The high density of commercial aviation operations in Europe makes significant contributions to the emission of noise, greenhouse gases, and air pollutants. A key source of information which can be used in efforts to quantify these contributions is the OpenSky Network (OSN), which publishes automatic dependent surveillance - broadcast (ADS-B) data at time resolutions of up to one data point per second. This data can be used to reconstruct ground tracks and flight profiles, which can, in turn, be used to estimate local noise exposure, exhaust emissions, and local air quality. The use of such data in the reconstruction of departure flight paths is limited, however, by the lack of thrust settings and take-off weights. For this reason, a mixed analysis-synthesis approach was developed, in previous research, to reconstruct flight profiles by optimizing published departure procedures parameterized in terms of aircraft thrust settings and take-off weight, and departure procedure parameters. The approach can be used to reconstruct large numbers of flight profiles, throughout significant time windows, from open-source ADS-B data. Errors in the estimations of the parameters can lead to errors in the flight profile calculation which will propagate through to follow-on noise, fuel flow, and emissions calculations. In this paper, a global variance-based sensitivity analysis is presented, which evaluated the sensitivity of departure flight profile altitude to mixed analysis-synthesis flight profile parameters. The purpose was to improve understanding of the dominant sources of error and uncertainty in the flight profile reconstruction, and the influence of aspects of departure flight operations on resulting flight profiles. Analyses were presented for three different airports, Amsterdam Schiphol (EHAM), Dublin (EIDW) and Stockholm (ESSA) airports, considering departures of aircraft corresponding to the 737–800 and A320-211 aircraft classes.
Citation: James H. Page, Lorenzo Dorbolò, Marco Pretto, Alessandro Zanon, Pietro Giannattasio, Michele De Gennaro. Sensitivity analysis of mixed analysis-synthesis flight profile reconstruction[J]. Metascience in Aerospace, 2024, 1(4): 401-415. doi: 10.3934/mina.2024019
[1] | Feng Qi . Completely monotonic degree of a function involving trigamma and tetragamma functions. AIMS Mathematics, 2020, 5(4): 3391-3407. doi: 10.3934/math.2020219 |
[2] | Wissem Jedidi, Hristo S. Sendov, Shen Shan . Classes of completely monotone and Bernstein functions defined by convexity properties of their spectral measures. AIMS Mathematics, 2024, 9(5): 11372-11395. doi: 10.3934/math.2024558 |
[3] | Khaled Mehrez, Abdulaziz Alenazi . Bounds for certain function related to the incomplete Fox-Wright function. AIMS Mathematics, 2024, 9(7): 19070-19088. doi: 10.3934/math.2024929 |
[4] | Fei Wang, Bai-Ni Guo, Feng Qi . Monotonicity and inequalities related to complete elliptic integrals of the second kind. AIMS Mathematics, 2020, 5(3): 2732-2742. doi: 10.3934/math.2020176 |
[5] | Xifeng Wang, Senlin Guo . Some conditions for sequences to be minimal completely monotonic. AIMS Mathematics, 2023, 8(4): 9832-9839. doi: 10.3934/math.2023496 |
[6] | Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu . Monotonicity properties and bounds for the complete p-elliptic integrals. AIMS Mathematics, 2020, 5(6): 7071-7086. doi: 10.3934/math.2020453 |
[7] | Li Xu, Lu Chen, Ti-Ren Huang . Monotonicity, convexity and inequalities involving zero-balanced Gaussian hypergeometric function. AIMS Mathematics, 2022, 7(7): 12471-12482. doi: 10.3934/math.2022692 |
[8] | Chuan-Yu Cai, Qiu-Ying Zhang, Ti-Ren Huang . Properties of generalized (p,q)-elliptic integrals and generalized (p,q)-Hersch-Pfluger distortion function. AIMS Mathematics, 2023, 8(12): 31198-31216. doi: 10.3934/math.20231597 |
[9] | Fei Wang, Bai-Ni Guo, Feng Qi . Correction: Monotonicity and inequalities related to complete elliptic integrals of the second kind. AIMS Mathematics, 2020, 5(6): 5683-5684. doi: 10.3934/math.2020363 |
[10] | Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096 |
