Loading [MathJax]/jax/output/SVG/jax.js
Research article

Design and evaluation of INS/GNSS loose and tight coupling applied to launch vehicle integrated navigation

  • Received: 30 August 2023 Revised: 13 December 2023 Accepted: 20 December 2023 Published: 25 December 2023
  • A satellite launcher requires accurate and reliable navigation to reach orbit safely. This challenging application includes vertical launch, flying through diverse layers of the atmosphere, discontinuous acceleration and stages separation, high terminal velocities and hostile temperature and vibration ranges. The Inertial Navigation System (INS) is typically coupled with a Global Navigation Satellite System (GNSS) receiver to achieve the desired solution quality along the complete ascent trajectory. Here, several INS/GNSS integrated navigation strategies are described and evaluated through numerical simulations. In particular, we evaluate different INS/GNSS integration using: loose coupling, tight coupling and an intermediate Kalman filter on the receiver to enhance the loosely coupled navigation solution. The main contributions are: a compensation model of tropospheric delays on the GNSS observables, a compensation of processing/communication delays on GNSS receiver outputs, covariance adaptations to consider vehicle's high dynamics, and an specific way to integrate the filtered solution and its covariance provided by the GNSS receiver. The tightly coupled integrated navigation proved to be the best choice to handle possible GNSS receiver positioning solution outages, to exploit more degrees of freedom for the compensation of GNSS observables and the possibility to make a cross validation of individual GNSS observables with INS-based information. This is specially important during the periods with a low number of satellites in view when the GNSS positioning solution can not be validated or even computed by the GNSS receiver alone. Finally, a test with hardware in the loop is provided to validate the numerical result for the selected tightly coupled INS/GNSS.

    Citation: Victor Cánepa, Pablo Servidia. Design and evaluation of INS/GNSS loose and tight coupling applied to launch vehicle integrated navigation[J]. Metascience in Aerospace, 2024, 1(1): 66-109. doi: 10.3934/mina.2024004

    Related Papers:

    [1] Jun Moon . The Pontryagin type maximum principle for Caputo fractional optimal control problems with terminal and running state constraints. AIMS Mathematics, 2025, 10(1): 884-920. doi: 10.3934/math.2025042
    [2] Yuna Oh, Jun Moon . The infinite-dimensional Pontryagin maximum principle for optimal control problems of fractional evolution equations with endpoint state constraints. AIMS Mathematics, 2024, 9(3): 6109-6144. doi: 10.3934/math.2024299
    [3] Ruiqing Shi, Yihong Zhang . Dynamic analysis and optimal control of a fractional order HIV/HTLV co-infection model with HIV-specific antibody immune response. AIMS Mathematics, 2024, 9(4): 9455-9493. doi: 10.3934/math.2024462
    [4] Jun Moon . A Pontryagin maximum principle for terminal state-constrained optimal control problems of Volterra integral equations with singular kernels. AIMS Mathematics, 2023, 8(10): 22924-22943. doi: 10.3934/math.20231166
    [5] Irmand Mikiela, Valentina Lanza, Nathalie Verdière, Damienne Provitolo . Optimal strategies to control human behaviors during a catastrophic event. AIMS Mathematics, 2022, 7(10): 18450-18466. doi: 10.3934/math.20221015
    [6] Xiangyun Shi, Xiwen Gao, Xueyong Zhou, Yongfeng Li . Analysis of an SQEIAR epidemic model with media coverage and asymptomatic infection. AIMS Mathematics, 2021, 6(11): 12298-12320. doi: 10.3934/math.2021712
    [7] Xuefeng Yue, Weiwei Zhu . The dynamics and control of an ISCRM fractional-order rumor propagation model containing media reports. AIMS Mathematics, 2024, 9(4): 9721-9745. doi: 10.3934/math.2024476
    [8] Sayed Saber, Azza M. Alghamdi, Ghada A. Ahmed, Khulud M. Alshehri . Mathematical Modelling and optimal control of pneumonia disease in sheep and goats in Al-Baha region with cost-effective strategies. AIMS Mathematics, 2022, 7(7): 12011-12049. doi: 10.3934/math.2022669
    [9] Asaf Khan, Gul Zaman, Roman Ullah, Nawazish Naveed . Optimal control strategies for a heroin epidemic model with age-dependent susceptibility and recovery-age. AIMS Mathematics, 2021, 6(2): 1377-1394. doi: 10.3934/math.2021086
    [10] Cuifang Lv, Xiaoyan Chen, Chaoxiong Du . Global dynamics of a cytokine-enhanced viral infection model with distributed delays and optimal control analysis. AIMS Mathematics, 2025, 10(4): 9493-9515. doi: 10.3934/math.2025438
  • A satellite launcher requires accurate and reliable navigation to reach orbit safely. This challenging application includes vertical launch, flying through diverse layers of the atmosphere, discontinuous acceleration and stages separation, high terminal velocities and hostile temperature and vibration ranges. The Inertial Navigation System (INS) is typically coupled with a Global Navigation Satellite System (GNSS) receiver to achieve the desired solution quality along the complete ascent trajectory. Here, several INS/GNSS integrated navigation strategies are described and evaluated through numerical simulations. In particular, we evaluate different INS/GNSS integration using: loose coupling, tight coupling and an intermediate Kalman filter on the receiver to enhance the loosely coupled navigation solution. The main contributions are: a compensation model of tropospheric delays on the GNSS observables, a compensation of processing/communication delays on GNSS receiver outputs, covariance adaptations to consider vehicle's high dynamics, and an specific way to integrate the filtered solution and its covariance provided by the GNSS receiver. The tightly coupled integrated navigation proved to be the best choice to handle possible GNSS receiver positioning solution outages, to exploit more degrees of freedom for the compensation of GNSS observables and the possibility to make a cross validation of individual GNSS observables with INS-based information. This is specially important during the periods with a low number of satellites in view when the GNSS positioning solution can not be validated or even computed by the GNSS receiver alone. Finally, a test with hardware in the loop is provided to validate the numerical result for the selected tightly coupled INS/GNSS.



    Optimal control (OC) emerged in the 1950s as an extension of the calculus of variations. A significant breakthrough in this field was the development and proof of Pontryagin's maximum principle (PMP) by Pontryagin and his collaborators [34]. This principle established the necessary conditions for an optimal solution and has become one of the most powerful tools for addressing OC problems. This formalization of OC theory raised several new questions, particularly in the context of differential equations. It led to the introduction of new generalized solution concepts and produced significant results concerning the existence of trajectories. The applications of OC are extensive, encompassing fields such as mathematics [41], physics [9], engineering [17], robotics [11], biology [24], and economics [39], among others. The primary objective of an OC problem is to identify, from a set of possible solutions (referred to as the admissible set) the one that minimizes or maximizes a given functional. That is, the goal is to determine an OC trajectory and the corresponding state trajectory. The system's dynamics, modeled by state variables, are influenced by control variables that enter the system of equations, thereby affecting its behavior.

