2.1) |
where n<ℑ≤n+1.
Definition 2.2. The Caputo fractional-order derivative via Laplace transformation LCDℑτ{g(τ)} is defined as
L{LCDℑτ{g(τ)}}(ω)=1ωn−ℑ[ωnL{g(ξ,τ)}(ω)−ωn−1g(ξ,0)−⋯−gn−1(ξ,0)]. | (2.2) |
Definition 2.3. The Atangana-Baleanu derivative in Caputo manner is given as
ABCDℑτ{g(τ)}=A(ℑ)1−ℑ∫τag′(k)Eℑ[−ℑ1−ℑ(1−k)ℑ]dk, | (2.3) |
where A(γ) is a normalization function such that A(0)=A(1)=1,g∈H1(a,b),b>a,ℑ ∈[0,1] and Eγ represent the Mittag-Leffler function.
Definition 2.4. The Atangana-Baleanu derivative in Riemann-Liouville manner is given as
ABCDℑτ{g(τ)}=A(ℑ)1−ℑddτ∫τag(k)Eℑ[−γ1−ℑ(1−k)ℑ]dk. | (2.4) |
Definition 2.5. The Laplace transform connected with the Atangana-Baleanu operator is define as
ABDℑτ{g(τ)}(ω)=A(γ)ωℑL{g(τ)}(ω)−ωℑ−1g(0)(1−ℑ)(ωℑ+ℑ1−γ). | (2.5) |
Definition 2.6. Consider 0<ℑ<1, and g is a function of ℑ, then the fractional-order integral operator of ℑ is given as
ABCIℑτ{g(τ)}=1−ℑA(ℑ)g(τ)+ℑA(ℑ)Γ(ℑ)∫τag(k)(τ−k)ℑ−1dk. | (2.6) |
The solution by LTDM for partial differential equations having fractional-order is described in this section.
Dℑτμ(ξ,τ)+ˉG1(ξ,τ)+N1(ξ,τ)=F(ξ,τ),0<ℑ≤1, | (3.1) |
with some initial sources
μ(ξ,0)=ξ(ξ)and∂∂τμ(ξ,0)=ζ(ξ), |
where Dℑτ=∂ℑ∂τℑ is the fractional-order AB operator having order ℑ,ˉG1 is linear operator and N1 is non-linear and F(ξ,τ) indicates the source term.
Employing the Laplace transform to (3.1), and we acquire
L[Dℑτμ(ξ,τ)+ˉG1(ξ,τ)+N1(ξ,τ)]=L[F(ξ,τ)]. | (3.2) |
By the virtue of Laplace differentiation property, we have
L[μ(ξ,τ)]=Θ(ξ,ω)−ωℑ+ℑ(1−ℑ)ωℑL[ˉG1(ξ,τ)+N1(ξ,τ)], | (3.3) |
where
Θ(ξ,ω)=1ωℑ+1[ωℑg0(ξ)+ωℑ−1g1(ξ)+⋯+g1(ξ)]+ωℑ+ℑ(1−ℑ)ωℑF(ξ,τ). |
Now, applying inverse Laplace transform yields (3.3) into
μ(ξ,τ)=Θ(ξ,ω)−L−1{ωℑ+ℑ(1−ℑ)ωℑL[ˉG1(ξ,τ)+N1(ξ,τ)]}, | (3.4) |
where Θ(ξ,ω) demonstrates the terms occurring from source factor. LTDM determines the solution of the infinite sequence of μ(ξ,τ)
μ(ξ,τ)=∞∑m=0μm(ξ,τ). | (3.5) |
and decomposing the nonlinear operator N1 as
N1(ξ,τ)=∞∑m=0Am, | (3.6) |
where Am are Adomian polynomials given as
Am=1m![∂m∂ℓm{N1(∞∑k=0ℓkξk,∞∑k=0ℓkτk)}]ℓ=0. | (3.7) |
Putting (3.5) and (3.7) into (3.4), gives
∞∑m=0μm(ξ,τ)=Θ(ξ,ω)−L−1{ωℑ+ℑ(1−ℑ)ωℑL[ˉG1(∞∑m=0ξm,∞∑m=0τm)+∞∑m=0Am]}. | (3.8) |
The following terms are described:
μ0(ξ,τ)=Θ(ξ,ω) | (3.9) |
μ1(ξ,τ)=L−1{ωℑ+ℑ(1−ℑ)ωℑL[ˉG1(ξ0,τ0)+A0]}. | (3.10) |
Thus all components for m≥1 are calculated as
μm+1(ξ,τ)=L−1{ωℑ+ℑ(1−ℑ)ωℑL[ˉG1(ξm,τm)+Am]}. | (3.11) |
The VITM solution for FPDEs is defined in this section.
Dℑτμ(ξ,τ)+Mμ(ξ,τ)+Nμ(ξ,τ)−P(ξ,τ)=0,m−1<ℑ≤m, | (4.1) |
with initial source
μ(ξ,0)=g1(ξ), | (4.2) |
where Dℑτ=∂ℑ∂τℑ is stand for fractional-order AB operator, M is a linear operator and N is nonlinear term and P indicates the source term.
The Laplace transform is applied to Eq (4.1), we have
L[Dℑτμ(ξ,τ)]+L[Mμ(ξ,τ)+Nμ(ξ,τ)−P(ξ,τ)]=0. | (4.3) |
By the property of LT differentiation, we get
L[μ(ξ,τ)]=ωℑωℑ+ℑ(1−ℑ)L[Mμ(ξ,τ)+Nμ(ξ,τ)−P(ξ,τ)]. | (4.4) |
The iteration technique for (4.4) as
μm+1(ξ,τ)=μm(ξ,τ)+ℑ(s)[ωℑωℑ+ℑ(1−ℑ)L[Mμ(ξ,τ)+Nμ(ξ,τ)−P(ξ,τ)]], | (4.5) |
where ℑ(s) is Lagrange multiplier and
ℑ(s)=−ωℑ+ℑ(1−ℑ)ωℑ, | (4.6) |
with the application of inverse Laplace transform, (4.5) series form solution is given by
μ0(ξ,τ)=μ(0)+L−1[ℑ(s)L[−P(ξ,τ)]]μ1(ξ,τ)=L−1[ℑ(s)L[Mμ(ξ,τ)+Nμ(ξ,τ)]]⋮μn+1(ξ,τ)=L−1[ℑ(s)L[M[μ0(ξ,τ)+μ1(ξ,τ)+⋯+μn(ξ,τ)]]+N[μ0(ξ,τ)+μ1(ξ,τ)+⋯+μn(ξ,τ)]]. |
Here we discuss uniqueness and convergence analysis.