The high density of commercial aviation operations in Europe makes significant contributions to the emission of noise, greenhouse gases, and air pollutants. A key source of information which can be used in efforts to quantify these contributions is the OpenSky Network (OSN), which publishes automatic dependent surveillance - broadcast (ADS-B) data at time resolutions of up to one data point per second. This data can be used to reconstruct ground tracks and flight profiles, which can, in turn, be used to estimate local noise exposure, exhaust emissions, and local air quality. The use of such data in the reconstruction of departure flight paths is limited, however, by the lack of thrust settings and take-off weights. For this reason, a mixed analysis-synthesis approach was developed, in previous research, to reconstruct flight profiles by optimizing published departure procedures parameterized in terms of aircraft thrust settings and take-off weight, and departure procedure parameters. The approach can be used to reconstruct large numbers of flight profiles, throughout significant time windows, from open-source ADS-B data. Errors in the estimations of the parameters can lead to errors in the flight profile calculation which will propagate through to follow-on noise, fuel flow, and emissions calculations. In this paper, a global variance-based sensitivity analysis is presented, which evaluated the sensitivity of departure flight profile altitude to mixed analysis-synthesis flight profile parameters. The purpose was to improve understanding of the dominant sources of error and uncertainty in the flight profile reconstruction, and the influence of aspects of departure flight operations on resulting flight profiles. Analyses were presented for three different airports, Amsterdam Schiphol (EHAM), Dublin (EIDW) and Stockholm (ESSA) airports, considering departures of aircraft corresponding to the 737–800 and A320-211 aircraft classes.
It is well known that the convexity [1,2,3,4,5,6,8,9,11,15,16,40,55,63,64], monotonicity [7,12,13,14,41,42,43,44,45,46,47,48,49,50,51,52,53] and complete monotonicity [58,59,61,62] have widely applications in many branches of pure and applied mathematics [19,24,28,32,35,38,65]. In particular, many important inequalities [20,25,30,33,37,39,69] can be discovered by use of the convexity, monotonicity and complete monotonicity. The concept of complete monotonicity can be traced back to 1920s [18]. Recently, the complete monotonicity has attracted the attention of many researchers [23,34,56,67] due to it has become an important tool to study geometric function theory [26,31,36], its definition can be simply stated as follows.
Definition 1.1. Let I⊆R be an interval. Then a real-valued function f:I↦R is said to be completely monotonic on I if f has derivatives of all orders on I and satisfies
(−1)nf(n)(x)≥0 | (1.1) |
for all x∈I and n=0,1,2,⋯.
If I=(0,∞), then a necessary and sufficient condition for the complete monotonicity can be found in the literature [54]: the real-valued function f:(0,∞)↦R is completely monotonic on (0,∞) if and only if
f(x)=∫∞0e−xtdα(t) | (1.2) |
is a Laplace transform, where α(t) is non-decreasing and such that the integral of (1.2) converges for 0<x<∞.
In 1997, Alzer [10] studied a class of completely monotonic functions involving the classical Euler gamma function [21,22,60,66,68] and obtained the following result.
Theorem 1.1. Let n≥0 be an integer, κ(x) and fn(x) be defined on (0,∞) by
κ(x)=lnΓ(x)−(x−12)lnx+x−12ln(2π) | (1.3) |
and
fn(x)={κ(x)−n∑k=1B2k2k(2k−1)x2k−1,n≥1,κ(x),n=0, | (1.4) |
where Bn denotes the Bernoulli number. Then both the functions x↦f2n(x) and x↦−f2n+1(x) are strictly completely monotonic on (0,∞).
In 2009, Koumandos and Pedersen [27] first introduced the concept of completely monotonic functions of order r. In 2012, Guo and Qi [17] proposed the concept of completely monotonic degree of nonnegative functions on (0,∞). Since the completely monotonic degrees of many functions are integers, in this paper we introduce the concept of the completely monotonic integer degree as follows.
Definition 1.2. Let f(x) be a completely monotonic function on (0,∞) and denote f(∞)=limx→∞f(x). If there is a most non-negative integer k (≤∞) such that the function xk[f(x)−f(∞)] is completely monotonic on (0,∞), then k is called the completely monotonic integer degree of f(x) and denoted as degxcmi[f(x)]=k.