    Fractional calculus (FC) is a well-known theory that extends the ideas of integration and differentiation to non-integer orders, providing a more flexible approach to modeling complex systems with non-local memory. Numerous publications have been devoted to exploring FC and fractional differential equations (FDEs) from various perspectives, covering both its fundamental definitions and principles (see, e.g., [22,38] and the references therein), and its diverse applications in areas such as biology [6], medicine [23], epidemiology [28], electrochemistry [31], physics [33], mechanics [35], and economy [37]. Since the begining of fractional calculus in 1695, numerous definitions of fractional derivatives have been introduced, including the Riemann-Liouville, Caputo, Hadamard, Gr¨unwald-Letnikov, Riesz, Erdélyi-Kober, and Miller-Ross derivatives, among others. Every form of fractional derivative comes with its own benefits and is selected based on the specific needs of the problem being addressed.

    In this work, we will explore recent advancements in fractional derivatives as introduced by [10]. Specifically, we will focus on the novel concepts of distributed-order fractional derivatives with respect to an arbitrary kernel in the Riemann-Liouville and Caputo senses. In their study, the authors established necessary and sufficient conditions within the context of the calculus of variations and derived an associated Euler–Lagrange equation. Building upon their results, we extend the analysis to the setting of optimal control theory and derive a corresponding generalization of the Pontryagin maximum principle.

    A key advantage of distributed-order fractional derivatives [8] lies in their ability to describe systems where the memory effect varies over time. Unlike classical or constant-order fractional derivatives, distributed-order derivatives are defined through an integral over a range of orders, weighted by a given distribution function. This provides a more flexible and realistic modeling tool for systems whose dynamic behavior cannot be adequately captured by a single, fixed fractional order. Distributed-order fractional derivatives have proven especially effective in modeling systems characterized by a broad spectrum of dynamic behaviors. This includes, for instance, viscoelastic materials exhibiting a wide range of relaxation times, transport phenomena influenced by multiple temporal and spatial scales, and control systems affected by diverse time delays. Notable applications span across fields such as viscoelasticity, anomalous diffusion, wave propagation, and the design of fractional-order Proportional-Integral-Derivative (PID) controllers [13,18].

    In parallel, the concept of fractional derivatives with respect to arbitrary kernels [3,38] further improves the model. These operators generalize classical definitions (such as the Riemann–Liouville or Caputo derivatives) by introducing a kernel function that dictates the memory behavior of the system. By selecting an appropriate kernel, one can recover various classical forms or construct entirely new operators. This kernel-based approach allows for incorporating diverse memory effects, singularities, or fading influence in time, which are often observed in real-world processes but difficult to model with standard tools.

    These two features—variable order and general kernels—collectively enable the modeling of complex phenomena with nonlocal and history-dependent behavior, particularly in contexts where the memory characteristics are not uniform or stationary. This is especially relevant in systems governed by internal friction, relaxation, hereditary stress-strain relations, or anomalous transport, where the effects of the past on the present are not constant and may depend on the nature of past events in intricate ways.

    Building on these two ideas, we consider OC problems that involve a generalized fractional derivative constraint. OC provides a rigorous mathematical framework for determining the best possible strategy to steer a dynamical system from an initial state to a desired final state while minimizing (or maximizing) a given cost functional. The inclusion of fractional operators—particularly of distributed-order or arbitrary-kernel types—within this framework enhances the ability to model systems with complex dynamics and long-range temporal dependencies. It enables decision-makers to formulate strategies that are optimal with respect to cost, energy, time, or other performance metrics, all while satisfying dynamic constraints such as differential equations, control bounds, and state limitations. This is crucial for achieving efficiency, such as reducing fuel consumption in aerospace trajectories, minimizing energy use in industrial processes, or shortening recovery time in medical treatments.

    Pioneering works, such as those in [1,2], developed necessary conditions for optimality with respect to the classical Caputo fractional derivative. These studies were further expanded in [14,15] with the formulation of the fractional Noether's theorem. Since then, numerous studies have emerged on fractional OC problems, addressing various fractional operators such as the Caputo [5,20], Riemann–Liouville [19], and distributed-order derivatives [30], as well as aspects like delays in systems [16] and fuzzy theory [32]. Numerical methods for solving fractional optimal control problems are available in the literature. For example, [21] uses a generalized differential transform method, [25,42] employ second-order and third-order numerical integration methods, and [27] applies a Legendre orthonormal polynomial basis.

    The primary objective of this paper is to establish a generalized fractional PMP applicable to OC problems involving the left-sided distributed-order Caputo fractional derivative with respect to an arbitrary smooth kernel. Additionally, we will present sufficient conditions for optimality based on PMP.

    The rest of the paper is structured as follows. Section 2 introduces some fundamental concepts and results from fractional calculus required for our work. In Section 3, we present the OC problem (POC) under study, some fundamental lemmas, PMP, and sufficient conditions for the global optimality of the problem (POC). Section 4 provides two examples that illustrate the practical relevance of our research. Finally, in Section 5, we summarize our findings and present ideas for future work.

    This section provides essential definitions and results with respect to the distributed-order Riemann-Liouville and Caputo derivatives depending on a given kernel [10]. We assume that readers are already acquainted with the definitions and properties of the classical fractional operators [22,38].

    Throughout the paper, we suppose that a<b are two real numbers, J=[a,b], γR+, and [γ] denotes the integer part of γ. First, we introduce essential concepts relevant to our work.

    Definition 2.1. [38] (Fractional integrals in the Riemann–Liouville sense) Let zL1(J,R), and let σC1(J,R) be a continuously differentiable function with a positive derivative.

    For t>a, the left-sided σ-R-L fractional integral of the function z of order γ is given by

    Iγ,σa+z(t):=taσ(τ)z(τ)Γ(γ)(σ(t)σ(τ))1γdτ,

    and for t<b, the right-sided σ-R-L fractional integral is

    Iγ,σbz(t):=btσ(τ)z(τ)Γ(γ)(σ(τ)σ(t))1γdτ.

    Definition 2.2. [38] (Fractional derivatives in the Riemann–Liouville sense) Let zL1(J,R), and let σCn(J,R) be such that σ(t)>0, given tJ.