Theorem 5.1. The result of (3.1) is unique for LTDMABC, when
0<(θ1+θ2)(1−ℑ+ℑτμΓ(μ+1))<1. |
Proof. Let H=(C[J],||.||) with the norm ||ϕ(τ)||=maxτ∈J|ϕ(τ)| be the Banach space, for all continuous function on J. Let I:H→H is a non-linear mapping, where
μCl+1=μC0+L−1[p(ℑ,υ,ω)L[L(μl(ξ,τ))+N(μl(ξ,τ))]],l≥0. |
Suppose that |L(μ)−L(μ∗)|<θ1|μ−μ∗| and |N(μ)−N(μ∗)|<θ2|μ−μ∗|, where μ:=μ(ξ,τ) and μ∗:=μ∗(ξ,τ) are two different function values and θ1,θ2 are Lipschitz constants.
||Iμ−Iμ∗||≤maxt∈J|L−1[q(ℑ,υ,ω)L[L(μ)−L(μ∗)]+q(ℑ,υ,ω)L[N(μ)−N(μ∗)]|]≤maxt∈J[θ1L−1[q(ℑ,υ,ω)L[|μ−μ∗|]]+θ2L−1[q(ℑ,υ,ω)L[|μ−μ∗|]]]≤maxt∈J(θ1+θ2)[L−1[q(ℑ,υ,ω)L|μ−μ∗|]]≤(ℑ1+θ2)[L−1[q(ℑ,υ,ω)L||μ−μ∗||]]=(θ1+θ2)(1−ℑ+ℑτℑΓℑ+1)||μ−μ∗||, | (5.1) |
where I is contraction as
0<(θ1+θ2)(1−ℑ+ℑτℑΓℑ+1)<1. |
From Banach fixed point theorem, the result of (3.1) is unique.
Theorem 5.2. The LTDMABC result of (3.1) is convergent.
Proof. Let μm=∑mr=0μr(ξ,τ). To show that μm is a Cauchy sequence in H. For n∈N, let
||μm−μn||=maxτ∈J|m∑r=n+1μr|≤maxτ∈J|L−1[q(ℑ,υ,ω)L[m∑r=n+1(L(μr−1)+N(μr−1))]]|=maxτ∈J|L−1[q(ℑ,υ,ω)L[m−1∑r=n+1(L(μr)+N(ur))]]|≤maxτ∈J|L−1[q(ℑ,υ,ω)L[(L(μm−1)−L(μn−1)+N(μm−1)−N(μn−1))]]|≤θ1maxτ∈J|L−1[q(ℑ,υ,ω)L[(L(μm−1)−L(μn−1))]]|+θ2maxτ∈J|L−1[p(ℑ,υ,ω)L[(N(μm−1)−N(μn−1))]]|=(θ1+θ2)(1−ℑ+ℑτℑΓ(ℑ+1))||μm−1−μn−1||. | (5.2) |
Let m=n+1, then
||μn+1−μn||≤θ||μn−μn−1||≤θ2||μn−1μn−2||≤⋯≤θn||μ1−μ0||, | (5.3) |
where
θ=(θ1+θ2)(1−ℑ+ℑτℑΓ(ℑ+1)). |
Similarly, we have
||μm−μn||≤||μn+1−μn||+||μn+2μn+1||+⋯+||μm−μm−1||≤(θn+θn+1+⋯+θm−1)||μ1−μ0||≤θn(1−θm−n1−θ)||μ1||. | (5.4) |
As 0<θ<1, we get 1−θm−n<1. Therefore, we have
||μm−μn||≤θn1−θmaxt∈J||μ1||. | (5.5) |
Since ||μ1||<∞ and ||μm−μn||→0, when n→∞. As a result, μm is a Cauchy sequence in H, implying that the series μm is convergent.
Four cases of nonlinear NWSEs are presented to demonstrate the suggested technique's capability and reliability.
Example 1. The NWSE has given in (1.1) for g=2,h=3,k=1 and r=2 becomes
Dℑτμ(ξ,τ)=D2ξμ(ξ,τ)+2μ(ξ,τ)−3μ2(ξ,τ),0<θ≤1, | (6.1) |
with initial source μ(ξ,0)=Υ.
Applying Laplace transform to (6.1), we get
ωℑL[μ(ξ,τ)]−ω−1μ(ξ,0)ωℑ+ℑ(1−ωℑ)=L[D2ξμ(ξ,τ)+2μ(ξ,τ)−3μ2(ξ,τ)]. | (6.2) |
On taking Laplace inverse transform, we get
μ(ξ,τ)=Υ+L−1[ωℑ+ℑ(1−ωℑ)ωℑL[D2ξμ(ξ,τ)+2μ(ξ,τ)−3μ2(ξ,τ)]]. | (6.3) |
Assume that the solution, μ(ξ,τ) in the form of infinite series given by
μ(ξ,τ)=∞∑m=0μm(ξ,τ), | (6.4) |
where μ2=∑∞m=0Am are the so-called Adomian polynomials that represent the nonlinear terms, thus (6.3) having certain terms are rewritten as
∞∑m=0μm(ξ,τ)=Υ+L−1[ωℑ+ℑ(1−ωℑ)ωℑL[D2ξμ(ξ,τ)+2μ(ξ,τ)−3∞∑m=0Am]]. | (6.5) |
According to (3.7), the decomposition of nonlinear terms by Adomian polynomials is defined as
A0=μ20,A1=2μ0μ1,A2=2μ0μ2+(μ1)2. | (6.6) |
Thus, on comparing both sides of (6.5)
μ0(ξ,τ)=Υ. |
For m=0, we have
μ1(ξ,τ)=Υ(2−3Υ)[ℑτℑΓ(ℑ+1)+(1−ℑ)]. |
For m=1, we have
μ2(ξ,τ)=2Υ(2−3Υ)(1−3Υ)[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]. |
The approximate series solution is expressed as
μ(ξ,τ)=∞∑m=0μm(ξ,τ)=μ0(ξ,τ)+μ1(ξ,τ)+μ2(ξ,τ)+⋯. |
Therefore, we have
μ(ξ,τ)=Υ+Υ(2−3Υ)[ℑτℑΓ(ℑ+1)+(1−ℑ)]+2Υ(2−3Υ)(1−3Υ)[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]+⋯. |
Particularly, putting ℑ=1, we get the exact solution
μ(μ,τ)=−23Υexp(2τ)−23+Υ−Υexp(2τ). | (6.7) |
The analytical results by VITM:
The iteration formulas for (6.1), we have
μm+1(ξ,τ)=μm(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμm(ξ,τ)+2μm(ξ,τ)−3μ2m(ξ,τ)}], | (6.8) |
where μ0(ξ,τ)=Υ.
For m=0,1,2,…, we have
μ1(ξ,τ)=μ0(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμ0(ξ,τ)+2μ0(ξ,τ)−3μ20(ξ,τ)}]μ1(ξ,τ)=Υ(2−3Υ)[ℑτℑΓ(ℑ+1)+(1−ℑ)], | (6.9) |
μ2(ξ,τ)=μ1(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμ0(ξ,τ)+2μ0(ξ,τ)−3μ20(ξ,τ)}]μ2(ξ,τ)=2Υ(2−3Υ)(1−3Υ)[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2],⋮ | (6.10) |
Therefore, we obtain
μ(ξ,τ)=∞∑m=0μm(ξ,τ)=Υ+Υ(2−3Υ)[ℑτℑΓ(ℑ+1)+(1−ℑ)]+2Υ(2−3Υ)(1−3Υ)[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]+⋯. | (6.11) |
Particularly, putting ℑ=1, we get the exact solution, see Figure 1 and Table 1.