Recently, Qi and Liu [29] gave a number of conjectures about the completely monotonic degrees of these fairly broad classes of functions. Based on thirty six figures of the completely monotonic degrees, the following conjectures for the functions (−1)mR(m)n(x)=(−1)m[(−1)nfn(x)](m)=(−1)m+nf(m)n(x) are shown in [29]:
(ⅰ) If m=0, then
degxcmi[Rn(x)]={0,if n=01,if n=12(n−1),if n≥2; | (1.5) |
(ⅱ) If m=1, then
degxcmi[−R′n(x)]={1,if n=02,if n=12n−1,if n≥2; | (1.6) |
(ⅲ) If m≥1, then
degxcmi[(−1)mR(m)n(x)]={m−1,if n=0m,if n=1m+2(n−1),if n≥2. | (1.7) |
In this paper, we get the complete monotonicity of lower-order derivative and lower-scalar functions (−1)mR(m)n(x) and their completely monotonic integer degrees using the Definition 1.2 and a common sense in Laplace transform that the original function has the one-to-one correspondence with the image function, and demonstrated the correctness of the existing conjectures by using a elementary simple method. The negative conclusion to the second clause of (1.7) is given. Finally, we propose some operational conjectures which involve the completely monotonic integer degrees for the functions (−1)mR(m)n(x) for m=0,1,2,⋯.
In order to prove our main results, we need several lemmas and a corollary which we present in this section.
Lemma 2.1. If the function xnf(x) (n≥1) is completely monotonic on (0,∞), so is the function xn−1f(x).
Proof. Since the function 1/x is completely monotonic on (0,∞), we have xn−1f(x)=(1/x)[xnf(x)] is completely monotonic on (0,∞) too.
Corollary 2.1. Let α(t)≥0 be given in (1.2). Then the functions xi−1f(x) for i=n,n−1,⋯,2,1 are completely monotonic on (0,∞) if the function xnf(x) (n∈N) is completely monotonic on (0,∞).
The above Corollary 2.1 is a theoretical cornerstone to find the completely monotonic integer degree of a function f(x). According to this theory and Definition 1.2, we only need to find a nonnegative integer k such that xkf(x) is completely monotonic on (0,∞) and xk+1f(x) is not, then degxcmi[f(x)]=k.
The following lemma comes from Yang [57]:
Lemma 2.2. Let fn(x) be defined as (1.4). Then fn(x) can be written as
fn(x)=14∫∞0pn(t2)e−xtdt, | (2.1) |
where
pn(t)=cothtt−n∑k=022kB2k(2k)!t2k−2. | (2.2) |
Lemma 2.3. Let m,r≥0, n≥1, fn(x) and pn(t) be defined as (2.1) and (2.2). Then
xr(−1)mR(m)n(x)=xr(−1)m+nf(m)n(x)=14∫∞0[(−1)ntmpn(t2)](r)e−xtdt. | (2.3) |
Proof. It follows from (2.1) that
x(−1)mR(m)n(x)=x(−1)m+nf(m)n(x)=x(−1)m+n14∫∞0(−t)mpn(t2)e−xtdt=x(−1)n14∫∞0tmpn(t2)e−xtdt=(−1)n−114∫∞0tmpn(t2)de−xt=(−1)n−114{[tmpn(t2)e−xt]∞t=0−∫∞0[tmpn(t2)]′e−xtdt}=(−1)n14∫∞0[tmpn(t2)]′e−xtdt. |
Repeat above process. Then we come to the conclusion that
xr(−1)mR(m)n(x)=(−1)n14∫∞0[tmpn(t2)](r)e−xtdt, |
which completes the proof of Lemma 2.3.
In recent paper [70] the reslut degxcmi[R1(x)]=degxcmi[−f1(x)]=1 was proved. In this section, we mainly discuss degxcmi[R2(x)] and degxcmi[R3(x)]. Then discuss whether the most general conclusion exists about degxcmi[Rn(x)].