    The left-sided σ-R-L fractional derivative of the function z of order γ is given by

    Dγ,σa+z(t):=(1σ(t)ddt)nInγ,σa+z(t),

    and the right-sided σ-R-L fractional derivative is

    Dγ,σbz(t):=(1σ(t)ddt)nInγ,σbz(t),

    where n=[γ]+1.

    Definition 2.3. [3] (Fractional derivatives in the Caputo sense) For a fixed γR+, define nN as: n=[γ]+1 if γN, and n=γ if γN. Moreover, consider z,σCn(J,R) where σ(t)>0, tJ. The left- and right-sided σ-C fractional derivatives of the function z of order γ are given by

    CDγ,σa+z(t):=Inγ,σa+(1σ(t)ddt)nz(t),

    and

    CDγ,σbz(t):=Inγ,σb(1σ(t)ddt)nz(t),

    respectively.

    We remark that, for 0<γ<1:

    Dγ,σa+z(t):=1Γ(1γ)(1σ(t)ddt)taσ(τ)(σ(t)σ(τ))γz(τ)dτ,
    Dγ,σbz(t):=1Γ(1γ)(1σ(t)ddt)btσ(τ)(σ(τ)σ(t))γz(τ)dτ,
    CDγ,σa+z(t):=1Γ(1γ)ta(σ(t)σ(τ))γz(τ)dτ,

    and

    CDγ,σbz(t):=1Γ(1γ)bt(σ(τ)σ(t))γz(τ)dτ.

    If γ=1, we get

    Dγ,σa+z(t)=CDγ,σa+z(t)=z(t)σ(t)

    and

    Dγ,σbz(t)=CDγ,σbz(t)=z(t)σ(t).

    Next, we recall some properties that will be useful in our proofs. For γ(0,1] and zC1(J,R), the following relations hold:

    CDγ,σa+Iγ,σa+z(t)=z(t)

    and

    Iγ,σa+CDγ,σa+z(t)=z(t)z(a).

    For further details, we refer the reader to [3].

    Since the fractional OC problem examined in this paper involves a fractional derivative of order γ within the range (0, 1], we will henceforth assume γ(0,1].

    To define the distributed-order derivatives, we need to fix the order-weighting function, denoted by Φ. Here, Φ is a continuous function defined on [0,1] such that Φ([0,1])[0,1] and 10Φ(γ)dγ>0.

    Definition 2.4. [10] (Distributional-order fractional derivatives in the Riemann–Liouville sense) Let zL1(J,R). The left- and right-sided σ-D-R-L fractional derivatives of a function z with respect to the distribution Φ are defined by

    DΦ(γ),σa+z(t):=10Φ(γ)Dγ,σa+z(t)dγandDΦ(γ),σbz(t):=10Φ(γ)Dγ,σbz(t)dγ,

    where Dγ,σa+ and Dγ,σb are the left- and right-sided σ-R-L fractional derivatives of order γ, respectively.

    Definition 2.5. [10] (Distributional-order fractional derivatives in the Caputo sense) The left- and right-sided σ-D-C fractional derivatives of a function zC1(J,R) with respect to the distribution Φ are defined by

    CDΦ(γ),σa+z(t):=10Φ(γ)CDγ,σa+z(t)dγandCDΦ(γ),σbz(t):=10Φ(γ)CDγ,σbz(t)dγ,

    where CDγ,σa+ and CDγ,σb are the left- and right-sided σ-C fractional derivatives of order γ, respectively.

    In what follows, we introduce the concepts of σ-distributional-order fractional integrals:

    I1Φ(γ),σa+z(t):=10Φ(γ)I1γ,σa+z(t)dγandI1Φ(γ),σbz(t):=10Φ(γ)I1γ,σbz(t)dγ,

    where I1γ,σa+ and I1γ,σb are the left- and right-sided σ-R-L fractional integrals of order 1γ, respectively.

    It is evident from the definitions that distributed-order operators are linear.

    In the following, we present a generalized fractional integration by parts formula which is useful to demonstrate some of our results.

    Lemma 2.6. (Generalized fractional integration by parts) [10] Given wC(J,R) and zC1(J,R), the following holds:

    baw(t)CDΦ(γ),σa+z(t)dt=baz(t)(DΦ(γ),σbw(t)σ(t))σ(t)dt+[z(t)(I1Φ(γ),σbw(t)σ(t))]t=bt=a.

    We now present a general form of Gronwall's inequality, a crucial tool for comparing solutions of FDEs that involve σ-fractional derivatives.

    Lemma 2.7. (Generalized fractional Gronwall inequality) [40] Let u,vL1(J,R), σC1(J,R) with σ(t)>0 for all tJ, and hC(J,R). Assume also that u,v,h are nonnegative and h is nondecreasing. If

    u(t)v(t)+h(t)taσ(τ)(σ(t)σ(τ))γ1u(τ)dτ,tJ,

    then

    u(t)v(t)+tai=1[Γ(γ)h(t)]iΓ(iγ)σ(τ)(σ(t)σ(τ))iγ1v(τ)dτ,tJ.

    Remark 2.8. In Lemma 2.7, the assumption that h is nondecreasing is often satisfied in practical contexts where h represents quantities such as cumulative costs, energy consumption, or memory effects that naturally increase or remain constant over time.

    Next, we recall the definition of the Mittag-Leffler function (with one parameter), which generalizes the standard exponential function and plays a fundamental role in the study of differential equations of fractional order.

    Definition 2.9. The Mittag-Leffler function with parameter γ>0 is defined by

    Eγ(t):=i=0tiΓ(γi+1),tR.

    To conclude this section, we present the following result, which is a corollary of Lemma 2.7 and will be useful in the proof of Lemma 3.3.

    Corollary 2.10. (cf. [40]) Under the hypotheses of Lemma 2.7, if v is a nondecreasing function, then, for all tJ,

    u(t)v(t)Eγ(Γ(γ)h(t)[σ(t)σ(a)]γ).

    The aim of this section is to establish necessary and sufficient optimality conditions for a fractional OC problem involving the left-sided Caputo distributed-order fractional derivative with respect to a smooth kernel σ.

    In what follows, we use the standard notations: PC(J,R) denotes the set of all real-valued piecewise continuous functions defined on J, and PC1(J,R) denotes the set of piecewise smooth functions defined on J. The fractional OC problem is defined by the following formulation:

    Problem (POC): Determine xPC1(J,R) and uPC(J,R) that extremizes the functional

    J(x,u)=baL(t,x(t),u(t))dt,

    under the following restrictions: the FDE

    CDΦ(γ),σa+x(t)=f(t,x(t),u(t)),tJ,

    and the initial condition

    x(a)=xa,

    where LC1(J×R2,R) and fC2(J×R2,R).