μ(ξ,τ)=−23Υexp(2τ)−23+Υ−Υexp(2τ). | (6.12) |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
Υ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.000000000000000 | 0.000000000000000 | 0.0000000000E+00 | 0.0000000000E+00 | 0.0000000000E+00 |
0.1 | 0.100000170000000 | 0.100000100000000 | 7.0000000000E-08 | 2.4390000000E-07 | 1.5317000000E-06 |
0.2 | 0.200000280000000 | 0.200000200000000 | 8.0000000000E-08 | 5.4790000000E-07 | 3.1233000000E-06 |
0.3 | 0.300000330000000 | 0.300000300000000 | 3.0000000000E-08 | 9.1180000000E-07 | 4.7750000000E-06 |
0.4 | 0.400000320000000 | 0.400000400000000 | 8.0000000000E-08 | 1.3357000000E-06 | 6.4866000000E-06 |
0.5 | 0.500000250000000 | 0.500000500000000 | 2.5000000000E-07 | 1.8197000000E-06 | 8.2582000000E-06 |
0.6 | 0.600000120000000 | 0.600000600000000 | 4.8000000000E-07 | 2.3636000000E-06 | 1.0089700000E-05 |
0.7 | 0.699999930000000 | 0.700000700000000 | 7.7000000000E-07 | 2.9675000000E-06 | 1.1981300000E-05 |
0.8 | 0.799999680000000 | 0.800000800000000 | 1.1200000000E-06 | 3.6315000000E-06 | 1.3932800000E-05 |
0.9 | 0.899999370000000 | 0.900000900000000 | 1.5300000000E-06 | 4.3554000000E-06 | 1.5944400000E-05 |
1.0 | 0.999999000000000 | 1.000001000000000 | 2.0000000000E-06 | 5.1390000000E-06 | 1.8016000000E-05 |
Example 2. The NWSE has given in (1.1) for g=1,h=1,k=1 and r=2 becomes
Dℑτμ(ξ,τ)=D2ξμ(ξ,τ)+μ(ξ,τ)(1−μ(ξ,τ)),0<ℑ≤1, | (6.13) |
with initial source
μ(ξ,0)=1(1+exp(ξ√6))2. |
Applying Laplace transform to (6.13), we get
ωℑL[μ(ξ,τ)]−ω−1μ(ξ,0)ωℑ+ℑ(1−ωℑ)=L[D2ξμ(ξ,τ)+μ(ξ,τ)(1−μ(ξ,τ))]. | (6.14) |
On taking Laplace inverse transform, we get
μ(ξ,τ)=1(1+exp(ξ√6))2+L−1[ωℑ+ℑ(1−ωℑ)ωℑL[D2ξμ(ξ,τ)+μ(ξ,τ)(1−μ(ξ,τ))]]. | (6.15) |
Assume that the solution, μ(ξ,τ) in the form of infinite series given by
μ(ξ,τ)=∞∑m=0μm(ξ,τ), | (6.16) |
where μ2=∑∞m=0Am are the so-called Adomian polynomials that represent the nonlinear terms, thus (6.15) having certain terms are rewritten as
∞∑m=0μm(ξ,τ)=1(1+exp(ξ√6))2+L−1[ωℑ+ℑ(1−ωℑ)ωℑL[D2ξμ(ξ,τ)+μ(ξ,τ)−∞∑m=0Am]]. | (6.17) |
Applying the proposed analytical approach and the nonlinear terms can be obtained with the aid of Adomian's polynomials stated in (3.7), we acquire
μ0(ξ,τ)=1(1+exp(ξ√6))2. |
For m=0, we have
μ1(ξ,τ)=53exp(ξ√6)(1+exp(ξ√6))3[ℑτℑΓ(ℑ+1)+(1−ℑ)]. |
For m=1, we have
μ2(ξ,τ)=2518(exp(ξ√6)(−1+2exp(ξ√6))(1+exp(ξ√6))4)[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]. |
The approximate series solution is expressed as
μ(ξ,τ)=∞∑m=0μm(ξ,τ)=μ0(ξ,τ)+μ1(ξ,τ)+μ2(ξ,τ)+⋯. |
Therefore, we obtain
μ(ξ,τ)=1(1+exp(ξ√6))2+53exp(ξ√6)(1+exp(ξ√6))3[ℑτℑΓ(ℑ+1)+(1−ℑ)]+2518(exp(ξ√6)(−1+2exp(ξ√6))(1+exp(ξ√6))4)×[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]+⋯. |
Particularly, putting ℑ=1, we get the exact solution
μ(μ,τ)=(11+exp(ξ√6−56τ))2. | (6.18) |
The analytical results by VITM:
The iteration formulas for (6.13), we have
μm+1(ξ,τ)=μm(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμm(ξ,τ)+μm(ξ,τ)(1−μm(ξ,τ))}], | (6.19) |
where
μ0(ξ,τ)=1(1+exp(ξ√6). |
For m=0,1,2,…, we have
μ1(ξ,τ)=μ0(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμ0(ξ,τ)+μ0(ξ,τ)(1−μ0(ξ,τ))}]μ1(ξ,τ)=53exp(ξ√6)(1+exp(ξ√6))3[ℑτℑΓ(ℑ+1)+(1−ℑ)] | (6.20) |
μ2(ξ,τ)=μ1(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμ1(ξ,τ)+μ1(ξ,τ)(1−μ1(ξ,τ))}]μ2(ξ,τ)=2518(exp(ξ√6)(−1+2exp(ξ√6))(1+exp(ξ√6))4)[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]⋮ | (6.21) |
Therefore, we obtain
μ(ξ,τ)=∞∑m=0μm(ξ,τ)=1(1+exp(ξ√6))2+53exp(ξ√6)(1+exp(ξ√6))3[ℑτℑΓ(ℑ+1)+(1−ℑ)]+2518(exp(ξ√6)(−1+2exp(ξ√6))(1+exp(ξ√6))4)[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]+⋯. | (6.22) |
Particularly, putting ℑ=1, we get the exact solution, see Figures 2, 3 and Table 2.