Theorem 3.1. The function x3R2(x) is not completely monotonic on (0,∞), and
degxcmi[R2(x)]=degxcmi[f2(x)]=2. |
Proof. Note that the function x2R2(x) is completely monotonic on (0,∞) due to
x2R2(x)=14∫∞0p(2)2(t2)e−xtdt,p2(t)=cothtt+145t2−1t2−13,p′2(t)=245t−1tsinh2t+2t3−1t2coshtsinht,p′′2(t)=45A(t)+180t2B(t)+t4C(t)90t4sinh3t>0, |
where
A(t)=tcosh3t−3sinh3t+9sinht−tcosht=∞∑n=52(n−4)(32n−1)(2n+1)!t2n+1>0,B(t)=tcosht+sinht>0,C(t)=sinh3t−3sinht>0. |
So degxcmi[R2(x)]≥2.
On the other hand, we can prove that the function x3f2(x)=x3R2(x) is not completely monotonic on (0,∞). By (2.3) we have
x3f2(x)=14∫∞0p(3)2(t2)e−xtdt, |
then by (1.2), we can complete the staged argument since we can verify
p(3)2(t2)>0⟺p(3)2(t)>0 |
is not true for all t>0 due to
p′′′2(t)=2tsinh2t−2t3sinh2t+4t3+24t5−6tcosh2tsinh4t−4t3cosh2tsinh2t−2t2cosh3tsinh3t+2t2coshtsinht−4t2coshtsinh3t−6t4coshtsinht |
with p′′′2(10)=−0.00036⋯.
Theorem 3.2. The function x4R3(x) is completely monotonic on (0,∞), and
degxcmi[R3(x)]=degxcmi[−f3(x)]=4. |
Proof. By (2.3) we obtain that
x4R3(x)=∫∞0[−p(4)3(t2)]e−xtdt. |
From (2.2) we clearly see that
p3(t)=cothtt−1t2+145t2−2945t4−13, |
p(4)3(t)=:−1630H(t)t6sinh5t, |
or
−p(4)3(t)=1630H(t)t6sinh5t, |
where
H(t)=(2t6+4725)sinh5t−945tcosh5t−(1260t5+3780t3−2835t)cosh3t−(10t6+2520t4+3780t2+23625)sinh3t−(13860t5−3780t3+1890t)cosht+(20t6−7560t4+11340t2+47250)sinht:=∞∑n=5hn(2n+3)!t2n+3 |
with
hn=2125[64n6+96n5−80n4−120n3+16n2−2953101n+32484375]52n−1027[64n6+96n5+5968n4+105720n3+393136n2+400515n+1760535]32n+20[64n6+96n5−11168n4−9696n3+9592n2+13191n+7749]>0 |
for all n≥5. So x4R3(x) is completely monotonic on (0,∞), which implies degxcmi[R3(x)]≥4.
Then we shall prove x5R3(x)=−x5f3(x) is not completely monotonic on (0,∞). Since
x5R3(x)=∫∞0[−p(5)3(t2)]e−xtdt, |
and
−p(5)3(t)=14K(t)t7sinh6t, |
where
K(t)=540cosh4t−1350cosh2t−90cosh6t−240t2cosh2t+60t2cosh4t+80t4cosh2t+40t4cosh4t+208t6cosh2t+8t6cosh4t−120t3sinh2t+60t3sinh4t+200t5sinh2t+20t5sinh4t+75tsinh2t−60tsinh4t+15tsinh6t+180t2−120t4+264t6+900. |
We find K(5)≈−2.6315×1013<0, which means −p(5)3(5)<0. So the function x5R3(x)=−x5f3(x) is not completely monotonic on (0,∞).
In a word, degxcmi[R3(x)]=degxcmi[−f3(x)]=4.
Remark 3.1. So far, we have the results about the completely monotonic integer degrees of such functions, that is, degxcmi[R1(x)]=1 and degxcmi[Rn(x)]=2(n−1) for n=2,3, and find that the existing conclusions support the conjecture (1.5).
In this section, we shall calculate the completely monotonic degrees of the functions (−1)mR(m)n(x), where m=1 and 1≤n≤3.