    Remark 3.1. There are several equivalent ways to formulate an optimal control problem, notably in the Mayer, Lagrange, and Bolza forms. Through appropriate changes of variables and auxiliary state transformations, one can show that these formulations are theoretically equivalent (see, e.g., Chapter 3 in [26]). In this paper, we adopt the Lagrange form for consistency and simplicity.

    We will now prove a result that establishes a relationship between an optimal state trajectory of the OC problem (POC) and the state solution of a perturbed version of (POC).

    Lemma 3.2. Let the pair (¯u,¯x) be an optimal solution to (POC). For tJ, consider a variation of ¯u of the form ¯u+ξη, where ηPC(J,R) and ξR. Denote by uξ(t) such variation and xξ the solution of

    CDΦ(γ),σa+y(t)=f(t,y(t),uξ(t)),y(a)=xa.

    Then, as ξ tends to zero, xξ¯x.

    Proof. By hypothesis, we know that

    CDΦ(γ),σa+xξ(t)=f(t,xξ(t),uξ(t))andCDΦ(γ),σa+¯x(t)=f(t,¯x(t),¯u(t)),tJ,

    where xξ(a)=¯x(a)=xa. From the linearity and the definition of the operator CDΦ(γ),σa+, we may conclude that

    10Φ(γ)CDγ,σa+(xξ(t)¯x(t))dγ=f(t,xξ(t),uξ(t))f(t,¯x(t),¯u(t)).

    Using the mean value theorem in the integral form, we conclude that there exists β[0,1] such that

    CDβ,σa+(xξ(t)¯x(t))10Φ(γ)dγ=f(t,xξ(t),uξ(t))f(t,¯x(t),¯u(t)).

    Denoting ω:=10Φ(γ)dγ, we conclude that

    CDβ,σa+(xξ(t)¯x(t))=f(t,xξ(t),uξ(t))f(t,¯x(t),¯u(t))ω.

    Thus,

    xξ(t)¯x(t)=Iβ,σa+(f(t,xξ(t),uξ(t))f(t,¯x(t),¯u(t))ω).

    Let k1 and k2 be two positive real numbers such that

    |f(t,xξ(t),uξ(t))f(t,¯x(t),¯u(t))|k1|xξ(t)¯x(t)|+k2|uξ(t)¯u(t)|,tJ,

    and denote by k their maximum. Therefore,

    |xξ(t)¯x(t)|Iβ,σa+(|f(t,xξ(t),uξ(t))f(t,¯x(t),¯u(t))|ω)kω(Iβ,σa+(|xξ(t)¯x(t)|+|uξ(t)¯u(t)|)),tJ.

    Since uξ(t)¯u(t)=ξη(t), we have

    |xξ(t)¯x(t)|kω(|ξ|Iβ,σa+(|η(t)|)+Iβ,σa+(|xξ(t)¯x(t)|))=kω|ξ|Iβ,σa+(|η(t)|)+kω1Γ(β)taσ(τ)(σ(t)σ(τ))β1|xξ(τ)¯x(τ)|dτ,

    for all tJ.

    Now, applying Lemma 2.7, we obtain that

    |xξ(t)¯x(t)|kω|ξ|Iβ,σa+(|η(t)|)+tai=1(kω)i+1Γ(iβ)σ(τ)(σ(t)σ(τ))iβ1|ξ|Iβ,σa+(|η(τ)|)dτ,tJ.

    Thus, by applying the mean value theorem once more, we deduce that there exists some ¯τJ such that

    |xξ(t)¯x(t)|kω|ξ|Iβ,σa+(|η(t)|)+|ξ|Iβ,σa+(|η(¯τ)|)i=1(kω)i+1Γ(iβ+1)(σ(t)σ(a))iβ=kω|ξ|[Iβ,σa+(|η(t)|)+Iβ,σa+(|η(¯τ)|)(Eβ(kω(σ(t)σ(a))β)1)],tJ.

    So, the proof is finished by taking the limit when ξ0.

    Before presenting our next result, we extend the one presented in [12, Theorem 3.4] for FDEs with the σ-Caputo fractional derivative.

    Lemma 3.3. Consider the following two FDEs of order γ(0,1]:

    CDγ,σa+x(t)=f(t,x(t))andCDγ,σa+x(t)=˜f(t,x(t)),tJ,

    with the same initial condition. Suppose the functions f and ˜f are Lipschitz continuous with respect to x, with Lipschitz constant L>0. If y and z are the unique solutions to the first and second equations, respectively, then there exists a constant C>0, independent of y and z, such that

    yzCf˜f.

    Proof. Given tJ, we have:

    |y(t)z(t)|=|Iγ,σa+(f(t,y(t))˜f(t,z(t)))||Iγ,σa+(f(t,y(t))f(t,z(t)))|+|Iγ,σa+(f(t,z(t))˜f(t,z(t)))|Iγ,σa+(L|y(t)z(t)|)+f˜f1Γ(γ)taσ(τ)(σ(t)σ(τ))γ1dτLΓ(γ)taσ(τ)(σ(t)σ(τ))γ1|y(τ)z(τ)|dτ+f˜f(σ(b)σ(a))γΓ(γ+1).

    Applying Corollary 2.10, with

    u(t):=|y(t)z(t)|,v(t):=f˜f(σ(b)σ(a))γΓ(γ+1),h(t):=LΓ(γ),

    we obtain

    |y(t)z(t)|f˜f(σ(b)σ(a))γΓ(γ+1)Eγ(L(σ(t)σ(a))γ),tJ.

    Thus, we conclude that

    yzCf˜f,whereC=(σ(b)σ(a))γΓ(γ+1)Eγ(L(σ(b)σ(a))γ),

    which proves the desired result.

    Throughout the following, we use the standard Big-O notation: a(x)=O(b(x)) means that there exists a constant C>0 such that |a(x)|C|b(x)| for all x sufficiently close to 0.

    Lemma 3.4. Suppose we are in the conditions of Lemma 3.2. Then, there exists a mapping ν:JR such that

    xξ(t)=¯x(t)+ξν(t)+O(ξ2).

    Proof. Given that fC2, the function f can be expanded as

    f(t,xξ(t),uξ(t))=f(t,¯x(t),¯u(t))+(xξ(t)¯x(t))f(t,¯x(t),¯u(t))x+(uξ(t)¯u(t))f(t,¯x(t),¯u(t))u+O(|xξ(t)¯x(t)|2,|uξ(t)¯u(t)|2),tJ.