μ(ξ,τ)=(11+exp(ξ√6−56τ))2. | (6.23) |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
ξ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.250020833800000 | 0.250020833700000 | 1.0000000000E-10 | 3.3580800000E-05 | 1.2032390000E-04 |
0.1 | 0.239919747900000 | 0.239919747800000 | 5.0941566800E-11 | 3.2881658260E-05 | 1.1781851670E-04 |
0.2 | 0.230035072700000 | 0.230035072600000 | 8.1583004800E-11 | 3.2156851240E-05 | 1.1522127190E-04 |
0.3 | 0.220374241800000 | 0.220374241700000 | 1.3295068340E-10 | 3.1408781520E-05 | 1.1254074080E-04 |
0.4 | 0.210943948200000 | 0.210943948100000 | 1.7637132220E-10 | 3.0639941880E-05 | 1.0978578190E-04 |
0.5 | 0.201750129200000 | 0.201750129000000 | 1.5669454130E-10 | 2.9852894210E-05 | 1.0696543270E-04 |
0.6 | 0.192797956100000 | 0.192797956000000 | 1.0301314750E-10 | 2.9050141560E-05 | 1.0408873760E-04 |
0.7 | 0.184091829000000 | 0.184091828700000 | 2.3924337590E-10 | 2.8234000470E-05 | 1.0116457590E-04 |
0.8 | 0.175635376500000 | 0.175635376200000 | 2.9445508530E-10 | 2.7407274000E-05 | 9.8202291510E-05 |
0.9 | 0.167431461100000 | 0.167431460800000 | 3.1297190840E-10 | 2.6572425380E-05 | 9.5210825130E-05 |
1.0 | 0.159482188800000 | 0.159482188600000 | 2.6399135400E-10 | 2.5731952810E-05 | 9.2199048510E-05 |
Example 3. The NWSE has given in (1.1) for g=1,h=1,k=1 and r=4 becomes
Dℑτμ(ξ,τ)=D2ξμ(ξ,τ)+μ(ξ,τ)−μ4(ξ,τ),0<ℑ≤1 | (6.24) |
with initial source
μ(ξ,0)=1(1+exp(3ξ√10))23. |
Applying Laplace transform to (6.24), we get
ωℑL[μ(ξ,τ)]−ω−1μ(ξ,0)ωℑ+ℑ(1−ωℑ)=L[D2ξμ(ξ,τ)+μ(ξ,τ)−μ4(ξ,τ)]. | (6.25) |
On taking Laplace inverse transform, we get
μ(ξ,τ)=1(1+exp(3ξ√10))23+L−1[ωℑ+ℑ(1−ωℑ)ωℑL[D2ξμ(ξ,τ)+μ(ξ,τ)−μ4(ξ,τ)]]. | (6.26) |
Assume that the solution, μ(ξ,τ) in the form of infinite series given by
μ(ξ,τ)=∞∑m=0μm(ξ,τ), | (6.27) |
where μ4=∑∞m=0Am are the so-called Adomian polynomials that represent the nonlinear terms, thus (6.26) having certain terms are rewritten as
∞∑m=0μm(ξ,τ)=1(1+exp(3ξ√10))23+L−1[ωℑ+ℑ(1−ωℑ)ωℑL[D2ξμ(ξ,τ)+μ(ξ,τ)−∞∑m=0Am]]. | (6.28) |
According to (3.7), the decomposition of nonlinear terms by Adomian polynomials is defined as
A0=μ40,A1=4μ30μ1,A2=4μ30μ2+6μ20μ21. | (6.29) |
Thus, on comparing both sides of (6.30)
μ0(ξ,τ)=1(1+exp(3ξ√10))23. |
For m=0, we have
μ1(ξ,τ)=75exp(3ξ√10)(1+exp(3ξ√10))53[ℑτℑΓ(ℑ+1)+(1−ℑ)]. |
For m=1, we have
μ2(ξ,τ)=4950(2exp(3ξ√10)−3)exp(3ξ√10)(1+exp(3ξ√10))83[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]. |
The approximate series solution is expressed as
μ(ξ,τ)=∞∑m=0μm(ξ,τ)=μ0(ξ,τ)+μ1(ξ,τ)+μ2(ξ,τ)+⋯. |
Therefore, we obtain
μ(ξ,τ)=1(1+exp(3ξ√10))23+75exp(3ξ√10)(1+exp(3ξ√10))53[ℑτℑΓ(ℑ+1)+(1−ℑ)]+4950(2exp(3ξ√10)−3)exp(3ξ√10)(1+exp(3ξ√10))83[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]+⋯. |
Particularly, putting ℑ=1, we get the exact solution
μ(ξ,τ)=12tanh(−32√10(ξ−7√10τ)). | (6.30) |
The analytical results by VITM:
The iteration formulas for (6.24), we have
μm+1(ξ,τ)=μm(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμm(ξ,τ)+μm(ξ,τ)−μ4m(ξ,τ)}], | (6.31) |
where
μ0(ξ,τ)=1(1+exp(3ξ√10))23. |
For m=0,1,2,…, we have
μ1(ξ,τ)=μ0(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμ0(ξ,τ)+μ0(ξ,τ)−μ40(ξ,τ)}],μ1(ξ,τ)=75exp(3ξ√10)(1+exp(3ξ√10))53[ℑτℑΓ(ℑ+1)+(1−ℑ)], | (6.32) |
μ2(ξ,τ)=μ1(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμ1(ξ,τ)+μ1(ξ,τ)−μ21(ξ,τ)}],μ2(ξ,τ)=4950(2exp(3ξ√10)−3)exp3√10ξ(1+exp(3ξ√10))83[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2].⋮ | (6.33) |
Therefore, we obtain
μ(ξ,τ)=∞∑m=0μm(ξ,τ)=1(1+exp(3ξ√10))23+75exp(3ξ√10)(1+exp(3ξ√10))53[ℑτℑΓ(ℑ+1)+(1−ℑ)]+4950(2exp(3ξ√10)−3)exp(3ξ√10)(1+exp(3ξ√10))83[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]+⋯. | (6.34) |
Particularly, putting ℑ=1, we get the exact solution, see Figures 4, 5 and Table 3.
μ(ξ,τ)=12tanh(−32√10(ξ−7√10τ)). | (6.35) |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
ξ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.630004621400000 | 0.630004623000000 | 1.6000000000E-09 | 7.1080200000E-05 | 2.5467930000E-04 |
0.1 | 0.609938405400000 | 0.609938406700000 | 1.3721312690E-09 | 7.2077200130E-05 | 2.5825129220E-04 |
0.2 | 0.589628520300000 | 0.589628521400000 | 1.1413782460E-09 | 7.2815436450E-05 | 2.6089584380E-04 |
0.3 | 0.569148496800000 | 0.569148497700000 | 8.7201231790E-10 | 7.3288425700E-05 | 2.6259010230E-04 |
0.4 | 0.548573070400000 | 0.548573071000000 | 6.9266503090E-10 | 7.3494089020E-05 | 2.6332630440E-04 |
0.5 | 0.527977019100000 | 0.527977019700000 | 5.8687018460E-10 | 7.3434320340E-05 | 2.6311129590E-04 |
0.6 | 0.507434030100000 | 0.507434030300000 | 1.9085441870E-10 | 7.3114619290E-05 | 2.6196573810E-04 |
0.7 | 0.487015628200000 | 0.487015628200000 | 1.4619007300E-11 | 7.2545024110E-05 | 2.5992429560E-04 |
0.8 | 0.466790202200000 | 0.466790202100000 | 1.0115621760E-10 | 7.1738176370E-05 | 2.5703268760E-04 |
0.9 | 0.446822151300000 | 0.446822151000000 | 3.7765613140E-10 | 7.0709457140E-05 | 2.5334660600E-04 |
1.0 | 0.427171171700000 | 0.427171171200000 | 5.2356035770E-10 | 6.9477036140E-05 | 2.4893040880E-04 |
Example 4. The NWSE has given in (1.1) for g=3,h=4,k=1 and r=3 becomes
Dℑτμ(ξ,τ)=D2ξμ(ξ,τ)+3μ(ξ,τ)−4μ3(ξ,τ), 0<ℑ≤1, | (6.36) |