Theorem 4.1 The function −x2R′1(x)=x2f′1(x) is completely monotonic on (0,∞), and
degxcmi[(−1)1R′1(x)]=2. |
Proof. By the integral representation (2.3) we obtain
x2f′1(x)=14∫∞0[−tp1(t2)]′′e−xtdt. |
So we complete the proof of result that x2f′1(x) is completely monotonic on (0,∞) when proving
[−tp1(t2)]′′>0⟺[tp1(t2)]′′<0⟺[tp1(t)]′′<0. |
In fact,
tp1(t)=t(cothtt−1t2−13)=coshtsinht−13t−1t,[tp1(t)]′=1t2−cosh2tsinh2t+23,[tp1(t)]′′=2sinh3t[cosht−(sinhtt)3]<0. |
Then we have degxcmi[(−1)1R′1(x)]≥2.
Here −x3R′1(x)=x3f′1(x) is not completely monotonic on (0,∞). By (2.2) and (2.3) we have
x3f′1(x)=14∫∞0[−tp1(t2)]′′′e−xtdt, |
and
[−tp1(t)]′′′=23t4cosh2t−t4sinh2t−3sinh4tt4sinh4t |
with [−tp1(t)]′′′|t=2≈−3.6237×10−2<0.
Theorem 4.2. The function −x3R′2(x) is completely monotonic on (0,∞), and
degxcmi[−R′2(x)]=degxcmi[−f′2(x)]=3. |
Proof. First, we can prove that the function −x3R′2(x) is completely monotonic on (0,∞). Using the integral representation (2.3) we obtain
−x3f′2(x)=14∫∞0[tp2(t2)](3)e−xtdt, |
and complete the proof of the staged argument when proving
[tp2(t2)](3)>0⟺[tp2(t)](3)>0. |
In fact,
p2(t)=cothtt+145t2−1t2−13,L(t):=tp2(t)=coshtsinht−13t−1t+145t3, |
L′′′(t)=−180cosh2t+45cosh4t−124t4cosh2t+t4cosh4t−237t4+13560t4sinh4t=160t4sinh4t[∞∑n=322n+2bn(2n+4)!t2n+4]>0, |
where
bn=22n(4n4+20n3+35n2+25n+2886)−4(775n+1085n2+620n3+124n4+366)>0 |
for all n≥3.
On the other hand, by (2.3) we obtain
x4(−1)1R′2(x)=−x4f′2(x)=14∫∞0[tp2(t2)](4)e−xtdt, |
and
L(4)(t)=[tp2(t)](4)=16coshtsinht−40cosh3tsinh3t+24cosh5tsinh5t−24t5 |
is not positive on (0,∞) due to L(4)(10)≈−2.3993×10−4<0, we have that −x4R′2(x) is not completely monotonic on (0,∞).
Theorem 4.3. The function −x5R′3(x) is completely monotonic on (0,∞), and
degxcmi[−R′3(x)]=degxcmi[f′3(x)]=5. |
Proof. We shall prove that −x5R′3(x)=x5f′3(x) is completely monotonic on (0,∞) and −x6R′3(x)=x6f3(x) is not. By (2.2) and (2.3) we obtain
xrf′3(x)=14∫∞0[−tp3(t2)](r)e−xtdt, r≥0. |
and
p3(t)=cothtt−1t2+145t2−2945t4−13,M(t):=tp3(t)=coshtsinht−13t−1t+145t3−2945t5,M(5)(t)=−1252p(t)t6sinh6t, |
we have
[−M(t)](5)=1252p(t)t6sinh6t,[−M(t)](6)=14q(t)t7sinh7t, |
where
p(t)=−14175cosh2t+5670cosh4t−945cosh6t+13134t6cosh2t+492t6cosh4t+2t6cosh6t+16612t6+9450,q(t)=945sinh3t−315sinh5t+45sinh7t−1575sinht−456t7cosh3t−8t7cosh5t−2416t7cosht. |
Since
p(t)=∞∑n=42⋅62n+492⋅42n+13134⋅22n(2n)!t2n+6−∞∑n=4945⋅62n+6−5670⋅42n+6+14175⋅22n+6(2n+6)!t2n+6>0,q(0.1)≈−2.9625×10−5<0, |
we obtain the expected conclusions.
Remark 4.1. The experimental results show that the conjecture (1.6) may be true.
Theorem 5.1. The function x3R′′1(x) is completely monotonic on (0,∞), and
degxcmi[R′′1(x)]=degxcmi[−f′′1(x)]=3. | (5.1) |
Proof. By (2.2) and (2.3) we obtain
x3R′′1(x)=−x3f′′1(x)=14∫∞0[−t2p1(t2)]′′′e−xtdt, |
and
t2p1(t)=tcoshtsinht−13t2−1, |
[−t2p1(t)]′′′=23sinh4t[∞∑n=23(n−1)22n+1(2n+1)!t2n+1]>0. |
So x3R′′1(x) is completely monotonic on (0,∞).
But x4R′′1(x) is not completely monotonic on (0,∞) due to
x4R′′1(x)=14∫∞0[−t2p1(t2)](4)e−xtdt, |
and
[−t2p1(t)](4)=1sinh5t(4sinh3t+12sinht−22tcosht−2tcosh3t) |
with [−t2p1(t)](4)|t=10≈−5.2766×10−7<0.
So
degxcmi[R′′1(x)]=degxcmi[−f′′1(x)]=3. |
Remark 5.1. Here, we actually give a negative answer to the second paragraph of conjecture (1.7).
Theorem 5.2. The function x4R′′2(x) is completely monotonic on (0,∞), and
degxcmi[R′′2(x)]=degxcmi[f′′2(x)]=4. |
Proof. By (2.2) and (2.3) we
x4f′′2(x)=14∫∞0[t2p2(t2)](4)e−xtdt, |
and
t2p2(t)=145t4−13t2+tcoshtsinht−1,[t2p2(t)](4)=130(−125sinh3t+sinh5t−350sinht+660tcosht+60tcosh3t)sinh5t=130sinh5t[∞∑n=35(52n+(24n−63)32n+264n+62)(2n+1)!t2n+1]>0. |
Since
x5f′′2(x)=14∫∞0[t2p2(t2)](5)e−xtdt, |
and
[t2p2(t)](5)=50sinh2t−66t+5sinh4t−52tcosh2t−2tcosh4tsinh6t |
with [t2p2(t)](5)|t=10≈−9.8935×10−7<0, we have that x5f′′2(x) is not completely monotonic on (0,∞). So
degxcmi[R′′2(x)]=4. |
Theorem 5.3. The function x6R′′3(x) is completely monotonic on (0,∞), and
degxcmi[R′′3(x)]=degxcmi[−f′′3(x)]=6. |
Proof. By the integral representation (2.3) we obtain
−x6f′′3(x)=14∫∞0[−t2p3(t2)](6)e−xtdt,−x7f′′3(x)=14∫∞0[−t2p3(t2)](7)e−xtdt. |
It follows from (2.2) that
p3(t)=cothtt−1t2+145t2−2945t4−13,N(t):=t2p3(t)=145t4−13t2−2945t6+tcoshtsinht−1,−N(6)(t)=142r(t)sinh7t,−N(7)(t)=(2416t−1715sinh2t−392sinh4t−7sinh6t+2382tcosh2t+240tcosh4t+2tcosh6t)sinh8t, |
where
r(t)=6321sinh3t+245sinh5t+sinh7t+10045sinht−25368tcosht−4788tcosh3t−84tcosh5t=∞∑n=4cn(2n+1)!t2n+1 |
with
cn=7⋅72n−(168n−1141)52n−(9576n−14175)32n−(50736n+15323). |
Since ci>0 for i=4,5,6,7, and
cn+1−49cn=(4032n−31584)52n+(383040n−653184)32n+2435328n+684768>0 |
for all n≥8. So cn>0 for all n≥4. Then r(t)>0 and −N(6)(t)>0 for all t>0. So x6R′′3(x) is completely monotonic on (0,∞).
In view of −N(7)(1.5)≈−0.57982<0, we get x7R′′3(x) is not completely monotonic on (0,∞). The proof of this theorem is complete.
Remark 5.2. The experimental results show that the conjecture (1.7) may be true for n,m≥2.