    For all tJ, we have uξ(t)¯u(t)=ξη(t). Additionally, as proven in Lemma 3.2, xξ(t)¯x(t)=ξχ(t), for some finite function χ. Thus, the term O(|xξ(t)¯x(t)|2,|uξ(t)¯u(t)|2) simplifies to O(ξ2). Hence, we can express the fractional derivative of xξ as:

    CDΦ(γ),σa+xξ(t)=CDΦ(γ),σa+¯x(t)+(xξ(t)¯x(t))f(t,¯x(t),¯u(t))x+ξη(t)f(t,¯x(t),¯u(t))u+O(ξ2).

    Therefore, for ξ0 and tJ,

    CDΦ(γ),σa+xξ(t)¯x(t)ξ=xξ(t)¯x(t)ξf(t,¯x(t),¯u(t))x+η(t)f(t,¯x(t),¯u(t))u+O(ξ2)ξ.

    Consider the following two FDEs:

    CDΦ(γ),σa+y(t)=y(t)f(t,¯x(t),¯u(t))x+η(t)f(t,¯x(t),¯u(t))u+O(ξ2)ξ (3.1)

    and

    CDΦ(γ),σa+y(t)=y(t)f(t,¯x(t),¯u(t))x+η(t)f(t,¯x(t),¯u(t))u, (3.2)

    subject to y(a)=0. The existence and uniqueness of solutions for distributed-order FDEs can be ensured using standard results for FDEs involving the σ-Caputo fractional derivative (see, e.g., [4]). This is achieved by using the relation

    CDΦ(γ),σa+y(t)=ωCD¯γ,σa+y(t),

    for some ¯γ[0,1] and with ω=10Φ(γ)dγ. Equation (3.1) has the solution y1:=xξ¯xξ, and let y2 be the solution of Eq (3.2). By Lemma 3.3, we obtain that y2(t)=limξ0y1(t), proving the desired result with ν:=y2.

    We are now ready to present the main result of our work:

    Theorem 3.5. (PMP for (POC)) Let (¯x,¯u) be an optimal pair to problem (POC). Then, there exists a mapping λPC1(J,R) such that:

    The two following FDEs hold:

    Lu(t,¯x(t),¯u(t))+λ(t)fu(t,¯x(t),¯u(t))=0,tJ; (3.3)

    and

    (DΦ(γ),σbλ(t)σ(t))σ(t)=Lx(t,¯x(t),¯u(t))+λ(t)fx(t,¯x(t),¯u(t)),tJ; (3.4)

    The transversality condition

    I1Φ(γ),σbλ(b)σ(b)=0. (3.5)

    Proof. Suppose that (¯x,¯u) is a solution to problem (POC). Consider a variation of ¯u of the form ¯u+ξη, denoted by uξ, where ηPC(J,R) and ξR. Also, let xξ be the state variable satisfying

    {CDΦ(γ),σa+xξ(t)=f(t,xξ(t),uξ(t)),tJ,xξ(a)=xa. (3.6)

    Observe that, as ξ goes to zero, uξ goes to ¯u on J, and that

    uξ(t)ξ|ξ=0=η(t). (3.7)

    By Lemma 3.2 we can conclude that xξ¯x on J when ξ0. Furthermore, by Lemma 3.4, the partial derivative xξ(t)ξ|ξ=0=ν(t) exists for each t. We are considering the following functional

    J(xξ,uξ)=baL(t,xξ(t),uξ(t))dt.

    Let λPC1(J,R), to be explained later. From Lemma 2.6, we conclude that

    baλ(t)CDΦ(γ),σa+xξ(t)dtbaxξ(t)(DΦ(γ),σbλ(t)σ(t))σ(t)dt[xξ(t)(I1Φ(γ),σbλ(t)σ(t))]t=bt=a=0.

    Then,

    J(xξ,uξ)=ba[L(t,xξ(t),uξ(t))+λ(t)f(t,xξ(t),uξ(t))xξ(t)(DΦ(γ),σbλ(t)σ(t))σ(t)]dtxξ(b)(I1Φ(γ),σbλ(b)σ(b))+xa(I1Φ(γ),σbλ(a)σ(a)).

    Since (¯x,¯u) is a solution to problem (POC), we conclude that

    0=ddξJ(xξ,uξ)|ξ=0=ba[Lxxξ(t)ξ|ξ=0+Luuξ(t)ξ|ξ=0+λ(t)(fxxξ(t)ξ|ξ=0+fuuξ(t)ξ|ξ=0)]dtba[(DΦ(γ),σbλ(t)σ(t))σ(t)xξ(t)ξ|ξ=0]dt(I1Φ(γ),σbλ(b)σ(b))xξ(b)ξ|ξ=0,

    where the partial derivatives of L and f are evaluated at the point (t,¯x(t),¯u(t)). Now replacing (3.7), we get

    0=ba[Lxxξ(t)ξ|ξ=0+Luη(t)+λ(t)(fxxξ(t)ξ|ξ=0+fuη(t))]dtba(DΦ(γ),σbλ(t)σ(t))σ(t)xξ(t)ξ|ξ=0dt(I1Φ(γ),σbλ(b)σ(b))xξ(b)ξ|ξ=0.

    Rearranging the terms we have

    0=ba[(Lx+λ(t)fx(DΦ(γ),σbλ(t)σ(t))σ(t))xξ(t)ξ|ξ=0+(Lu+λ(t)fu)η(t)]dt(I1Φ(γ),σbλ(b)σ(b))xξ(b)ξ|ξ=0.

    Introducing the Hamiltonian function

    H(t,x(t),u(t),λ(t))=L(t,x(t),u(t))+λ(t)f(t,x(t),u(t)),tJ,

    the expression simplifies to:

    0=ba[(Hx(DΦ(γ),σbλ(t)σ(t))σ(t))xξ(t)ξ|ξ=0+Huη(t)]dt(I1Φ(γ),σbλ(b)σ(b))xξ(b)ξ|ξ=0,

    where H/x and H/u are evaluated at (t,¯x(t),¯u(t),λ(t)). Choosing the function λ as the solution of the system

    (DΦ(γ),σbλ(t)σ(t))σ(t)=Hx,withI1Φ(γ),σbλ(b)σ(b)=0,

    we get

    baHu(t,¯x(t),¯u(t),λ(t))η(t)dt=0.

    Since η is arbitrary, from the Du Bois-Reymond lemma (see, e.g., [7]), we obtain

    Hu(t,¯x(t),¯u(t),λ(t))=0,

    for all tJ, proving the desired result.

    Definition 3.6. The Hamiltonian is defined as H(t,x(t),u(t),λ(t))=L(t,x(t),u(t))+λ(t)f(t,x(t),u(t)), where L is the Lagrange function, f is the system dynamics, and λ is the adjoint variable.