with initial source
μ(ξ,0)=√34exp(√6ξ)exp(√6ξ)+exp(√62ξ). |
Applying Laplace transform to (6.36), we get
ωℑL[μ(ξ,τ)]−ω−1μ(ξ,0)ωℑ+ℑ(1−ωℑ)=L[D2ξμ(ξ,τ)+3μ(ξ,τ)−4μ3(ξ,τ)]. | (6.37) |
On taking Laplace inverse transform, we get
μ(ξ,τ)=√34exp(√6ξ)exp(√6ξ)+exp(√62ξ)+L−1[ωℑ+ℑ(1−ωℑ)ωℑL[D2ξμ(ξ,τ)+3μ(ξ,τ)−4μ3(ξ,τ)]]. | (6.38) |
Assume that the solution, μ(ξ,τ) in the form of infinite series given by
μ(ξ,τ)=∞∑m=0μm(ξ,τ), | (6.39) |
where μ3=∑∞m=0Am are the so-called Adomian polynomials that represent the nonlinear terms, thus (6.38) having certain terms are rewritten as
∞∑m=0μm(ξ,τ)=√34exp(√6ξ)exp(√6ξ)+exp(√62ξ)+L−1[ωℑ+ℑ(1−ωℑ)ωℑL[D2ξμ(ξ,τ)+3μ(ξ,τ)−4∞∑m=0Am]]. | (6.40) |
According to (3.7), the decomposition of nonlinear terms by Adomian polynomials is defined as,
A0=μ30,A1=3μ20μ1,A2=3μ20μ2+3μ0μ21. | (6.41) |
Thus, on comparing both sides of (6.40)
μ0(ξ,τ)=√34exp(√6ξ)exp(√6ξ)+exp(√62ξ). |
For m=0, we have
μ1(ξ,τ)=92√34exp(√6ξ)exp(√62ξ)(exp(√6ξ)+exp(√62ξ))2[ℑτℑΓ(ℑ+1)+(1−ℑ)]. |
For m=1, we have
μ2(ξ,τ)=814√34exp(√6ξ)exp(√62ξ)(−exp(√6ξ)+exp(√62ξ))(exp(√6ξ)+exp(√62ξ))3×[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]. |
The approximate series solution is expressed as
μ(ξ,τ)=∞∑m=0μm(ξ,τ)=μ0(ξ,τ)+μ1(ξ,τ)+μ2(ξ,τ)+⋯. |
Therefore, we obtain
μ(ξ,τ)=√34exp(√6ξ)exp(√6ξ)+exp(√62ξ)+92√34exp(√6ξ)exp(√62ξ)(exp(√6ξ)+exp(√62ξ))2[ℑτℑΓ(ℑ+1)+(1−ℑ)]+814√34exp(√6ξ)exp(√62ξ)(−exp(√6ξ)+exp(√62ξ))(exp(√6ξ)+exp(√62ξ))3×[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]+⋯. |
Particularly, putting ℑ=1, we get the exact solution
μ(ξ,τ)=√34exp(√6ξ)exp(√6ξ)+exp(√62ξ−92τ). | (6.42) |
The analytical results by VITM:
The iteration formulas for (6.36), we have
μm+1(ξ,τ)=μm(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμm(ξ,τ)+3μm(ξ,τ)−4μ3m(ξ,τ)}], | (6.43) |
where
μ0(ξ,τ)=√34exp(√6ξ)exp(√6ξ)+exp(√62ξ). |
For m=0,1,2,…, we have
μ1(ξ,τ)=μ0(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμ0(ξ,τ)+3μ0(ξ,τ)−4μ30(ξ,τ)}],μ1(ξ,τ)=92√34exp(√6ξ)exp(√62ξ)(exp(√6ξ)+exp(√62ξ))2[ℑτℑΓ(ℑ+1)+(1−ℑ)], | (6.44) |
μ2(ξ,τ)=μ1(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμ1(ξ,τ)+3μ1(ξ,τ)−4μ31(ξ,τ)}],μ2(ξ,τ)=814√34exp(√6ξ)exp(√62ξ)(−exp(√6ξ)+exp(√62ξ))(exp(√6ξ)+exp(√62ξ))3×[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2].⋮ | (6.45) |
Therefore, we obtain
μ(ξ,τ)=∞∑m=0μm(ξ,τ)=√34exp(√6ξ)exp(√6ξ)+exp(√62ξ)+92√34exp(√6ξ)exp(√62ξ)(exp(√6ξ)+exp(√62ξ))2[ℑτℑΓ(ℑ+1)+(1−ℑ)]+814√34exp(√6ξ)exp(√62ξ)(−exp(√6ξ)+exp(√62ξ))(exp(√6ξ)+exp(√62ξ))3×[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]+⋯. | (6.46) |
Particularly, putting ℑ=1, we get the exact solution, see Figures 6, 7 and Table 4.
μ(ξ,τ)=√34exp(√6ξ)exp(√6ξ)+exp(√62ξ−92τ). | (6.47) |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
ξ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.433022444800000 | 0.433022445000000 | 1.7320508080E-10 | 7.9386816730E-06 | 2.2292879540E-05 |
0.1 | 0.459505816600000 | 0.459505816600000 | 3.2194421390E-11 | 7.9089032580E-06 | 2.2209048130E-05 |
0.2 | 0.485791725000000 | 0.485791725200000 | 1.6732056440E-10 | 7.8207979170E-06 | 2.1961331750E-05 |
0.3 | 0.511688623000000 | 0.511688622800000 | 2.1377960370E-10 | 7.6762722350E-06 | 2.1556125910E-05 |
0.4 | 0.537016284000000 | 0.537016284300000 | 3.7853826310E-10 | 7.4809626080E-06 | 2.1006564010E-05 |
0.5 | 0.561610593500000 | 0.561610593600000 | 1.3316432970E-10 | 7.2385076780E-06 | 2.0326137420E-05 |
0.6 | 0.585327390000000 | 0.585327389900000 | 4.4316889200E-11 | 6.9562540670E-06 | 1.9533837800E-05 |
0.7 | 0.608045207500000 | 0.608045207500000 | 4.4341099960E-11 | 6.6414869210E-06 | 1.8649762960E-05 |
0.8 | 0.629666845500000 | 0.629666845900000 | 4.6131349780E-10 | 6.3016518320E-06 | 1.7694707350E-05 |
0.9 | 0.650119804000000 | 0.650119803700000 | 7.6816056310E-10 | 5.9421274000E-06 | 1.6687344050E-05 |
1.0 | 0.669355693000000 | 0.669355693500000 | 4.9676049840E-10 | 5.5740946070E-06 | 1.5651582380E-05 |
Figure 1, show the behavior of the exact and proposed methods solution at ℑ=1 in (AB fractional derivative) manner of Example 1. The comparison of the exact and analytical solution of Example 2 is shown Figure 2, whereas the graphical view for various fractional orders is demonstrated with the help of figures. In Figure 3, the two and three dimensional different fractional order graphs of Example 2. The figures show that our solution approaches the exact solution as the fractional order goes towards the integer-order. Figure 4, demonstrate the layout of the exact and analytical solution while Figure 5 shows the error comparison of the exact and analytical results of Example 3. The error confirms the efficiency of the suggested techniques. The graphical view of Example 4 for exact and our solution can be seen in Figure 6, however, Figure 7 shows the error comparison of both results. Furthermore, the behavior of the exact and proposed method solution with the aid of absolute error at different orders of ℑ is shown in Tables 1–4. Finally, it is clear from the figures and tables that the proposed methods have a sufficient degree of accuracy and quick convergence towards the exact solution.