In this way, the first two paragraphs for conjectures (1.5) and (1.6) have been confirmed, leaving the following conjectures to be confirmed:
degxcmi[Rn(x)]=2(n−1), n≥4; | (6.1) |
degxcmi[−R′n(x)]=2n−1, n≥4; | (6.2) |
and for m≥1,
degxcmi[(−1)mR(m)n(x)]={m,if n=0m+1,if n=1m+2(n−1),if n≥2, | (6.3) |
where the first formula and second formula in (6.3) are two new conjectures which are different from the original ones.
By the relationship (2.3) we propose the following operational conjectures.
Conjecture 6.1. Let n≥4, and pn(t) be defined as (2.2). Then
[(−1)npn(t)](2n−2)>0 | (6.4) |
holds for all t∈(0,∞) and
[(−1)npn(t)](2n−1)>0 | (6.5) |
is not true for all t∈(0,∞).
Conjecture 6.2. Let n≥4, and pn(t) be defined as (2.2). Then
(−1)n[tpn(t)](2n−1)>0 | (6.6) |
holds for all t∈(0,∞) and
(−1)n[tpn(t)](2n)>0 | (6.7) |
is not true for all t∈(0,∞).
Conjecture 6.3. Let m≥1, and pn(t) be defined as (2.2). Then
[tmp0(t)](m)>0, | (6.8) |
[−tmp1(t)](m+1)>0 | (6.9) |
hold for all t∈(0,∞), and
[tmp0(t)](m+1)>0, | (6.10) |
[−tmp1(t)](m+2)>0 | (6.11) |
are not true for all t∈(0,∞).
Conjecture 6.4. Let m≥1, n≥2, and pn(t) be defined as (2.2). Then
(−1)n[tmpn(t)](m+2n−2)>0 | (6.12) |
holds for all t∈(0,∞) and
(−1)n[tmpn(t)](m+2n−1)>0 | (6.13) |
is not true for all t∈(0,∞).
The author would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.
The research is supported by the Natural Science Foundation of China (Grant No. 61772025).
The author declares no conflict of interest in this paper.
[1] | EUROCONTROL (2023) EUROCONTROL seven year forecast 2023-2029. Available from: https://www.eurocontrol.int/sites/default/files/2023-10/eurocontrol-seven-year-forecast-2023-2029-region-definition.pdf. |
[2] | ICAO (2023) Global trends in aircraft noise. |
[3] | European Commission (2024) Reducing emissions from aviation. Available: https://climate.ec.europa.eu/eu-action/transport/reducing-emissions-aviation_en. |
[4] | ECAC.CEAC (2025) Report on Standard Method of Computing Noise Contours around Civil Airports Volume 1: Applications Guide. |
[5] | ECAC.CEAC (2016) Report on Standard Method of Computing Noise Contours around Civil Airports Volume 2: Technical Guide. |
[6] |
Pretto M, Giannattasio P, De Gennaro M (2022) Mixed analysis-synthesis approach for estimating airport noise from civil air traffic. Transport Res D-Tr E 106: 103248. https://doi.org/10.1016/j.trd.2022.103248 doi: 10.1016/j.trd.2022.103248
![]() |
[7] |
Pretto M, Dorbolò L, Giannattasio P, et al. (2024) Aircraft trajectory reconstruction and airport noise prediction from high-resolution flight tracking data. Transport Res D-Tr E 135: 104397. https://doi.org/10.1016/j.trd.2024.104397 doi: 10.1016/j.trd.2024.104397
![]() |
[8] | EUROCONTROL (2023) The aircraft noise and performance database (ANP) database: an international data resource for aircraft noise modellers. |
[9] | EUROCONTROL (2024) IMPACT: integrated aircraft noise and emissions modelling platform. |
[10] | Federal Aviation Administration (FAA) Aviation Environmental Design Tool (AEDT). Available from: https://aedt.faa.gov/. |
[11] | Ollerhead JB (1992) The CAA Aircraft Noise Contour Model: ANCON Version 1, Cheltenham, UK: Civil Aviation Authority. |
[12] | Rekkas C, Rees M (2008) Towards ADS-B implementation in Europe. in 2008 Tyrrhenian International Workshop on Digital Communications - Enhanced Surveillance of Aircraft and Vehicles, Capri, Italy. https://doi.org/10.1109/TIWDC.2008.4649019 |