    Remark 3.7. We observe that:

    (1) Taking σ as the identity function, we recover the results presented in [29], while also correcting minor inaccuracies in their proofs. This allows us to refine and extend the results previously established for the classical distributed-order fractional derivative. Furthermore, by introducing a general kernel, we not only broaden the scope of the original framework but also provide a more general formulation that encompasses and extends the findings of the aforementioned study.

    (2) If f(t,x(t),u(t))=u(t),tJ, our problem (POC) reduces to the following fractional problem of the calculus of variations:

    J(x)=baL(t,x(t),CDΦ(γ),σa+x(t))dtextr,

    subject to the initial condition x(a)=xa, where LC1. From Theorem 3.5 we deduce that if ¯x(t) is an extremizer, then there exists λPC1(J,R) such that:

    λ(t)=3L(t,¯x(t),CDΦ(γ),σa+¯x(t)),tJ,

    (DΦ(γ),σbλ(t)σ(t))σ(t)=2L(t,¯x(t),CDΦ(γ),σa+¯x(t)),tJ,

    I1Φ(γ),σbλ(b)σ(b)=0,

    where iL denotes the partial derivative of L with respect to its ith coordinate. Hence, we obtain the Euler-Lagrange equation:

    2L(t,¯x(t),CDΦ(γ),σa+¯x(t))+(DΦ(γ),σb3L(t,¯x(t),CDΦ(γ),σa+¯x(t))σ(t))σ(t)=0,tJ,

    and the tranversality condition:

    I1Φ(γ),σb3L(b,¯x(b),CDΦ(γ),σa+¯x(b))σ(b)=0,

    proved in [10].

    We conclude this section by establishing sufficient optimality conditions for our OC problem.

    Definition 3.8. We say that a triple (¯x,¯u,λ) is a Pontryagin extremal of Problem (POC) if it satisfies conditions (3.3)–(3.5).

    Theorem 3.9. (Sufficient conditions for global optimality I) Let (¯x,¯u,λ) be a Pontryagin extremal of Problem (POC) with λ(t)0, for all tJ.

    If L and f are convex functions, then (¯x,¯u) is a global minimizer of functional J;

    If L and f are concave functions, then (¯x,¯u) is a global maximizer of functional J.

    Proof. We will only prove the case where L and f are convex; the other case is analogous. If L is a convex function, then (see, e.g., [36])

    L(t,¯x(t),¯u(t))L(t,x(t),u(t))Lx(t,¯x(t),¯u(t))(¯xx)(t)+Lu(t,¯x(t),¯u(t))(¯uu)(t),

    for any control u and associate state x. Hence,

    J(¯x,¯u)J(x,u)=ba(L(t,¯x(t),¯u(t))L(t,x(t),u(t)))dtba(Lx(t,¯x(t),¯u(t))(¯xx)(t)+Lu(t,¯x(t),¯u(t))(¯uu)(t))dt.

    Using the adjoint equation (3.4) and the optimality condition (3.3), we obtain

    J(¯x,¯u)J(x,u)ba[(DΦ(γ),σbλ(t)σ(t))σ(t)λ(t)fx(t,¯x(t),¯u(t))](¯xx)(t)dtbaλ(t)fu(t,¯x(t),¯u(t))(¯uu)(t)dt.

    Rearranging the terms, we have

    J(¯x,¯u)J(x,u)ba(¯xx)(t)(DΦ(γ),σbλ(t)σ(t))σ(t)dtba(λ(t)fx(t,¯x(t),¯u(t))(¯xx)(t)+λ(t)fu(t,¯x(t),¯u(t))(¯uu)(t))dt.

    Using the generalized integration by parts formula (Lemma 2.6) in the first integral, we obtain

    J(¯x,¯u)J(x,u)baλ(t)CDΦ(γ),σa+(¯xx)(t)dt[(¯xx)(t)I1Φ(γ),σbλ(t)σ(t)]t=bt=aba(λ(t)fx(t,¯x(t),¯u(t))(¯xx)(t)+λ(t)fu(t,¯x(t),¯u(t))(¯uu)(t))dt.

    Since

    [(¯xx)(t)I1Φ(γ),σbλ(t)σ(t)]t=bt=a=0(by the transversally condition (3.5) and¯x(a)=x(a)=xa)

    and

    CDΦ(γ),σa+(¯xx)(t)=f(t,¯x(t),¯u(t))f(t,x(t),u(t)),

    we get

    J(¯x,¯u)J(x,u)baλ(t)(f(t,¯x(t),¯u(t))f(t,x(t),u(t)))dtbaλ(t)(fx(t,¯x(t),¯u(t))(¯xx)(t)+fu(t,¯x(t),¯u(t))(¯uu)(t))dt.

    Since f is convex, we have

    f(t,¯x(t),¯u(t))f(t,x(t),u(t))fx(t,¯x(t),¯u(t))(¯xx)(t)+fu(t,¯x(t),¯u(t))(¯uu)(t),

    for any admissible control u and its associated state x. Moreover, since λ(t)0, for all tJ, it follows that J(¯x,¯u)J(x,u)0, proving the desired result. Similarly, we can prove the following result.

    Theorem 3.10. (Sufficient conditions for global optimality II) Let (¯x,¯u,λ) be a Pontryagin extremal of Problem (POC) with λ(t)<0, for all tJ.

    If L and f are convex functions, then (¯x,¯u) is a global maximizer of functional J;

    If L and f are concave functions, then (¯x,¯u) is a global minimizer of functional J.

    We now present two examples in order to illustrate our main result.

    Example 4.1. Consider the following problem:

    J(x,u)=10((x(t)(σ(t)σ(0))2)2+(u(t)(σ(t)σ(0))2σ(t)+σ(0)ln(σ(t)σ(0)))2)dtextr,

    subject to

    CDϕ(γ),σ0+x(t)=u(t),t[0,1],andx(0)=0.

    The order-weighting function is ϕ:[0,1][0,1] defined by

    ϕ(γ)=Γ(3γ)2.

    The Hamiltonian in this case is given by

    H(t,x,u,λ)=(x(t)(σ(t)σ(0))2)2+(u(t)(σ(t)σ(0))2σ(t)+σ(0)ln(σ(t)σ(0)))2+λ(t)u(t).

    From (3.3)(3.5), we get

    λ(t)=2(u(t)(σ(t)σ(0))2σ(t)+σ(0)ln(σ(t)σ(0))),t[0,1],
    (Dϕ(γ),σ1λ(t)σ(t))σ(t)=2(x(t)(σ(t)σ(0))2),t[0,1],

    and

    I1ϕ(γ),σ1λ(1)σ(1)=0.