The LTDM and VITM were used for solving time fractional Newell-Whitehead-Segel equation. The solution we obtained is a series that quickly converges to exact solutions. Four cases are studied, which shows that the proposed methods solutions strongly agree with the exact solution. It is found that the suggested techniques are easy to implement and need a small number of calculations. This shows that LTDM and VITM are very efficient, effective, and powerful mathematical tools easily applied in finding approximate analytic solutions for a wide range of real-world problems arising in science and engineering.
This research received funding support from the National Science, Research and Innovation Fund (NSRF), Thailand.
The authors declare that they have no competing interests.
[1] |
A. Ancona, Principe de Harnack a la frontiere et theoreme de Fatou pour un operateur elliptique dons un domaine lipschitzien, Ann. Inst. Fourier, 28 (1978), 169–213. doi: 10.5802/aif.720
![]() |
[2] | R. Banuelos, R. F. Bass, K. Burdzy, Hölder domains and the boundary Harnack principle, Duke Math. J., 64 (1991), 195–200. |
[3] |
R. F. Bass, K. Burdzy, A boundary Harnack principle in twisted Hölder domains, Ann. Math., 134 (1991), 253–276. doi: 10.2307/2944347
![]() |
[4] |
R. F. Bass, K. Burdzy, The boundary Harnack principle for non-divergence form elliptic operators, J. London Math. Soc., 50 (1994), 157–169. doi: 10.1112/jlms/50.1.157
![]() |
[5] |
L. Caffarelli, E. Fabes, S. Mortola, S. Salsa, Boundary behavior of non-negative solutions of elliptic operators in divergence form, Indiana Math. J., 30 (1981), 621–640. doi: 10.1512/iumj.1981.30.30049
![]() |
[6] | B. Dahlberg, On estimates of harmonic measure, Arch. Ration. Mech. Anal., 65 (1977), 272–288. |
[7] |
D. De Silva, O. Savin, A short proof of boundary Harnack principle, J. Differ. Equations, 269 (2020), 2419–2429. doi: 10.1016/j.jde.2020.02.004
![]() |
[8] | F. Ferrari, On boundary behavior of harmonic functions in Hölder domains, J. Fourier Anal. Appl., 4 (1988), 447–461. |
[9] | D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, 2 Eds., Berlin: Springer-Verlag, 1983. |
[10] |
D. S. Jerison, C. E. Kenig, Boundary behavior of Harmonic functions in non-tangentially accessible domains, Adv. Math., 46 (1982), 80–147. doi: 10.1016/0001-8708(82)90055-X
![]() |
[11] |
J. T. Kemper, A boundary Harnack principle for Lipschitz domains and the principle of positive singularities, Commun. Pure Appl. Math., 25 (1972), 247–255. doi: 10.1002/cpa.3160250303
![]() |
[12] |
H. Kim, M. V. Safonov, Boundary Harnack principle for second order elliptic equations with unbounded drift, J. Math. Sci., 179 (2011), 127. doi: 10.1007/s10958-011-0585-2
![]() |
[13] | N. V. Krylov, Boundedly inhomogenous elliptic and parabolic equations in a domain, Izvestia Akad. Nauk. SSSR, 46 (1983), 487–523. |
[14] |
J. M. G. Wu, Comparison of kernel functions, boundary Harnack principle, and relative Fatou theorem on Lipschitz domains, Ann. Inst. Fourier Grenoble, 28 (1978), 147–167. doi: 10.5802/aif.719
![]() |
1. | Bharati Panigrahy, K. Narayan, B. Ramachandra Rao, Green hydrogen production by water electrolysis: A renewable energy perspective, 2022, 67, 22147853, 1310, 10.1016/j.matpr.2022.09.254 | |
2. | Richard Cartland, Al-Mas Sendegeya, Jean de Dieu Khan Hakizimana, Performance Analysis of a Hybrid of Solar Photovoltaic, Genset, and Hydro of a Rural-Based Power Mini-Grid: Case Study of Kisiizi Hydro Power Mini-Grid, Uganda, 2023, 11, 2227-9717, 175, 10.3390/pr11010175 | |
3. | Harpreet Singh, Chengxi Li, Peng Cheng, Xunjie Wang, Qing Liu, A critical review of technologies, costs, and projects for production of carbon-neutral liquid e-fuels from hydrogen and captured CO2, 2022, 1, 2753-1457, 580, 10.1039/D2YA00173J | |
4. | Josmar B. Cristello, Jaehyun M. Yang, Ron Hugo, Youngsoo Lee, Simon S. Park, Feasibility analysis of blending hydrogen into natural gas networks, 2023, 03603199, 10.1016/j.ijhydene.2023.01.156 | |
5. | Pasquale Marcello Falcone, Editorial to the 'Special Issue—Energy transition in a circular economy perspective' of AIMS Energy, 2022, 10, 2333-8334, 582, 10.3934/energy.2022029 | |
6. | Patrick Moriarty, Damon Honnery, When will the hydrogen economy arrive?, 2022, 10, 2333-8334, 1100, 10.3934/energy.2022052 | |
7. | Franz Teske, Jano Schubert, Adrian Fehrle, Felix Funk, Jörg Franke, Techno-economic analysis of battery storage systems and hydrogen-based storage systems as an alternative to grid expansion in the medium voltage grid in Germany, 2023, 11, 2333-8334, 358, 10.3934/energy.2023019 | |
8. | Marino Burba, Eleonora Pargoletti, Frank Marken, Neil B. McKeown, Mariolino Carta, Alberto Vertova, Alessandro Minguzzi, Polymer of Intrinsic Microporosity as Binders for both Acidic and Alkaline Oxygen Reduction Electrocatalysis, 2024, 11, 2196-0216, 10.1002/celc.202300481 | |
9. | Inês Rolo, Vítor A. F. Costa, Francisco P. Brito, Hydrogen-Based Energy Systems: Current Technology Development Status, Opportunities and Challenges, 2023, 17, 1996-1073, 180, 10.3390/en17010180 | |
10. | Pedro Fernandes, Pedro D. Gaspar, Pedro D. Silva, Peltier Cell Integration in Packaging Design for Minimizing Energy Consumption and Temperature Variation during Refrigerated Transport, 2023, 7, 2411-9660, 88, 10.3390/designs7040088 | |
11. | Hasan Ozcan, Rami S. El-Emam, Selahattin Celik, Bahman Amini Horri, Recent advances, challenges, and prospects of electrochemical water-splitting technologies for net-zero transition, 2023, 8, 27727823, 100115, 10.1016/j.clce.2023.100115 | |