[13] | De Gennaro M, Zanon A, Kuehnelt H, et al. (2018) Big data for low-carbon transport: an overview of applications for designing the future of road and aerial transport, in 7th Transport Research Arena, Vienna. |
[14] | Gagliardi P, Fredianelli L, Simonetti D, et al. (2017) ADS-B System as a Useful Tool for Testing and Redrawing Noise Management Strategies at Pisa Airport. Acta Acust United Acust 103: 543–551. |
[15] | Flightradar24. Available from: https://www.flightradar24. |
[16] | FlightAware. Available from: https://www.flightaware.com. |
[17] | Plane Finder. Available from: https://planefinder.net/. |
[18] | Airfleets.net. Available from: https://www.airfleets.net. |
[19] |
Pretto M, Giannattasio P, De Gennaro M, et al. (2019) Web data for computing real-world noise from civil aviation. Transport Res D-Tr E 69: 224–249. https://doi.org/10.1016/j.trd.2019.01.022 doi: 10.1016/j.trd.2019.01.022
![]() |
[20] |
Pretto M, Giannattasio P, De Gennaro M, et al (2020) Forecasts of future scenarios for airport noise based on collection and processing of web data. Eur Transp Res Rev 12: 4. https://doi.org/10.1186/s12544-019-0389-x doi: 10.1186/s12544-019-0389-x
![]() |
[21] | Olive X (2019) Traffic: air traffic data processing with Python. |
[22] |
Olive X (2019) Traffic, a toolbox for processing and analysing air traffic data. J Open Source Softw 4: 1518, 1–3. https://doi.org/10.21105/joss.01518 doi: 10.21105/joss.01518
![]() |
[23] |
Sun J, Ellerbroek J, Hoekstra JM (2019) WRAP: An open-source kinematic aircraft performance model. Transport Res C-Emer 98: 118–138. https://doi.org/10.1016/j.trc.2018.11.009 doi: 10.1016/j.trc.2018.11.009
![]() |
[24] | Schä fer M, Strohmeier M, Lenders V, et al. (2014) Bringing up OpenSky: A large-scale ADS-B sensor network for research, in IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, Berlin, Germany, 83–94. https://doi.org/10.1109/IPSN.2014.6846743 |
[25] |
Pretto M, Dorbolò L, Giannattasio P (2023) (Poster) Exploiting high-resolution ADS-B data for flight operation reconstruction towards environmental impact assessment. J Open Aviat Sci 1. https://doi.org/10.59490/joas.2023.7208 doi: 10.59490/joas.2023.7208
![]() |
[26] | Airlinerlist. Available from: https://www.planelist.net/. |
[27] | EASA – ANP (2023) Aircraft Noise and Performance (ANP) Data. |
[28] |
Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simulat 55: 271–280. https://doi.org/10.1016/S0378-4754(00)00270-6 doi: 10.1016/S0378-4754(00)00270-6
![]() |
[29] |
Saltelli A (2002) Making best use of model evaluations to compute sensitivity indices. Comput Phys Commun 145: 280–297. https://doi.org/10.1016/S0010-4655(02)00280-1 doi: 10.1016/S0010-4655(02)00280-1
![]() |
[30] | Campolongo F, Saltelli A, Cariboni J (2011) From screening to quantitative sensitivity analysis. A unified approach. Comput Phys Commun 182: 978–988. |
[31] | OurAirports. Available from: https://ourairports.com/. |
[32] | OpenStreetMap. Available from: https://www.openstreetmap.org. |
1. | Feng Qi, Decreasing properties of two ratios defined by three and four polygamma functions, 2022, 360, 1778-3569, 89, 10.5802/crmath.296 | |
2. | Zhong-Xuan Mao, Jing-Feng Tian, Delta Complete Monotonicity and Completely Monotonic Degree on Time Scales, 2023, 46, 0126-6705, 10.1007/s40840-023-01533-y | |
3. | Hesham Moustafa, Waad Al Sayed, Some New Bounds for Bateman’s G-Function in Terms of the Digamma Function, 2025, 17, 2073-8994, 563, 10.3390/sym17040563 |