    Note that the triple (¯x,¯u,λ) given by:

    ¯x(t)=(σ(t)σ(0))2,¯u(t)=(σ(t)σ(0))2σ(t)+σ(0)ln(σ(t)σ(0)),λ(t)=0,t[0,1],

    satisfies the necessary optimality conditions given by the Pontryagin maximum principle. Since the Lagrangian L and f(t,x(t),u(t))=u(t) are convex, then (¯x,¯u) is a global minimizer of functional J.

    Example 4.2. Consider the optimal control problem:

    J(x,u)=10(sin(x(t))+cos(x(t))+x(t)u(t))dtextr,

    subject to the restriction

    CDϕ(γ),σ0+x(t)=x(t)u(t),t[0,1],withx(0)=0.

    The corresponding Hamiltonian is given by

    H(t,x,u,λ)=sin(x(t))+cos(x(t))+x(t)u(t)+λ(t)x(t)u(t).

    From the stationarity condition (3.3), we obtain

    x(t)+λ(t)x(t)=0λ(t)=1,t[0,1].

    The remaining necessary conditions, as given by (3.4) and (3.5), are

    (Dϕ(γ),σ11σ(t))σ(t)=cos(x(t))sin(x(t)),t[0,1],

    and

    I1ϕ(γ),σ11σ(1)=0.

    In this work, we explored necessary and sufficient conditions for optimality in fractional OC problems involving a novel fractional operator. Specifically, we addressed the challenge of determining the optimal processes for a fractional OC problem, where the regularity of the optimal solution is assured. The solution to this question is provided by an extension of the PMP, for which we have established the basic version applicable to fractional OC problems, involving a new generalized fractional derivative with respect to a smooth kernel. Additionally, we presented sufficient conditions of optimality for this class of problems using the newly defined fractional derivative. Future research will aim to extend these theorems to OC problems with bounded control constraints. Additionally, it is crucial to develop numerical methods for determining the optimal pair. One potential approach is to approximate the fractional operators using a finite sum, thereby transforming the fractional problem into a finite-dimensional problem, which can then be more effectively solved numerically.

    Fátima Cruz, Ricardo Almeida and Natália Martins: Formal analysis, investigation, methodology, and writing – review & editing, of this manuscript. All authors have read and approved the final version of the manuscript for publication.

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (FCT-Fundação para a Ciência e a Tecnologia), within project UIDB/04106/2025.

    Professor Ricardo Almeida is an editorial board member for AIMS Mathematics and was not involved in the editorial review and/or the decision to publish this article.

    All authors declare no conflicts of interest.