12. | Andrea Navarro Jiménez, Huaili Zheng, Fueling Costa Rica’s green hydrogen future: A financial roadmap for global leadership, 2024, 51, 17550084, 100651, 10.1016/j.ref.2024.100651 | |
13. | Eugeniusz Mokrzycki, Lidia Gawlik, The Development of a Green Hydrogen Economy: Review, 2024, 17, 1996-1073, 3165, 10.3390/en17133165 | |
14. | Juan Gabriel Segovia-Hernández, Advancing E-fuels production through process intensification: overcoming challenges and seizing opportunities for a sustainable energy future - A critical review, 2025, 208, 02552701, 110107, 10.1016/j.cep.2024.110107 | |
15. | Jianxin Wang, Xianying Hao, Hui Zhang, Zhiguang Chen, Chaokui Qin, Simulation and experimental investigation on the static mixer of natural gas mixed with hydrogen, 2025, 99, 03603199, 1, 10.1016/j.ijhydene.2024.12.045 | |
16. | Hancheng Lu, Baoling Guo, Jingxin Yao, Yufeng Yan, Xinhui Chen, Zilong Xu, Baoqing Liu, CFD analysis on leakage and diffusion of hydrogen-blended natural gas pipeline in soil-brick gutter coupling space, 2025, 100, 03603199, 33, 10.1016/j.ijhydene.2024.12.280 | |
17. | Laveet Kumar, Ahmad K. Sleiti, Wahib A. Al-Ammari, Thermo-economic analysis of blending hydrogen into natural gas pipeline with gaseous inhibitors for sustainable hydrogen transportation, 2025, 311, 00092509, 121619, 10.1016/j.ces.2025.121619 |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
Υ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.000000000000000 | 0.000000000000000 | 0.0000000000E+00 | 0.0000000000E+00 | 0.0000000000E+00 |
0.1 | 0.100000170000000 | 0.100000100000000 | 7.0000000000E-08 | 2.4390000000E-07 | 1.5317000000E-06 |
0.2 | 0.200000280000000 | 0.200000200000000 | 8.0000000000E-08 | 5.4790000000E-07 | 3.1233000000E-06 |
0.3 | 0.300000330000000 | 0.300000300000000 | 3.0000000000E-08 | 9.1180000000E-07 | 4.7750000000E-06 |
0.4 | 0.400000320000000 | 0.400000400000000 | 8.0000000000E-08 | 1.3357000000E-06 | 6.4866000000E-06 |
0.5 | 0.500000250000000 | 0.500000500000000 | 2.5000000000E-07 | 1.8197000000E-06 | 8.2582000000E-06 |
0.6 | 0.600000120000000 | 0.600000600000000 | 4.8000000000E-07 | 2.3636000000E-06 | 1.0089700000E-05 |
0.7 | 0.699999930000000 | 0.700000700000000 | 7.7000000000E-07 | 2.9675000000E-06 | 1.1981300000E-05 |
0.8 | 0.799999680000000 | 0.800000800000000 | 1.1200000000E-06 | 3.6315000000E-06 | 1.3932800000E-05 |
0.9 | 0.899999370000000 | 0.900000900000000 | 1.5300000000E-06 | 4.3554000000E-06 | 1.5944400000E-05 |
1.0 | 0.999999000000000 | 1.000001000000000 | 2.0000000000E-06 | 5.1390000000E-06 | 1.8016000000E-05 |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
ξ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.250020833800000 | 0.250020833700000 | 1.0000000000E-10 | 3.3580800000E-05 | 1.2032390000E-04 |
0.1 | 0.239919747900000 | 0.239919747800000 | 5.0941566800E-11 | 3.2881658260E-05 | 1.1781851670E-04 |
0.2 | 0.230035072700000 | 0.230035072600000 | 8.1583004800E-11 | 3.2156851240E-05 | 1.1522127190E-04 |
0.3 | 0.220374241800000 | 0.220374241700000 | 1.3295068340E-10 | 3.1408781520E-05 | 1.1254074080E-04 |
0.4 | 0.210943948200000 | 0.210943948100000 | 1.7637132220E-10 | 3.0639941880E-05 | 1.0978578190E-04 |
0.5 | 0.201750129200000 | 0.201750129000000 | 1.5669454130E-10 | 2.9852894210E-05 | 1.0696543270E-04 |
0.6 | 0.192797956100000 | 0.192797956000000 | 1.0301314750E-10 | 2.9050141560E-05 | 1.0408873760E-04 |
0.7 | 0.184091829000000 | 0.184091828700000 | 2.3924337590E-10 | 2.8234000470E-05 | 1.0116457590E-04 |
0.8 | 0.175635376500000 | 0.175635376200000 | 2.9445508530E-10 | 2.7407274000E-05 | 9.8202291510E-05 |
0.9 | 0.167431461100000 | 0.167431460800000 | 3.1297190840E-10 | 2.6572425380E-05 | 9.5210825130E-05 |
1.0 | 0.159482188800000 | 0.159482188600000 | 2.6399135400E-10 | 2.5731952810E-05 | 9.2199048510E-05 |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
ξ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.630004621400000 | 0.630004623000000 | 1.6000000000E-09 | 7.1080200000E-05 | 2.5467930000E-04 |
0.1 | 0.609938405400000 | 0.609938406700000 | 1.3721312690E-09 | 7.2077200130E-05 | 2.5825129220E-04 |
0.2 | 0.589628520300000 | 0.589628521400000 | 1.1413782460E-09 | 7.2815436450E-05 | 2.6089584380E-04 |
0.3 | 0.569148496800000 | 0.569148497700000 | 8.7201231790E-10 | 7.3288425700E-05 | 2.6259010230E-04 |
0.4 | 0.548573070400000 | 0.548573071000000 | 6.9266503090E-10 | 7.3494089020E-05 | 2.6332630440E-04 |
0.5 | 0.527977019100000 | 0.527977019700000 | 5.8687018460E-10 | 7.3434320340E-05 | 2.6311129590E-04 |
0.6 | 0.507434030100000 | 0.507434030300000 | 1.9085441870E-10 | 7.3114619290E-05 | 2.6196573810E-04 |
0.7 | 0.487015628200000 | 0.487015628200000 | 1.4619007300E-11 | 7.2545024110E-05 | 2.5992429560E-04 |
0.8 | 0.466790202200000 | 0.466790202100000 | 1.0115621760E-10 | 7.1738176370E-05 | 2.5703268760E-04 |
0.9 | 0.446822151300000 | 0.446822151000000 | 3.7765613140E-10 | 7.0709457140E-05 | 2.5334660600E-04 |
1.0 | 0.427171171700000 | 0.427171171200000 | 5.2356035770E-10 | 6.9477036140E-05 | 2.4893040880E-04 |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
ξ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.433022444800000 | 0.433022445000000 | 1.7320508080E-10 | 7.9386816730E-06 | 2.2292879540E-05 |
0.1 | 0.459505816600000 | 0.459505816600000 | 3.2194421390E-11 | 7.9089032580E-06 | 2.2209048130E-05 |
0.2 | 0.485791725000000 | 0.485791725200000 | 1.6732056440E-10 | 7.8207979170E-06 | 2.1961331750E-05 |
0.3 | 0.511688623000000 | 0.511688622800000 | 2.1377960370E-10 | 7.6762722350E-06 | 2.1556125910E-05 |
0.4 | 0.537016284000000 | 0.537016284300000 | 3.7853826310E-10 | 7.4809626080E-06 | 2.1006564010E-05 |
0.5 | 0.561610593500000 | 0.561610593600000 | 1.3316432970E-10 | 7.2385076780E-06 | 2.0326137420E-05 |
0.6 | 0.585327390000000 | 0.585327389900000 | 4.4316889200E-11 | 6.9562540670E-06 | 1.9533837800E-05 |
0.7 | 0.608045207500000 | 0.608045207500000 | 4.4341099960E-11 | 6.6414869210E-06 | 1.8649762960E-05 |
0.8 | 0.629666845500000 | 0.629666845900000 | 4.6131349780E-10 | 6.3016518320E-06 | 1.7694707350E-05 |
0.9 | 0.650119804000000 | 0.650119803700000 | 7.6816056310E-10 | 5.9421274000E-06 | 1.6687344050E-05 |
1.0 | 0.669355693000000 | 0.669355693500000 | 4.9676049840E-10 | 5.5740946070E-06 | 1.5651582380E-05 |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
Υ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.000000000000000 | 0.000000000000000 | 0.0000000000E+00 | 0.0000000000E+00 | 0.0000000000E+00 |
0.1 | 0.100000170000000 | 0.100000100000000 | 7.0000000000E-08 | 2.4390000000E-07 | 1.5317000000E-06 |
0.2 | 0.200000280000000 | 0.200000200000000 | 8.0000000000E-08 | 5.4790000000E-07 | 3.1233000000E-06 |
0.3 | 0.300000330000000 | 0.300000300000000 | 3.0000000000E-08 | 9.1180000000E-07 | 4.7750000000E-06 |
0.4 | 0.400000320000000 | 0.400000400000000 | 8.0000000000E-08 | 1.3357000000E-06 | 6.4866000000E-06 |
0.5 | 0.500000250000000 | 0.500000500000000 | 2.5000000000E-07 | 1.8197000000E-06 | 8.2582000000E-06 |
0.6 | 0.600000120000000 | 0.600000600000000 | 4.8000000000E-07 | 2.3636000000E-06 | 1.0089700000E-05 |
0.7 | 0.699999930000000 | 0.700000700000000 | 7.7000000000E-07 | 2.9675000000E-06 | 1.1981300000E-05 |
0.8 | 0.799999680000000 | 0.800000800000000 | 1.1200000000E-06 | 3.6315000000E-06 | 1.3932800000E-05 |
0.9 | 0.899999370000000 | 0.900000900000000 | 1.5300000000E-06 | 4.3554000000E-06 | 1.5944400000E-05 |
1.0 | 0.999999000000000 | 1.000001000000000 | 2.0000000000E-06 | 5.1390000000E-06 | 1.8016000000E-05 |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
ξ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.250020833800000 | 0.250020833700000 | 1.0000000000E-10 | 3.3580800000E-05 | 1.2032390000E-04 |
0.1 | 0.239919747900000 | 0.239919747800000 | 5.0941566800E-11 | 3.2881658260E-05 | 1.1781851670E-04 |
0.2 | 0.230035072700000 | 0.230035072600000 | 8.1583004800E-11 | 3.2156851240E-05 | 1.1522127190E-04 |
0.3 | 0.220374241800000 | 0.220374241700000 | 1.3295068340E-10 | 3.1408781520E-05 | 1.1254074080E-04 |
0.4 | 0.210943948200000 | 0.210943948100000 | 1.7637132220E-10 | 3.0639941880E-05 | 1.0978578190E-04 |
0.5 | 0.201750129200000 | 0.201750129000000 | 1.5669454130E-10 | 2.9852894210E-05 | 1.0696543270E-04 |
0.6 | 0.192797956100000 | 0.192797956000000 | 1.0301314750E-10 | 2.9050141560E-05 | 1.0408873760E-04 |
0.7 | 0.184091829000000 | 0.184091828700000 | 2.3924337590E-10 | 2.8234000470E-05 | 1.0116457590E-04 |
0.8 | 0.175635376500000 | 0.175635376200000 | 2.9445508530E-10 | 2.7407274000E-05 | 9.8202291510E-05 |
0.9 | 0.167431461100000 | 0.167431460800000 | 3.1297190840E-10 | 2.6572425380E-05 | 9.5210825130E-05 |
1.0 | 0.159482188800000 | 0.159482188600000 | 2.6399135400E-10 | 2.5731952810E-05 | 9.2199048510E-05 |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
ξ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.630004621400000 | 0.630004623000000 | 1.6000000000E-09 | 7.1080200000E-05 | 2.5467930000E-04 |
0.1 | 0.609938405400000 | 0.609938406700000 | 1.3721312690E-09 | 7.2077200130E-05 | 2.5825129220E-04 |
0.2 | 0.589628520300000 | 0.589628521400000 | 1.1413782460E-09 | 7.2815436450E-05 | 2.6089584380E-04 |
0.3 | 0.569148496800000 | 0.569148497700000 | 8.7201231790E-10 | 7.3288425700E-05 | 2.6259010230E-04 |
0.4 | 0.548573070400000 | 0.548573071000000 | 6.9266503090E-10 | 7.3494089020E-05 | 2.6332630440E-04 |
0.5 | 0.527977019100000 | 0.527977019700000 | 5.8687018460E-10 | 7.3434320340E-05 | 2.6311129590E-04 |
0.6 | 0.507434030100000 | 0.507434030300000 | 1.9085441870E-10 | 7.3114619290E-05 | 2.6196573810E-04 |
0.7 | 0.487015628200000 | 0.487015628200000 | 1.4619007300E-11 | 7.2545024110E-05 | 2.5992429560E-04 |
0.8 | 0.466790202200000 | 0.466790202100000 | 1.0115621760E-10 | 7.1738176370E-05 | 2.5703268760E-04 |
0.9 | 0.446822151300000 | 0.446822151000000 | 3.7765613140E-10 | 7.0709457140E-05 | 2.5334660600E-04 |
1.0 | 0.427171171700000 | 0.427171171200000 | 5.2356035770E-10 | 6.9477036140E-05 | 2.4893040880E-04 |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
ξ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.433022444800000 | 0.433022445000000 | 1.7320508080E-10 | 7.9386816730E-06 | 2.2292879540E-05 |
0.1 | 0.459505816600000 | 0.459505816600000 | 3.2194421390E-11 | 7.9089032580E-06 | 2.2209048130E-05 |
0.2 | 0.485791725000000 | 0.485791725200000 | 1.6732056440E-10 | 7.8207979170E-06 | 2.1961331750E-05 |
0.3 | 0.511688623000000 | 0.511688622800000 | 2.1377960370E-10 | 7.6762722350E-06 | 2.1556125910E-05 |
0.4 | 0.537016284000000 | 0.537016284300000 | 3.7853826310E-10 | 7.4809626080E-06 | 2.1006564010E-05 |
0.5 | 0.561610593500000 | 0.561610593600000 | 1.3316432970E-10 | 7.2385076780E-06 | 2.0326137420E-05 |
0.6 | 0.585327390000000 | 0.585327389900000 | 4.4316889200E-11 | 6.9562540670E-06 | 1.9533837800E-05 |
0.7 | 0.608045207500000 | 0.608045207500000 | 4.4341099960E-11 | 6.6414869210E-06 | 1.8649762960E-05 |
0.8 | 0.629666845500000 | 0.629666845900000 | 4.6131349780E-10 | 6.3016518320E-06 | 1.7694707350E-05 |
0.9 | 0.650119804000000 | 0.650119803700000 | 7.6816056310E-10 | 5.9421274000E-06 | 1.6687344050E-05 |
1.0 | 0.669355693000000 | 0.669355693500000 | 4.9676049840E-10 | 5.5740946070E-06 | 1.5651582380E-05 |