    [1] Savage PG (1998) Strapdown Inertial Navigation Integration Algorithm Design Part 1: Attitude Algorithms. J Guid Control Dynam 21: 19–28. https://doi.org/10.2514/2.4228 doi: 10.2514/2.4228
    [2] Savage P (1998) Strapdown Inertial Navigation Integration Algorithm Design Part 2: Velocity and Position Algorithms. J Guid Control Dynam 21: 208–221. https://doi.org/10.2514/2.4242 doi: 10.2514/2.4242
    [3] Moreno A, Cánepa V, Giribet J, et al. (2021) Simulador GNSS para la Evaluación de Algoritmos de Navegación Integrada en Vehículos Aeroespaciales. XI Congreso Argentino de Tecnología Espacial.
    [4] Tewari A (2011) Advanced Control of Aircraft, Spacecraft and Rockets, Wiley.
    [5] Suresh BN, Sivan K (2015) Integrated Design for Space Transportation Systems, Springer.
    [6] Range Command Council, US Army White Sands Missile Range (2011) 324 Global Positioning and Inertial Measurements Range Safety Tracking Systems Commonality Standard.
    [7] Hu G, Gao B, Zhong Y, et al. (2019) Robust Unscented Kalman Filtering With Measurement Error Detection for Tightly Coupled INS/GNSS Integration in Hypersonic Vehicle Navigation. IEEE Access 7: 151409–151421. https://doi.org/10.1109/ACCESS.2019.2948317 doi: 10.1109/ACCESS.2019.2948317
    [8] Hu G, Wang W, Zhong Y, et al. (2018) A New Direct Filtering Approach to INS/GNSS Integration. Aerosp Sci Technol 77: 755–764. https://doi.org/10.1016/j.ast.2018.03.040 doi: 10.1016/j.ast.2018.03.040
    [9] Meng Y, Gao S, Zhong Y, et al. (2016) Covariance Matching Based Adaptive Unscented Kalman Filter for Direct Filtering in INS/GNSS Integration. Acta Astronaut 120: 171–181. https://doi.org/10.1016/j.actaastro.2015.12.014 doi: 10.1016/j.actaastro.2015.12.014
    [10] Hu G, Gao S, Zhong Y (2015) A Derivative UKF for Tightly Coupled INS/GPS Integrated Navigation. ISA T 56: 135–144. https://doi.org/10.1016/j.isatra.2014.10.006 doi: 10.1016/j.isatra.2014.10.006
    [11] Bernadi P (2013) Sistema de Navegación INS/GPS para un Cohete Suborbital Controlado, Engineering Thesis, Universidad de Buenos Aires.
    [12] Hu G, Gao B, Zhong Y, et al. (2020) Unscented Kalman Filter with Process Noise Covariance Estimation for Vehicular INS/GPS Integration System. Inform Fusion 64: 194–204. https://doi.org/10.1016/j.inffus.2020.08.005 doi: 10.1016/j.inffus.2020.08.005
    [13] Gao Z, Gu C, Yang J, et al. (2020) Random Weighting-Based Nonlinear Gaussian Filtering. IEEE Access 8: 19590–19605. https://doi.org/10.1109/ACCESS.2020.2968363 doi: 10.1109/ACCESS.2020.2968363
    [14] Gao B, Gao S, Hu G, et al. (2018) Maximum Likelihood Principle and Moving Horizon Estimation Based Adaptive Unscented Kalman Filter. Aerosp Sci Technol 73: 184–196. https://doi.org/10.1016/j.ast.2017.12.007 doi: 10.1016/j.ast.2017.12.007
    [15] Gao S, Hu G, Zhong Y (2015) Windowing and Random Weighting Based Adaptive Unscented Kalman Filter. Int J Adapt Control 29: 201–223. https://doi.org/10.1002/acs.2467 doi: 10.1002/acs.2467
    [16] Cánepa V, Servidia P, Giribet J (2022) Adaptive Extended Kalman Filter for Integrated Navigation in a Satellite Launch Vehicle. VI Congreso Bienal de la Sección Argentina del IEEE (ARGENCON), San Juan, Argentina. 1–8. https://doi.org/10.1109/ARGENCON55245.2022.9939949 doi: 10.1109/ARGENCON55245.2022.9939949
    [17] Bancroft S (1985) An Algebraic Solution of the GPS Equations, in IEEE Transactions on Aerospace and Electronic Systems. 1: 56–59. doi: 10.1109/TAES.1985.310538.
    [18] Cánepa V (2022) Navegación Integrada Fuertemente Acoplada para Vehículos Lanzadores de Satélites, Engineering Thesis, Universidad de Buenos Aires.
    [19] Gao B, Hu G, Gao S, et al. (2018) Multi-sensor Optimal Data Fusion for INS/GNSS/CNS Integration Based on Unscented Kalman Filter. Int J Control Autom Syst 16: 129–140. https://doi.org/10.1007/s12555-016-0801-4. doi: 10.1007/s12555-016-0801-4
    [20] Hu G, Gao S, Zhong Y, Gao B, Subic A, (2016) Matrix Weighted Multisensor Data Fusion for INS/GNSS/CNS Integration, Proceedings of the Institution of Mechanical Engineers, Part G. J Aerospace Eng 230: 1011–1026. https://doi.org/10.1177/0954410015602723 doi: 10.1177/0954410015602723
    [21] Hu G, Gao S, Zhong Y, et al. (2016) Modified Federated Kalman Filter for INS/GNSS/CNS Integration, Proceedings of the Institution of Mechanical Engineers, Part G. J Aerospace Eng 230: 30–44. https://doi.org/10.1177/0954410015586860. doi: 10.1177/0954410015586860
    [22] Parkinson B, Spilker J (1996) Global Positioning System: Theory and Applications. AIAA, Washington DC.
    [23] Kaniewski P, Gil R, Konatowski S (2016) Algorithms of Position and Velocity Estimation in GPS Receivers. Annu Navigation 23. https://doi.org/10.1515/aon-2016-0004 doi: 10.1515/aon-2016-0004
    [24] Sarunic P (2016) Development of GPS Receiver Kalman Filter Algorithms for Stationary, Low-Dynamics, and High-Dynamics Applications. Defense, Science and Technology Group, Australia, Technical Report DST-Group-TR-3260.
    [25] Gómez D, Langston C, Smalley R (2015) A Closed-form Solution for Earthquake Location in a Homogeneous Half-space Based on the Bancroft GPS Location Algorithm.
    [26] Cánepa V, Servidia P, Giribet J (2023) Aspectos Prácticos en la Navegación Integrada de Vehículos Lanzadores. XII Congreso Argentino de Tecnología Espacial.
    [27] España M (2019) Sistemas de Navegación Integrada con Aplicaciones, 2nd ed. Comisión Nacional de Actividades Espaciales. Available from: www.argentina.gob.ar/ciencia/conae/publicaciones.
    [28] Jazwinski A (1970) Stochastic Processes and Filtering Theory. Math Sci Eng 64.
    [29] Reif K, Günther S, Yaz E (1999) Stochastic Stability of the Discrete-time Extended Kalman Filter. IEEE 44.
    [30] Ford J, Coulter A (2001) Filtering for Precision Guidance: The Extended Kalman Filter. Aeronautical and Maritime Research Laboratory.
    [31] Rodríguez S, García J, Scillone G, et al. (2020) Dual-Antenna Dual-Band High Performance Cubesat-Compatible GPS Receiver. IEEE Lat Am T 18: 265–272. https://doi.org/10.1109/TLA.2020.9085279 doi: 10.1109/TLA.2020.9085279
    [32] López La Valle R, Rodriguez S, Garcia J (2018) Documento de Control de Interfaces (ICD) M3GR-EMB. SENYT-UNLP.
    [33] Klobuchar J (1987) Ionospheric Time-Delay Algorithms for Single-Frequency GPS Users. IEEE T Aero Elec Syst 3: 325–331.
    [34] Servidia P, Sánchez Peña R (2002) Thruster Design for Position/Attitude Control of Spacecraft. IEEE T Aero Elec Sys 38: 1172–1180. https://doi.org/10.1109/TAES.2002.1145741 doi: 10.1109/TAES.2002.1145741
    [35] Servidia P (2010) Control Allocation for Gimbaled/Fixed Thrusters. Acta Astronaut 66: 587–594. https://doi.org/10.1016/j.actaastro.2009.07.023 doi: 10.1016/j.actaastro.2009.07.023
    [36] Servidia P, Sánchez Peña R, (2005) Spacecraft Thruster Control Allocation Problems. IEEE T Automat Contr 50: 245–249. https://doi.org/10.1109/TAC.2004.841923 doi: 10.1109/TAC.2004.841923
    [37] Servidia P, Sánchez Peña R (2005) Practical Stabilization in Attitude Thruster Control. IEEE T Aerosp Elec Sys 41: 584–598. https://doi.org/10.1109/TAES.2005.1468750 doi: 10.1109/TAES.2005.1468750
    [38] Beaudoin Y, Desbiens A, Gagnon E, et al. (2018) Observability of Satellite Launcher Navigation with INS, GPS, Attitude Sensors and Reference Trajectory. Acta Astronaut 142: 277–288. https://doi.org/10.1016/j.actaastro.2017.10.038 doi: 10.1016/j.actaastro.2017.10.038
    [39] Van Dierendonk A, McGraw J, Grover Brown R (1984) Relationship Between Allan Variances and Kalman Filter Parameters. NASA Goddard Space Flight Center, Proc. of the 16th Ann. Precise Time and Time Interval (PTTI) Appl. and Planning Meeting 273–293.
    [40] Kaplan E, Hegarty C (2006) Understanding GPS: Principles and Applications, Artech House.
    [41] Grover Brown R, Hwang P (2012) Introduction to Random Signals and Applied Kalman Filtering. 4th ed. John Wiley & Sons, Inc.
    [42] KHV 1750 Inertial Measurement Unit Technical Manual (2013) KVH Industries.
    [43] Gomez E, Servidia P, España M (2019) Fast and Reliable Computation of Mean Orbit Elements for Autonomous Orbit Control, IAA-LA2-03-03, Proceedings of the 2nd IAA Latin American Symposium on Small Satellites, 69–76.
    [44] España M, Carrizo J, Giribet J (2019) Sensability and Excitability Metrics Applied to Navigation Systems Assessment. J Navigation 72: 1481–1495. https://doi.org/10.1017/S0373463319000328 doi: 10.1017/S0373463319000328
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2116) PDF downloads(132) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog