
In this paper, a fractional order HIV/HTLV co-infection model with HIV-specific antibody immune response is established. Two cases are considered: constant control and optimal control. For the constant control system, the existence and uniqueness of the positive solutions are proved, and then the sufficient conditions for the existence and stability of five equilibriums are obtained. For the second case, the Pontryagin's Maximum Principle is used to analyze the optimal control, and the formula of the optimal solution are derived. After that, some numerical simulations are performed to validate the theoretical prediction. Numerical simulations indicate that in the case of HIV/HTLV co-infection, the concentration of CD4+T cells is no longer suitable as an effective reference data for understanding the development process of the disease. On the contrary, the number of HIV virus particles should be used as an important indicator for reference.
Citation: Ruiqing Shi, Yihong Zhang. Dynamic analysis and optimal control of a fractional order HIV/HTLV co-infection model with HIV-specific antibody immune response[J]. AIMS Mathematics, 2024, 9(4): 9455-9493. doi: 10.3934/math.2024462
[1] | Muhammad Riaz, Umar Ishtiaq, Choonkil Park, Khaleel Ahmad, Fahim Uddin . Some fixed point results for ξ-chainable neutrosophic and generalized neutrosophic cone metric spaces with application. AIMS Mathematics, 2022, 7(8): 14756-14784. doi: 10.3934/math.2022811 |
[2] | Fahim Uddin, Umar Ishtiaq, Naeem Saleem, Khaleel Ahmad, Fahd Jarad . Fixed point theorems for controlled neutrosophic metric-like spaces. AIMS Mathematics, 2022, 7(12): 20711-20739. doi: 10.3934/math.20221135 |
[3] | Naeem Saleem, Salman Furqan, Mujahid Abbas, Fahd Jarad . Extended rectangular fuzzy b-metric space with application. AIMS Mathematics, 2022, 7(9): 16208-16230. doi: 10.3934/math.2022885 |
[4] | Fahim Ud Din, Khalil Javed, Umar Ishtiaq, Khalil Ahmed, Muhammad Arshad, Choonkil Park . Existence of fixed point results in neutrosophic metric-like spaces. AIMS Mathematics, 2022, 7(9): 17105-17122. doi: 10.3934/math.2022941 |
[5] | Tayebe Lal Shateri, Ozgur Ege, Manuel de la Sen . Common fixed point on the bv(s)-metric space of function-valued mappings. AIMS Mathematics, 2021, 6(2): 1065-1074. doi: 10.3934/math.2021063 |
[6] | Umar Ishtiaq, Khaleel Ahmad, Muhammad Imran Asjad, Farhan Ali, Fahd Jarad . Common fixed point, Baire's and Cantor's theorems in neutrosophic 2-metric spaces. AIMS Mathematics, 2023, 8(2): 2532-2555. doi: 10.3934/math.2023131 |
[7] | Sumaiya Tasneem Zubair, Kalpana Gopalan, Thabet Abdeljawad, Nabil Mlaiki . Novel fixed point technique to coupled system of nonlinear implicit fractional differential equations in complex valued fuzzy rectangular b-metric spaces. AIMS Mathematics, 2022, 7(6): 10867-10891. doi: 10.3934/math.2022608 |
[8] | Abdullah Shoaib, Tahair Rasham, Giuseppe Marino, Jung Rye Lee, Choonkil Park . Fixed point results for dominated mappings in rectangular b-metric spaces with applications. AIMS Mathematics, 2020, 5(5): 5221-5229. doi: 10.3934/math.2020335 |
[9] | Umar Ishtiaq, Aftab Hussain, Hamed Al Sulami . Certain new aspects in fuzzy fixed point theory. AIMS Mathematics, 2022, 7(5): 8558-8573. doi: 10.3934/math.2022477 |
[10] | Nurcan Bilgili Gungor . Some fixed point results via auxiliary functions on orthogonal metric spaces and application to homotopy. AIMS Mathematics, 2022, 7(8): 14861-14874. doi: 10.3934/math.2022815 |
In this paper, a fractional order HIV/HTLV co-infection model with HIV-specific antibody immune response is established. Two cases are considered: constant control and optimal control. For the constant control system, the existence and uniqueness of the positive solutions are proved, and then the sufficient conditions for the existence and stability of five equilibriums are obtained. For the second case, the Pontryagin's Maximum Principle is used to analyze the optimal control, and the formula of the optimal solution are derived. After that, some numerical simulations are performed to validate the theoretical prediction. Numerical simulations indicate that in the case of HIV/HTLV co-infection, the concentration of CD4+T cells is no longer suitable as an effective reference data for understanding the development process of the disease. On the contrary, the number of HIV virus particles should be used as an important indicator for reference.
The idea of metric spaces, as well as the Banach contraction principle, provide the foundation of fixed point theory. Thousands of academics are drawn to spaciousness by axiomatic interpretation of metric space. There have been several generalizations on metric spaces thus far. This demonstrates the beauty, allure, and growth of the notion of metric spaces.
Zadeh [1] developed the concept of fuzzy sets. The adjective "fuzzy" appears to be a popular and common one in recent investigations of the logical and set theoretical underpinnings of mathematics. The key explanation for this rapid rise, in our opinion, is simple. The world around us is full of uncertainty for the following reasons: the information we gather from our surroundings, the concepts we employ, and the data arising from our observations or measurements are, in general, hazy and erroneous. As a result, every formal representation of the real world, or some of its properties, is always an approximation and idealization of the actual reality. Fuzzy sets, fuzzy orderings, fuzzy languages, and other concepts enable us to handle and investigate the degree of uncertainty indicated above in a strictly mathematical and formal manner. The fuzzy set notion has succeeded in moving many mathematical structures within its concept. The concept of continuous norms was established by Schweizer and Sklar [2] The concept of fuzzy metric spaces was developed by Kramosil and Michalek [3]. They extended the concept of fuzziness to traditional conceptions of metric and metric spaces via continuous norms and contrasted the results to those derived from other, particularly probabilistic, statistical extensions of metric spaces. The fuzzy version of the Banach contraction principle in fuzzy metric spaces was introduced by Garbiec [4]. UrReham et al. [5] demonstrated several α−ϕ fuzzy cone contraction findings using an integral type.
Only membership functions are dealt with in fuzzy metric spaces. Park [6] constructed an intuitionistic fuzzy metric space that is utilized to deal with both membership and non-membership functions. Konwar [7] introduced the idea of an intuitionistic fuzzy b-metric space and demonstrated various fixed point theorems. In [8], Kiricsci and Simsek established the concept of neutrosophic metric spaces, which are utilized to deal with membership, non-membership, and naturalness. Simsek and Kiricsci [9] demonstrated some incredible fixed-point solutions in the framework of neutrosophic metric spaces. In the setting of neutrosophic metric spaces, Sowndrarajan et al. [10] demonstrated certain fixed point findings. Hussain, Al Sulami, and Ishtiaq [11] developed the concept of neutrosophic rectangular metric space and established fixed point theorems on it.
The idea of an orthogonal set, as well as many various types of orthogonality, has several applications in mathematics. In 2017, Eshaghi Gordji, Ramezani, De la Sen, and Cho [12] proposed a new notion of orthogonality in metric spaces and offered a framework to expand the findings in the setting of metric space with new orthogonality and also proved several fixed point theorems. Eshaghi Gordji and Habibi [13] modified the concept in 2017 to establish the fixed point theorem in generalized orthogonal metric space. Many writers [14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] have explored orthogonal contractive type mappings and gotten significant results.
In this paper, we present the concept of an orthogonal neutrosophic rectangular metric space and prove fixed-point theorems.
In this section, the authors provide some definitions to understand the main section.
Definition 2.1. (See[6,Definition 2.1]) A binary operation ∗:[0,1]×[0,1]→[0,1] is called a continuous triangle norm if:
(1) ι∗ν=ν∗ι, for all ι,ν∈[0,1];
(2) ∗ is continuous;
(3) ι∗1=ι, for all ι∈[0,1];
(4) (ι∗ν)∗η=ι∗(ν∗η), for all ι,ν,η∈[0,1];
(5) If ι≤η and ν≤d, with ι,ν,η,d∈[0,1], then ι∗ν≤η∗d.
Definition 2.2. (See[6,Definition 2.2]) A binary operation ∘:[0,1]×[0,1]→[0,1] is called a continuous triangle co-norm if:
(1) ι∘ν=ν∘ι, for all ι,ν∈[0,1];
(2) ∘ is continuous;
(3) ι∘0=0, for all ι∈[0,1];
(4) (ι∘ν)∘η=ι∘(ν∘η), for all ι,ν,η∈[0,1];
(5) If ι≤η and η≤d, with ι,ν,η,d∈[0,1], then ι∘ν≤η∘d.
Definition 2.3. (See[7,Definition 2.1]) Take Γ≠∅. Let ∗ be a continuous t-norm, ∘ be a continuous t-co-norm, b≥1 and Ψ,Φ be fuzzy sets on Γ×Γ×(0,+∞). If (Γ,Ψ,Φ,∗,∘) fullfils all ϱ,M∈Γ and υ,ζ>0:
(I) Ψ(ϱ,M,ζ)+Φ(ϱ,M,ζ)≤1;
(II) Ψ(ϱ,M,ζ)>0;
(III) Ψ(ϱ,M,ζ)=1 if and only if ϱ=M;
(IV) Ψ(ϱ,M,ζ)=Ψ(M,ϱ,ζ);
(V) Ψ(ϱ,μ,b(ζ+υ))≥Ψ(ϱ,M,ζ)∗Ψ(M,μ,υ);
(VI) Ψ(ϱ,M,⋅) is a non-decreasing function of R+ and limζ→+∞Ψ(ϱ,M,ζ)=1;
(VII) Φ(ϱ,M,ζ)>0;
(VIII) Φ(ϱ,M,ζ)=0 if and only if ϱ=M;
(IX) Φ(ϱ,M,ζ)=Φ(M,ϱ,ζ);
(X) Φ(ϱ,μ,b(ζ+υ))≤Φ(ϱ,M,ζ)∘Φ(M,μ,υ);
(XI) Φ(ϱ,M,⋅) is a non-increasing function of R+ and limζ→+∞Φ(ϱ,M,ζ)=0.
Then, (Γ,Ψ,Φ,∗,∘) is an intuitionistic fuzzy b-metric space.
Definition 2.4. (See[8,Definition 3.1]) Let Γ≠∅,∗ is a continuous t-norm, ∘ be a continuous t-co-norm, and Ψ,Φ,χ are neutrosophic sets on Γ×Γ×(0,+∞) is said to be a neutosophic metric on Γ, if for all ϱ,M,μ∈Γ, the following conditions are satisfied:
(1) Ψ(ϱ,M,ζ)+Φ(ϱ,M,ζ)+χ(ϱ,M,ζ)≤3;
(2) Ψ(ϱ,M,ζ)>0;
(3) Ψ(ϱ,M,ζ)=1 for all ζ>0, if and only if ϱ=M;
(4) Ψ(ϱ,M,ζ)=Ψ(M,ϱ,ζ);
(5) Ψ(ϱ,μ,ζ+υ)≥Ψ(ϱ,M,ζ)∗Ψ(M,μ,υ);
(6) Ψ(ϱ,M,⋅):(0,+∞)→[0,1] is continuous and limζ→+∞Ψ(ϱ,M,ζ)=1;
(7) Φ(ϱ,M,ζ)<1;
(8) Φ(ϱ,M,ζ)=0 for all ζ>0, if and only if ϱ=M;
(9) Φ(ϱ,M,ζ)=Φ(M,ϱ,ζ);
(10) Φ(ϱ,μ,ζ+υ)≤Φ(ϱ,M,ζ)∘Φ(M,μ,υ);
(11) Φ(ϱ,M,⋅):(0,+∞)→[0,1] is continuous and limζ→+∞Φ(ϱ,M,ζ)=0;
(12) χ(ϱ,M,ζ)<1;
(13) χ(ϱ,M,ζ)=0 for all ζ>0, if and only if ϱ=M;
(14) χ(ϱ,M,ζ)=χ(M,ϱ,ζ);
(15) χ(ϱ,μ,ζ+υ)≤χ(ϱ,M,ζ)∘χ(M,μ,υ);
(16) χ(ϱ,M,⋅):(0,+∞)→[0,1] is continuous and limζ→+∞χ(ϱ,M,ζ)=0;
(17) If ζ≤0, then Ψ(ϱ,M,ζ)=0,Φ(ϱ,M,ζ)=1 and χ(ϱ,M,ζ)=1.
Then, (Γ,Ψ,Φ,χ,∗,∘) is called a neutrosophic metric space.
Definition 2.5. (See[11,Definition 12]) Let Γ≠∅ and ∗ be a continuous t-norm, ∘ be a continuous t-co-norm and (Ψ,Φ,D) be neutrosophic sets on Γ×Γ×(0,+∞) is said to be a neutrosophic rectangular metric on Γ, if for any ϱ,μ∈Γ and all distinct x,M∈Γ∖{ϱ,μ}, then the following conditions are satisfied:
(i) Ψ(ϱ,M,ζ)+Φ(ϱ,M,ζ)+D(ϱ,M,ζ)≤3;
(ii) Ψ(ϱ,M,ζ)>0;
(iii) Ψ(ϱ,M,ζ)=1 for all ζ>0, if and only if ϱ=M;
(iv) Ψ(ϱ,M,ζ)=Ψ(M,ϱ,ζ);
(v) Ψ(ϱ,μ,ζ+υ+ϖ)≥Ψ(ϱ,M,ζ)∗Ψ(M,x,υ)∗Ψ(x,μ,ϖ);
(vi) Ψ(ϱ,M,⋅):(0,+∞)→[0,1] is continuous and limζ→+∞Ψ(ϱ,M,ζ)=1;
(vii) Φ(ϱ,M,ζ)<1;
(viii) Φ(ϱ,M,ζ)=0 for all ζ>0, if and only if ϱ=M;
(ix) Φ(ϱ,M,ζ)=Φ(M,ϱ,ζ);
(x) Φ(ϱ,μ,ζ+υ+ϖ)≤Φ(ϱ,M,ζ)∘Φ(M,x,υ)∘Φ(x,μ,ϖ);
(xi) Φ(ϱ,M,⋅):(0,+∞)→[0,1] is continuous and limζ→+∞Φ(ϱ,M,ζ)=0;
(xii) D(ϱ,M,ζ)<1;
(xiii) D(ϱ,M,ζ)=0 for all ζ>0, if and only if ϱ=M;
(xiv) D(ϱ,M,ζ)=D(M,ϱ,ζ);
(xv) D(ϱ,μ,ζ+υ+ϖ)≤D(ϱ,M,ζ)∘D(M,x,υ)∘D(x,μ,ϖ);
(xvi) D(ϱ,M,⋅):(0,+∞)→[0,1] is continuous and limζ→+∞D(ϱ,M,ζ)=0;
(xvii) If ζ≤0, then Ψ(ϱ,M,ζ)=0,Φ(ϱ,M,ζ)=1 and χ(ϱ,M,ζ)=1.
Then, (Γ,Ψ,Φ,D,∗,∘) is called a neutrosophic rectangular metric space.
Example 2.1. Let Γ=D∪Υ, where D={0,12,13,14}, Υ=[1,2] and d:Γ×Γ→[0,+∞) as follows:
{d(ϱ,M)=d(M,ϱ) for allϱ,M∈Γ,d(ϱ,M)=0 if and only ifϱ=M, |
and
{d(0,12)=d(12,13)=0.2,d(0,13)=d(13,14)=0.02,d(0,14)=d(12,14)=0.5,d(ϱ,M)=|ϱ−M|, otherwise. |
Define Ψ,Φ,D:Γ×Γ×(0,+∞)→[0,1] as
Ψ(ϱ,M,ζ)=ζζ+d(ϱ,M),Φ(ϱ,M,ζ)=d(ϱ,M)ζ+d(ϱ,M),D(ϱ,M,ζ)=d(ϱ,M)ζ. |
Then, we have
Ψ(ϱ,μ,ζ+υ+ϖ)≥Ψ(ϱ,M,ζ)∗Ψ(M,x,υ)∗Ψ(x,μ,ϖ). |
Φ(ϱ,μ,ζ+υ+ϖ)≤Φ(ϱ,M,ζ)∘Φ(x,μ,υ)∘Φ(x,μ,ϖ). |
D(ϱ,μ,ζ+υ+ϖ)≤D(ϱ,M,ζ)∘D(M,x,υ)∘D(x,μ,ϖ). |
Then (Γ,Ψ,Φ,D,∗,∘) is a neutrosophic rectangular metric space with continuous t-norm ι∗Λ=ιΛ and continuous t-co-norm ι∘Λ=max{ι,Λ}.
On the other hand, Eshaghi Gordji et al. [12] introduced the basic concept as follows:
Definition 2.6. (See[12,Definition 2.1]) Let Γ be a non-empty set and binary relation as ⊥⊆Γ×Γ. If ⊥ satisfies condition
thereexistsϱ0∈Γ:(∀ϱ∈Γ,ϱ⊥ϱ0) or(∀ϱ∈Γ,ϱ0⊥ϱ), |
then, (Γ,⊥) is said to be an orthogonal set(O-set).
Example 2.2. (See[12,Example 2.4]) Let Γ=Z. Define the binary relation ⊥ on Γ by m⊥n if there exists k∈Z such that m=kn. It is easy to see that 0⊥n for all n∈Z. Hence, (Γ,⊥) is an O-set.
Definition 2.7. (See[12,Definition 3.1]) Let (Γ,⊥) be an O-set. A sequence {ϱβ}β∈N is called an orthogonal sequence (O-sequence) if
(∀β,ϱβ⊥ϱβ+1)or(∀β,ϱβ+1⊥ϱβ). |
Definition 2.8. (See[12,Definition 3.2]) A mapping ω:Γ→Γ is orthogonal continuous (O-continuous) in ϱ∈Γ if for each O-sequence {ϱβ}β∈N⊂Γ such that ϱβ→ϱ, ωϱβ→ωϱ. Also ω is said to be ⊥-continuous on Γ if ω is ⊥-continuous at each ϱ∈Γ.
Definition 2.9. (See[12,Definition 3.10]) Let (Γ,⊥) be an O-set. A mapping ω:Γ→Γ is said to be ⊥-preserving if ωϱ⊥ωM, then ϱ⊥M.
Ishtiaq, Javed, Uddin, De la Sen, Ahmed, and Ali [30] introduced the notion of an orthogonal neutrosophic metric spaces and proved fixed point results on orthogonal neutrosophic metric spaces as follows
Theorem 2.1. (See[30,Theorem 3]) Let (Γ,Ψ,Φ,D,∗,∘,⊥) be an O-complete neutrosophic metric space such that
limζ→+∞Ψ(ϱ,M,ζ)=1,limζ→+∞Φ(ϱ,M,ζ)=0,limζ→+∞D(ϱ,M,ζ)=0, |
for all ϱ,M∈Γ and ζ>0. Let ω:Γ→Γ be an ⊥-continuous, ⊥-contraction and ⊥-preserving mapping. Then ω has a unique fixed point say ϱ⋆∈Γ. Furthermore
limζ→+∞Ψ(ωβϱ,ϱ⋆,ζ)=1,limζ→+∞Φ(ωβϱ,ϱ⋆,ζ)=0,limζ→+∞D(ωβϱ,ϱ⋆,ζ)=0, |
for all ϱ,M∈Γ and ζ>0.
Motivated by the above work, we introduce the notion of an orthogonal neutrosophic rectangular metric space and prove fixed-point theorems.
In this part, we present orthogonal neutrosophic rectangular metric space and demonstrate some fixed-point results.
Definition 3.1. Let Γ≠∅ and ∗ be a continuous t-norm, ∘ be a continuous t-co-norm and Ψ,Φ, and D be neutrosophic sets on Γ×Γ×(0,+∞) is said to be a orthogonal neutrosophic rectangular metric on Γ, if for any ϱ,μ∈Γ and all distinct x,M∈Γ∖{ϱ,μ}, the following conditions are satisfied:
(i) Ψ(ϱ,M,ζ)+Φ(ϱ,M,ζ)+D(ϱ,M,ζ)≤3 such that ϱ⊥M and M⊥ϱ;
(ii) Ψ(ϱ,M,ζ)>0 such that ϱ⊥M and M⊥ϱ;
(iii) Ψ(ϱ,M,ζ)=1 for all ζ>0, if and only if ϱ=M such that ϱ⊥M and M⊥ϱ;
(iv) Ψ(ϱ,M,ζ)=Ψ(M,ϱ,ζ) such that ϱ⊥M and M⊥ϱ;
(v) Ψ(ϱ,μ,ζ+υ+ϖ)≥Ψ(ϱ,M,ζ)∗Ψ(M,x,υ)∗Ψ(x,μ,ϖ) such that ϱ⊥μ, ϱ⊥M, M⊥x and x⊥μ;
(vi) Ψ(ϱ,M,⋅):(0,+∞)→[0,1] is continuous and limζ→+∞Ψ(ϱ,M,ζ)=1 such that ϱ⊥M and M⊥ϱ;
(vii) Φ(ϱ,M,ζ)<1 such that ϱ⊥M and M⊥ϱ;
(viii) Φ(ϱ,M,ζ)=0 for all ζ>0, if and only if ϱ=M such that ϱ⊥M and M⊥ϱ;
(ix) Φ(ϱ,M,ζ)=Φ(M,ϱ,ζ) such that ϱ⊥M and M⊥ϱ;
(x) Φ(ϱ,μ,ζ+υ+ϖ)≤Φ(ϱ,M,ζ)∘Φ(M,x,υ)∘Φ(x,μ,ϖ) such that ϱ⊥μ, ϱ⊥M, M⊥x and x⊥μ;
(xi) Φ(ϱ,M,⋅):(0,+∞)→[0,1] is continuous and limζ→+∞Φ(ϱ,M,ζ)=0 such that ϱ⊥M and M⊥ϱ;
(xii) D(ϱ,M,ζ)<1 such that ϱ⊥M and M⊥ϱ;
(xiii) D(ϱ,M,ζ)=0 for all ζ>0, if and only if ϱ=M such that ϱ⊥M and M⊥ϱ;
(xiv) D(ϱ,M,ζ)=D(M,ϱ,ζ) such that ϱ⊥M and M⊥ϱ;
(xv) D(ϱ,μ,ζ+υ+ϖ)≤D(ϱ,M,ζ)∘D(M,x,υ)∘D(x,μ,ϖ) such that ϱ⊥μ, ϱ⊥M, M⊥x and x⊥μ;
(xvi) D(ϱ,M,⋅):(0,+∞)→[0,1] is continuous and limζ→+∞D(ϱ,M,ζ)=0 such that ϱ⊥M and M⊥ϱ;
(xvii) If ζ≤0, then Ψ(ϱ,M,ζ)=0,Φ(ϱ,M,ζ)=1 and χ(ϱ,M,ζ)=1 such that ϱ⊥M and M⊥ϱ.
Then, (Γ,Ψ,Φ,D,∗,∘,⊥) is called an orthogonal neutrosophic rectangular metric space(O-neutrosophic rectangular metric space).
Example 3.1. Let Γ={1,2,3,4} and a binary relation ⊥ by ϱ⊥M iff ϱ+M≥0. Define Ψ,Φ,D:Γ×Γ×(0,+∞)→[0,1] as
Ψ(ϱ,M,ζ)={1, if ϱ=M,ζζ+max{ϱ,M}, if otherwise,Φ(ϱ,M,ζ)={0, if ϱ=M,max{ϱ,M}ζ+max{ϱ,M}, if otherwise, |
and
D(ϱ,M,ζ)={0, if ϱ=M,max{ϱ,M}ζ, if otherwise, |
Then, (Γ,Ψ,Φ,D,∗,∘,⊥) is an orthogonal neutrosophic rectangular metric space with continuous t-norm ι∗ν=ιν and continuous t-co-norm, ι∘Λ=max{ι,Λ}.
Proof. Here, we prove (v), (x) and (xv) others are obvious.
Let ϱ=1,M=2, x=3 and μ=4. Then
Ψ(1,4,ζ+υ+ϖ)=ζ+υ+ϖζ+υ+ϖ+max{1,4}=ζ+υ+ϖζ+υ+ϖ+4. |
On the other hand,
Ψ(1,2,ζ)=ζζ+max{1,2}=ζζ+2=ζζ+2, |
Ψ(2,3,υ)=υυ+max{2,3}=υυ+3=υυ+3 |
and
Ψ(3,4,ϖ)=ϖϖ+max{3,4}=ϖϖ+4=ϖϖ+4. |
That is,
ζ+υ+ϖζ+υ+ϖ+3≥ζζ+2⋅υυ+3.ϖϖ+4. |
Then, the above is satisfies for all ζ,υ,ϖ>0. Hence,
Ψ(ϱ,μ,ζ+υ+ϖ)≥Ψ(ϱ,M,ζ)∗Ψ(M,x,υ)∗Ψ(x,μ,ϖ). |
Now,
Φ(1,4,ζ+υ+ϖ)=max{1,4}ζ+υ+ϖ+max{1,4}=4ζ+υ+ϖ+4. |
On the other hand,
Φ(1,2,ζ)=max{1,2}ζ+max{1,2}=2ζ+2=2ζ+2, |
Φ(2,3,υ)=max{2,3}υ+max{2,3}=3υ+3=3υ+3 |
and
Φ(3,4,ϖ)=max{3,4}ϖ+max{3,4}=4ϖ+4=4ϖ+4. |
That is,
4ζ+υ+ϖ+4≤max{2ζ+2,3υ+3,4ϖ+4}. |
Hence,
Φ(ϱ,μ,ζ+υ+ϖ)≤Φ(ϱ,M,ζ)∘Φ(x,μ,υ)∘Φ(x,μ,ϖ), |
for all ζ,υ,ϖ>0. Now,
D(1,3,ζ+υ+ϖ)=max{1,3}ζ+υ+ϖ=3ζ+υ+ϖ. |
On the other hand,
D(1,2,ζ)=max{1,2}ζ=2ζ=2ζ, |
D(2,3,υ)=max{2,3}υ=3υ=3υ |
and
D(3,4,ϖ)=max{3,4}ϖ=4ϖ=4ϖ. |
That is,
3ζ+υ+ϖ≤max{2ζ,3υ,4ϖ}. |
Hence,
D(ϱ,μ,ζ+υ+ϖ)≤D(ϱ,M,ζ)∘D(M,x,υ)∘D(x,μ,ϖ), |
for all ζ,υ>0. Hence, (Γ,Ψ,Φ,D,∗,∘,⊥) is an orthogonal neutrosophic rectangular metric space.
Remark 3.1. The preceding example also satisfies for continuous t-norm ι∗Λ=min{ι,Λ} and continuous t-co-norm ι∘Λ=max{ι,Λ}.
Example 3.2. Let Γ=D∪Υ, where D={0,12,13,14} and Υ=[1,2]. Define a binary relation ⊥ by ϱ⊥M iff ϱ+M≥0 and d:Γ×Γ→[0,+∞) as follows:
{d(ϱ,M)=d(M,ϱ) forallϱ,M∈Γ,d(ϱ,M)=0 iffϱ=M, |
and
{d(0,12)=d(12,13)=0.2,d(0,13)=d(13,14)=0.02,d(0,14)=d(12,14)=0.5,d(ϱ,M)=|ϱ−M|,otherwise. |
Define Ψ,Φ,D:Γ×Γ×(0,+∞)→[0,1] as
Ψ(ϱ,M,ζ)=ζζ+d(ϱ,M),Φ(ϱ,M,ζ)=d(ϱ,M)ζ+d(ϱ,M),D(ϱ,M,ζ)=d(ϱ,M)ζ. |
Then, we have
Ψ(ϱ,μ,ζ+υ+ϖ)≥Ψ(ϱ,M,ζ)∗Ψ(M,x,υ)∗Ψ(x,μ,ϖ), |
Φ(ϱ,μ,ζ+υ+ϖ)≤Φ(ϱ,M,ζ)∘Φ(x,μ,υ)∘Φ(x,μ,ϖ), |
D(ϱ,μ,ζ+υ+ϖ)≤D(ϱ,M,ζ)∘D(M,x,υ)∘D(x,μ,ϖ). |
Then (Γ,Ψ,Φ,D,∗,∘,⊥) is an orthogonal neutrosophic rectangular metric space with continuous t-norm ι∗Λ=ιΛ and continuous t-co-norm ι∘Λ=max{ι,Λ}.
Definition 3.2. Let (Γ,Ψ,Φ,D,∗,∘,⊥) is an orthogonal neutrosophic rectangular metric space and {ϱβ} be an O-sequence in Γ. Then {ϱβ} is said to be:
(a) an orthogonal convergent(O-convergent) exists if there exists ϱ∈Γ such that
limβ→+∞Ψ(ϱβ,ϱ,ζ)=1,limβ→+∞Φ(ϱβ,ϱ,ζ)=0,limβ→+∞D(ϱβ,ϱ,ζ)=0 for allζ>0; |
(b) an orthogonal Cauchy sequence(O-Cauchy sequence), if and only if for each Λ>0,ζ>0, there exists β0∈N such that
Ψ(ϱβ,ϱβ+M,ζ)≥1−Λ,Φ(ϱβ,ϱβ+M,ζ)≤Λ,Φ(ϱβ,ϱβ+M,ζ)≤Λ for allβ,α≥β0. |
If every O-Cauchy sequence is convergent in Γ, then (Γ,Ψ,Φ,D,∗,∘,⊥) is called a complete orthogonal neutrosophic rectangular metric space.
Definition 3.3. Let (Γ,Ψ,Φ,D,∗,∘,⊥) is an orthogonal neutrosophic rectangular metric space, an open ball is then defined B(ϱ,r,ζ) with center ϱ, radius r,0<r<1 and ζ>0 as follows:
B(ϱ,r,ζ)={M∈Γ:Ψ(ϱ,M,ζ)>1−r,Φ(ϱ,M,ζ)<r,D(ϱ,M,ζ)<r}. |
Theorem 3.1. Every open ball is an open set in an orthogonal neutrosophic rectangular metric space.
Proof. Consider B(k,r,ζ) be an open ball with center k and radius r. Assume r∈B(k,r,ζ). Therefore, ℜ(k,d,ζ)>1−r,ℵ(k,d,ζ)<r,B(k,d,ζ)<r. There exists ζ3∈(0,ζ) such that ℜ(k,d,ζ3)>1−r,ℵ(k,d,ζ3)<r, D(k,d,ζ3)<r due to ℜ(k,d,ζ)>1−r. If we take r0=ℜ(k,d,ζ3), then for r0>1−r,ϵ∈(0,1) will exist such that r0>1−ϵ>1−r. Given r0 and ϵ such that r0>1−ϵ. Then r1,r2,r3,r4,r5,r6∈(0,1) will exist such that r0∗r1∗r2>1−ϵ,(1−r0)∘(1−r3)∘(1−r4)≤ϵ and (1−r0)∘(1−r5)∘(1−r6)≤ϵ. Choose r7=max{r1,r2,r3,r4,r5,r6}. Consider the open ball B(d,1−r7,ζ3). We will show that B(d,1−r7,ζ3)⊂B(k,r,ζ). If we take v∈B(d,1−r7,ζ3), then ℜ(g,d,ζ3)>r7,ℵ(g,d,ζ3)<r7,B(g,d,ζ3)<r7 and ℜ(d,v,ζ3)>r7,ℵ(d,v,ζ3)<r7,B(d,v,ζ3)<r7. Then
ℜ(k,v,ζ)≥ℜ(k,g,ζ3)∗ℜ(g,d,ζ3)∗ℜ(d,v,ζ3)≥r0∗r7∗r7≥r0∗r1∗r2≥1−ϵ>1−r,ℵ(k,v,ζ)≤ℵ(k,g,ζ3)∘ℵ(g,d,ζ3)∘ℵ(d,v,ζ3)≤(1−r0)∘(1−r7)∘(1−r7)≤(1−r0)∘(1−r3)∘(1−r4)≤ϵ<r,B(k,v,ζ)≤B(k,g,ζ3)∘B(g,d,ζ3)∘B(d,v,ζ3)≤(1−r0)∘(1−r7)∘(1−r7)≤(1−r0)∘(1−r5)∘(1−r6)≤ϵ<r. |
It shows that v∈B(k,r,ζ) and B(d,1−r7,ζ3)⊂B(k,r,ζ).
Theorem 3.2. Every orthogonal neutrosophic rectangular metric space is Hausdorff.
Proof. Let (Γ,Ψ,Φ,D,∗,∘,⊥) is an orthogonal neutrosophic rectangular metric space. Let ρ and M be any distinct points in Γ. Then, 0<Ψ(ϱ,M,ζ)<1, 0<Φ(ϱ,M,ζ)<1 and 0<D(ϱ,M,ζ)<1. Put r1=Ψ(ϱ,M,ζ), 1−r2=Φ(ϱ,M,ζ), 1−r3=D(ϱ,M,ζ) and r4=Ψ(ϱ,g,ζ3), 1−r5=Φ(ϱ,g,ζ3),1−r6=D(ϱ,g,ζ3) and r=max{r1,1−r2,1−r3,r4,1−r5,1−r6}. For each r0∈(r,1), there exists r7 and r8 such that r4∗r7∗r7≥r0, (1−r5)∘(1−r8)∘(1−r8)≤1−r0 and (1−r6)∘(1−r8)∘(1−r8)≤1−r0. Put r9=max{r7,r8} and consider the open balls B(ρ,1−r9,ζ3) and B(M,1−r9,ζ3). Then, clearly
B(ρ,1−r9,ζ3)∩B(M,1−r9,ζ3)=∅. |
Suppose that v∈B(ρ,1−r9,ζ3)∩B(M,1−r9,ζ3). Then,
r1=ℜ(ρ,v,ζ)≥ℜ(ρ,g,ζ3)∗ℜ(g,M,ζ3)∗ℜ(M,v,ζ3)≥r4∗r9∗r9≥r4∗r7∗r7≥r0>r1,1−r2=ℵ(ρ,v,ζ)≤ℵ(ρ,g,ζ3)∘ℵ(g,M,ζ3)∘ℵ(M,v,ζ3)≤(1−r5)∘(1−r9)∘(1−r9)≤(1−r5)∘(1−r8)∘(1−r8)≤1−r0<1−r2,1−r3=B(ρ,v,ζ)≤B(ρ,g,ζ3)∘B(g,M,ζ3)∘B(M,v,ζ3)≤(1−r6)∘(1−r9)∘(1−r9)≤(1−r6)∘(1−r8)∘(1−r8)≤1−r0<1−r3, |
which is a contradiction. Hence, (Γ,Ψ,Φ,D,∗,∘,⊥) is Hausdorff.
Lemma 3.1. Let {ϱβ} be an O-Cauchy sequence in orthogonal neutrosophic rectangular metric space (Γ,Ψ,Φ,D,∗,∘,⊥) such that ϱβ≠ϱα whenever α,β∈N with β≠α. Then the O-sequence {ϱβ} can converge to, at most, one limit point.
Proof. Contrarily, assume that ϱβ→ϱ and ϱβ→M, for ϱ≠M. Then, limβ→+∞Ψ(ϱβ,ϱ,ζ)=1,limβ→+∞Φ(ϱβ,ϱ,ζ)=0,limβ→+∞D(ϱβ,ϱ,ζ)=0, and limβ→+∞Ψ(ϱβ,M,ζ) = 1, limβ→+∞Φ(ϱβ,M,ζ)=0,limβ→+∞D(ϱβ,M,ζ)=0, for all ζ>0. Suppose
Ψ(ϱ,M,ζ)≥Ψ(ϱ,ϱβ,ζ)∗Ψ(ϱβ,ϱβ+1,ζ)∗Ψ(ϱβ+1,M,ζ)→1∗1∗1,asβ,→+∞,Φ(ϱ,M,ζ)≤Φ(ϱ,ϱβ,ζ)∘Φ(ϱβ,ϱβ+1,ζ)∘Φ(ϱβ+1,M,ζ)→0∘0∘0,asβ,→+∞,D(ϱ,M,ζ)≤D(ϱ,ϱβ,ζ)∘D(ϱβ,ϱβ+1,ζ)∘D(ϱβ+1,M,ζ)→0∘0∘0,asβ→+∞. |
That is Ψ(ϱ,M,ζ)≥1∗1∗1=1,Φ(ϱ,M,ζ)≤0∘0∘0=0 and D(ϱ,M,ζ)≤0∘0∘0=0. Hence, ϱ=M.
Lemma 3.2. Let (Γ,Ψ,Φ,D,∗,∘,⊥) is an orthogonal neutrosophic rectangular metric space. If for some 0<σ<1 and for any ϱ,M∈Γ,ζ>0,
Ψ(ϱ,M,ζ)≥Ψ(ϱ,M,ζσ),Φ(ϱ,M,ζ)≤Φ(ϱ,M,ζσ),D(ϱ,M,ζ)≤D(ϱ,M,ζσ), | (3.1) |
then ϱ=M.
Proof. (3.1) implies that
Ψ(ϱ,M,ζ)≥Ψ(ϱ,M,ζσβ),Φ(ϱ,M,ζ)≤Φ(ϱ,M,ζσβ),D(ϱ,M,ζ)≤D(ϱ,M,ζσβ),β∈N,ζ>0. |
Now,
Ψ(ϱ,M,ζ)≥limβ→+∞Ψ(ϱ,M,ζσβ)=1,Φ(ϱ,M,ζ)≤limβ→+∞Φ(ϱ,M,ζσβ)=0,D(ϱ,M,ζ)≤limβ→+∞D(ϱ,M,ζσβ)=0,ζ>0. |
Also, by Definition of (iii), (viii), (xiii), that is, ϱ=M.
Definition 3.4. Let (Γ,Ψ,Φ,D,∗,∘,⊥) be an orthogonal neutrosophic rectangular metric space. A mapping ω:Γ→Γ is an othogonal neutrosophic rectangular contraction type-1(⊥-neutrosophic rectangular contraction type-1) if there exists 0<σ<1 such that
Ψ(ωϱ,ωM,σζ)≥Ψ(ϱ,M,ζ),Φ(ωϱ,ωM,σζ)≤Φ(ϱ,M,ζ) andD(ωϱ,ωM,σζ)≤D(ϱ,M,ζ), | (3.2) |
for all ϱ,M∈Γ with ϱ⊥M and ζ>0.
Theorem 3.3. Let (Γ,Ψ,Φ,D,∗,∘,⊥) be a complete orthogonal neutrosophic rectangular metric space and ω:Γ→Γ be a mapping satisfying
(a) ω is an ⊥-neutrosophic rectangular contraction type-1;
(b) ω is an ⊥-preserving.
Then ω has a unique fixed point.
Proof. Since (Γ,⊥) is an O-set,
∃ ϱ0∈Γ:(∀ϱ∈Γ,ϱ⊥ϱ0)or(∀ϱ∈Γ,ϱ0⊥ϱ). |
It follows that ϱ0⊥ωϱ0 or ωϱ0⊥ϱ0. Let
ϱ1=ωϱ0,ϱ2=ωϱ1=ω2x0,......,ϱβ+1=ωϱβ=ωβ+1ϱ0 |
for all β∈N∪{0}.
If ϱβ0=ϱβ0+1 for any β0∈N∪{0}, then it is clear that ϱβ0 is a fixed point of ω. Assume that ϱβ0≠ϱβ0+1 for all β0∈N∪{0}. Since ω is ⊥-preserving, we have
ϱβ0⊥ϱβ0+1orϱβ0+1⊥ϱβ0 |
for all β0∈N∪{0}. This implies {ϱβ} is an O-sequence. Since ⊥-neutrosophic rectangular contraction type-1, we obtain
Ψ(ϱβ,ϱβ+1,σζ)=Ψ(ωϱβ−1,ωϱβ,σζ)≥Ψ(ϱβ−1,ϱβ,ζ)≥Ψ(ϱβ−2,ϱβ−1,ζσ)≥Ψ(ϱβ−3,ϱβ−2,ζσ2)≥⋯≥Ψ(ϱ0,ϱ1,ζσβ−1),Φ(ϱβ,ϱβ+1,σζ)=Φ(ωϱβ−1,ωϱβ,σζ)≤Φ(ϱβ−1,ϱβ,ζ)≤Φ(ϱβ−2,ϱβ−1,ζσ)≤Φ(ϱβ−3,ϱβ−2,ζσ2)≤⋯≤Φ(ϱ0,ϱ1,ζσβ−1), |
and
D(ϱβ,ϱβ+1,σζ)=D(ωϱβ−1,ωϱβ,ζ)≤D(ϱβ−1,ϱβ,ζ)≤D(ϱβ−2,ϱβ−1,ζσ)≤D(ϱβ−3,ϱβ−2,ζσ2)≤⋯≤D(ϱ0,ϱ1,ζσβ−1). |
We obtain
Ψ(ϱβ,ϱβ+1,σζ)≥Ψ(ϱ0,ϱ1,ζσβ−1),Φ(ϱβ,ϱβ+1,σζ)≤Φ(ϱ0,ϱ1,ζσβ−1),D(ϱβ,ϱβ+1,σζ)≤D(ϱ0,ϱ1,ζσβ−1). | (3.3) |
Using (v), (x) and (xv), we have the following cases:
Case 1. When i=2α+1, i.e., i is odd, then
Ψ(ϱβ,ϱβ+2α+1,ζ)≥Ψ(ϱβ,ϱβ+1,ζ3)∗Ψ(ϱβ+1,ϱβ+2,ζ3)∗Ψ(ϱβ+2,ϱβ+2α+1,ζ3)≥Ψ(ϱβ,ϱβ+1,ζ3)∗Ψ(ϱβ+1,ϱβ+2,ζ3)∗Ψ(ϱβ+2,ϱβ+3,ζ32)∗Ψ(ϱβ+3,ϱβ+4,ζ32)∗Ψ(ϱβ+4,ϱβ+2α+1,ζ32)≥Ψ(ϱβ,ϱβ+1,ζ3)∗Ψ(ϱβ+1,ϱβ+2,ζ3)∗Ψ(ϱβ+2,ϱβ+3,ζ32)∗Ψ(ϱβ+3,ϱβ+4,ζ32)∗Ψ(ϱβ+4,ϱβ+5,ζ33)∗Ψ(ϱβ+5,ϱβ+6,ζ33)∗Ψ(ϱβ+6,ϱβ+2α+1,ζ33),Ψ(ϱβ,ϱβ+2α+1,ζ)≥Ψ(ϱβ,ϱβ+1,ζ3)∗Ψ(ϱβ+1,ϱβ+2,ζ3)∗Ψ(ϱβ+2,ϱβ+3,ζ32)∗Ψ(ϱβ+3,ϱβ+4,ζ32)∗Ψ(ϱβ+4,ϱβ+5,ζ33)∗Ψ(ϱβ+5,ϱβ+6,ζ33)∗Ψ(ϱβ+6,ϱβ+2α+1,ζ33)∗⋯∗Ψ(ϱβ+2α−2,ϱβ+2α−1,ζ3α)∗Ψ(ϱβ+2α−1,ϱβ+2α,ζ3α)∗Ψ(ϱβ+2α,ϱβ+2α+1,ζ3α), |
Φ(ϱβ,ϱβ+2α+1,ζ)≤Φ(ϱβ,ϱβ+1,ζ3)∘Φ(ϱβ+1,ϱβ+2,ζ3)∘Φ(ϱβ+2,ϱβ+2α+1,ζ3)≤Φ(ϱβ,ϱβ+1,ζ3)∘Φ(ϱβ+1,ϱβ+2,ζ3)∘Φ(ϱβ+2,ϱβ+3,ζ32)∘Φ(ϱβ+3,ϱβ+4,ζ32)∘Φ(ϱβ+4,ϱβ+2α+1,ζ32)≤Φ(ϱβ,ϱβ+1,ζ3)∘Φ(ϱβ+2,ϱβ+3,ζ32)∘Φ(ϱβ+3,ϱβ+4,ζ32)∘Φ(ϱβ+4,ϱβ+5,ζ33)∘Φ(ϱβ+5,ϱβ+6,ζ33)∘Φ(ϱβ+6,ϱβ+2α+1,ζ33),Φ(ϱβ,ϱβ+2α+1,ζ)≤Φ(ϱβ,ϱβ+1,ζ3)∘Φ(ϱβ+1,ϱβ+2,ζ3)∘Φ(ϱβ+2,ϱβ+3,ζ32)∘Φ(ϱβ+3,ϱβ+4,ζ32)∘Φ(ϱβ+4,ϱβ+5,ζ33)∘Φ(ϱβ+5,ϱβ+6,ζ33)∘Φ(ϱβ+6,ϱβ+2α+1,ζ33)∘⋯∘Φ(ϱβ+2α−2,ϱβ+2α−1,ζ3α)∘Φ(ϱβ+2α−1,ϱβ+2α,ζ3α)∘Φ(ϱβ+2α,ϱβ+2α+1,ζ3α), |
and
D(ϱβ,ϱβ+2α+1,ζ)≤D(ϱβ,ϱβ+1,ζ3)∘D(ϱβ+1,ϱβ+2,ζ3)∘D(ϱβ+2,ϱβ+2α+1,ζ3)≤D(ϱβ,ϱβ+1,ζ3)∘D(ϱβ+1,ϱβ+2,ζ3)∘D(ϱβ+2,ϱβ+3,ζ32)∘D(ϱβ+3,ϱβ+4,ζ32)∘D(ϱβ+4,ϱβ+2α+1,ζ32)≤D(ϱβ,ϱβ+1,ζ3)∘D(ϱβ+1,ϱβ+2,ζ3)∘D(ϱβ+2,ϱβ+3,ζ32)∘D(ϱβ+3,ϱβ+4,ζ32)∘D(ϱβ+4,ϱβ+5,ζ33)∘D(ϱβ+5,ϱβ+6,ζ33)∘D(ϱβ+6,ϱβ+2α+1,ζ33),D(ϱβ,ϱβ+2α+1,ζ)≤D(ϱβ,ϱβ+1,ζ3)∘D(ϱβ+1,ϱβ+2,ζ3)∘D(ϱβ+2,ϱβ+3,ζ32)∘D(ϱβ+3,ϱβ+4,ζ32)∘D(ϱβ+4,ϱβ+5,ζ33)∘D(ϱβ+5,ϱβ+6,ζ33)∘D(ϱβ+6,ϱβ+2α+1,ζ33)∘⋯∘D(ϱβ+2α−2,ϱβ+2α−1,ζ3α)∘D(ϱβ+2α−1,ϱβ+2α,ζ3α)∘D(ϱβ+2α,ϱβ+2α+1,ζ3α). |
Using (3.3) in the above inequalities, we deduce
Ψ(ϱβ,ϱβ+2α+1,ζ)≥Ψ(ϱ0,ϱ1,ζ3σβ−1)∗Ψ(ϱ0,ϱ1,ζ3σβ)∗Ψ(ϱ0,ϱ1,ζ32σβ+1)∗Ψ(ϱ0,ϱ1,ζ32σβ+2)∗Ψ(ϱ0,ϱ1,ζ33σβ+3)∗Ψ(ϱ0,ϱ1,ζ33σβ+4)∗Ψ(ϱ0,ϱ1,ζ33σβ+5)∗⋯∗Ψ(ϱ0,ϱ1,ζ3ασβ+2α−3)∗Ψ(ϱ0,ϱ1,ζ3ασβ+2α−2)∗Ψ(ϱ0,ϱ1,ζ3ασβ+2α−1), |
Φ(ϱβ,ϱβ+2α+1,ζ)≤Φ(ϱ0,ϱ1,ζ3σβ−1)∘Φ(ϱ0,ϱ1,ζ3σβ)∘Φ(ϱ0,ϱ1,ζ32σβ+1)∘Φ(ϱ0,ϱ1,ζ32σβ+2)∘Φ(ϱ0,ϱ1,ζ33σβ+3)∘Φ(ϱ0,ϱ1,ζ33σβ+4)∘Φ(ϱ0,ϱ1,ζ33σβ+5)∘⋯∘Φ(ϱ0,ϱ1,ζ3ασβ+2α−3)∘Φ(ϱ0,ϱ1,ζ3ασβ+2α−2)∘Φ(ϱ0,ϱ1,ζ3ασβ+2α−1), |
D(ϱβ,ϱβ+2α+1,ζ)≤D(ϱ0,ϱ1,ζ3σβ−1)∘D(ϱ0,ϱ1,ζ3σβ)∘D(ϱ0,ϱ1,ζ32σβ+1)∘D(ϱ0,ϱ1,ζ32σβ+2)∘D(ϱ0,ϱ1,ζ33σβ+3)∘D(ϱ0,ϱ1,ζ33σβ+4)∘D(ϱ0,ϱ1,ζ33σβ+5)∘⋯∘D(ϱ0,ϱ1,ζ3ασβ+2α−3)∘D(ϱ0,ϱ1,ζ3ασβ+2α−2)∘D(ϱ0,ϱ1,ζ3ασβ+2α−1). |
Case 2. When i=2α, i.e., i is even, then
Ψ(ϱβ,ϱβ+2α,ζ)≥Ψ(ϱβ,ϱβ+1,ζ3)∗Ψ(ϱβ+1,ϱβ+2,ζ3)∗Ψ(ϱβ+2,ϱβ+2α,ζ3)≥Ψ(ϱβ,ϱβ+1,ζ3)∗Ψ(ϱβ+1,ϱβ+2,ζ3)∗Ψ(ϱβ+2,ϱβ+3,ζ32)∗Ψ(ϱβ+3,ϱβ+4,ζ32)∗Ψ(ϱβ+4,ϱβ+2α,ζ32)≥Ψ(ϱβ,ϱβ+1,ζ3)∗Ψ(ϱβ+1,ϱβ+2,ζ3)∗Ψ(ϱβ+2,ϱβ+3,ζ32)∗Ψ(ϱβ+3,ϱβ+4,ζ32)∗Ψ(ϱβ+4,ϱβ+5,ζ33)∗Ψ(ϱβ+5,ϱβ+6,ζ33)∗Ψ(ϱβ+6,ϱβ+2α,ζ33),Ψ(ϱβ,ϱβ+2α,ζ)≥Ψ(ϱβ,ϱβ+1,ζ3)∗Ψ(ϱβ+1,ϱβ+2,ζ3)∗Ψ(ϱβ+2,ϱβ+3,ζ32)∗Ψ(ϱβ+3,ϱβ+4,ζ32)∗Ψ(ϱβ+4,ϱβ+5,ζ33)∗Ψ(ϱβ+5,ϱβ+6,ζ33)∗Ψ(ϱβ+6,ϱβ+2α,ζ33)∗⋯∗Ψ(ϱβ+2α−4,ϱβ+2α−3,ζ3α−1)∗Ψ(ϱβ+2α−3,ϱβ+2α−2,ζ3α−1)∗Ψ(ϱβ+2α−2,ϱβ+2α,ζ3α−1), |
Φ(ϱβ,ϱβ+2α,ζ)≤Φ(ϱβ,ϱβ+1,ζ3)∘Φ(ϱβ+1,ϱβ+2,ζ3)∘Φ(ϱβ+2,ϱβ+2α,ζ3)≤Φ(ϱβ,ϱβ+1,ζ3)∘Φ(ϱβ+1,ϱβ+2,ζ3)∘Φ(ϱβ+2,ϱβ+3,ζ32)∘Φ(ϱβ+3,ϱβ+4,ζ32)∘Φ(ϱβ+4,ϱβ+2α,ζ32)≤Φ(ϱβ,ϱβ+1,ζ3)∘Φ(ϱβ+1,ϱβ+2,ζ3)∘Φ(ϱβ+2,ϱβ+3,ζ32)∘Φ(ϱβ+3,ϱβ+4,ζ32)∘Φ(ϱβ+4,ϱβ+5,ζ33)∘Φ(ϱβ+5,ϱβ+6,ζ33)∘Φ(ϱβ+6,ϱβ+2α,ζ33),Φ(ϱβ,ϱβ+2α,ζ)≤Φ(ϱβ,ϱβ+1,ζ3)∘Φ(ϱβ+1,ϱβ+2,ζ3)∘Φ(ϱβ+2,ϱβ+3,ζ32)∘Φ(ϱβ+3,ϱβ+4,ζ32)∘Φ(ϱβ+4,ϱβ+5,ζ33)∘Φ(ϱβ+5,ϱβ+6,ζ33)∘Φ(ϱβ+6,ϱβ+2α,ζ33)∘⋯∘Φ(ϱβ+2α−4,ϱβ+2α−3,ζ3α−1)∘Φ(ϱβ+2α−3,ϱβ+2α−2,ζ3α−1)∘Φ(ϱβ+2α−2,ϱβ+2α,ζ3α−1), |
and
D(ϱβ,ϱβ+2α,ζ)≤D(ϱβ,ϱβ+1,ζ3)∘D(ϱβ+1,ϱβ+2,ζ3)∘D(ϱβ+2,ϱβ+2α,ζ3)≤D(ϱβ,ϱβ+1,ζ3)∘D(ϱβ+1,ϱβ+2,ζ3)∘D(ϱβ+2,ϱβ+3,ζ32)∘D(ϱβ+3,ϱβ+4,ζ32)∘D(ϱβ+4,ϱβ+2α,ζ32)≤D(ϱβ,ϱβ+1,ζ3)∘D(ϱβ+1,ϱβ+2,ζ3)∘D(ϱβ+2,ϱβ+3,ζ32)∘D(ϱβ+3,ϱβ+4,ζ32)∘D(ϱβ+4,ϱβ+5,ζ33)∘D(ϱβ+5,ϱβ+6,ζ33)∘D(ϱβ+6,ϱβ+2α,ζ33),D(ϱβ,ϱβ+2α,ζ)≤D(ϱβ,ϱβ+1,ζ3)∘D(ϱβ+1,ϱβ+2,ζ3)∘D(ϱβ+2,ϱβ+3,ζ32)∘D(ϱβ+3,ϱβ+4,ζ32)∘D(ϱβ+4,ϱβ+5,ζ33)∘D(ϱβ+5,ϱβ+6,ζ33)∘D(ϱβ+6,ϱβ+2α,ζ33)∘⋯∘D(ϱβ+2α−4,ϱβ+2α−3,ζ3α−1)∘D(ϱβ+2α−3,ϱβ+2α−2,ζ3α−1)∘D(ϱβ+2α−2,ϱβ+2α,ζ3α−1). |
Using (3.3) in the above inequalities, we deduce
Ψ(ϱβ,ϱβ+2α,ζ)≥Ψ(ϱ0,ϱ1,ζ3σβ−1)∗Ψ(ϱ0,ϱ1,ζ3σβ)∗Ψ(ϱ0,ϱ1,ζ32σβ+1)∗Ψ(ϱ0,ϱ1,ζ32σβ+2)∗Ψ(ϱ0,ϱ1,ζ33σβ+3)∗Ψ(ϱ0,ϱ1,ζ33σβ+4)∗Ψ(ϱ0,ϱ1,ζ33σβ+5)∗⋯∗Ψ(ϱ0,ϱ1,ζ3α−1σβ+2α−5)∗Ψ(ϱ0,ϱ1,ζ3α−1σβ+2α−4)∗Ψ(ϱ0,ϱ1,ζ3α−1σβ+2α−3), |
Φ(ϱβ,ϱβ+2α,ζ)≤Φ(ϱ0,ϱ1,ζ3σβ−1)∘Φ(ϱβ+1,ϱβ+2,ζ3σβ)∘Φ(ϱ0,ϱ1,ζ32σβ+1)∘Φ(ϱ0,ϱ1,ζ32σβ+2)∘Φ(ϱ0,ϱ1,ζ33σβ+3)∘Φ(ϱ0,ϱ1,ζ33σβ+4)∘Φ(ϱ0,ϱ1,ζ33σβ+5)∘⋯∘Φ(ϱ0,ϱ1,ζ3α−1σβ+2α−5)∘Φ(ϱ0,ϱ1,ζ3α−1σβ+2α−4)∘Φ(ϱ0,ϱ1,ζ3α−1σβ+2α−3) |
and
D(ϱβ,ϱβ+2α,ζ)≤D(ϱ0,ϱ1,ζ3σβ−1)∘D(ϱβ+1,ϱβ+2,ζ3σβ)∘D(ϱ0,ϱ1,ζ32σβ+1)∘D(ϱ0,ϱ1,ζ32σβ+2)∘D(ϱ0,ϱ1,ζ33σβ+3)∘D(ϱ0,ϱ1,ζ33σβ+4)∘D(ϱ0,ϱ1,ζ33σβ+5)∘⋯∘D(ϱ0,ϱ1,ζ3α−1σβ+2α−5)∘D(ϱ0,ϱ1,ζ3α−1σβ+2α−4)∘D(ϱ0,ϱ1,ζ3α−1σβ+2α−3). |
As β→+∞, we deduce
limβ→+∞Ψ(ϱβ,ϱβ+i,ζ)=1∗1∗⋯∗1=1,limβ→+∞Φ(ϱβ,ϱβ+i,ζ)=0∘0∘⋯∘0=0 |
and
limβ→+∞D(ϱβ,ϱβ+i,ζ)=0∘0∘⋯∘0=0. |
Therefore, {ϱβ} is a Cauchy sequence. Since (Γ,Ψ,Φ,D,∗,∘,⊥) is a complete orthogonal neutrosophic rectangular metric space, we can find
limβ→+∞ϱβ=ϱ. |
Using (v),(x) and (xv), we get
Ψ(ϱ,ωϱ,ζ)≥Ψ(ϱ,ϱβ,ζ3)∗Ψ(ϱβ,ϱβ+1,ζ3)∗Ψ(ϱβ+1,ωϱ,ζ3)=Ψ(ϱ,ϱβ+1,ζ3)∗Ψ(ωϱβ−1,ωϱβ,ζ3)∗Ψ(ωϱβ,ωϱ,ζ3)≥Ψ(ϱ,ϱβ+1,ζ3)∗Ψ(ϱβ−1,ϱβ,ζ3)∗Ψ(ϱβ,ϱ,ζ3)→1∗1∗1=1asβ→+∞, |
Φ(ϱ,ωϱ,ζ)≤Φ(ϱ,ϱβ,ζ3)∘Φ(ϱβ,ϱβ+1,ζ3)∘Φ(ϱβ+1,ωϱ,ζ3)=Φ(ϱ,ϱβ,ζ3)∘Φ(ωϱβ−1,ωϱβ,ζ3)∘Φ(ωϱβ,ωϱ,ζ3)≤Φ(ϱ,ϱβ,ζ3)∘Φ(ϱβ−1,ϱβ,ζ3)∘Φ(ϱβ,ϱ,ζ3)→0∘0∘0=0asβ→+∞ |
and
D(ϱ,ωϱ,ζ)≤D(ϱ,ϱβ,ζ3)∘D(ϱβ,ϱβ+1,ζ3)∘D(ϱβ+1,ωϱ,ζ3)=D(ϱ,ϱβ,ζ3)∘D(ωϱβ−1,ωϱβ,ζ3)∘D(ωϱβ,ωϱ,ζ3)≤D(ϱ,ϱβ,ζ3)∘D(ϱβ−1,ϱβ,ζ3)∘D(ϱβ,ϱ,ζ3)→0∘0∘0=0asβ→+∞. |
Hence, ωϱ=ϱ. Let ϱ,η∈Γ be two fixed points of ω and suppose that ωβϱ=ϱ≠η=ωβη for all β∈N. By choice of ϱ0, we obtain
(ϱ0⊥ϱandϱ0⊥η)or(ϱ⊥ϱ0andη⊥ϱ0). |
Since ω is ⊥-preserving, we have
(ωβϱ0⊥ωβϱandωβϱ0⊥ωβη)or(ωβϱ⊥ωβϱ0andωβη⊥ωβϱ0) |
for all n∈N. Since ⊥-neutrosophic rectangular contraction type-1, we have
1≥Ψ(η,ϱ,ζ)=Ψ(ωη,ωϱ,ζ)≥Ψ(η,ϱ,ζσ)=Ψ(ωη,ωϱ,ζσ)≥Ψ(η,ϱ,ζσ2)≥⋯≥Ψ(η,ϱ,ζσβ)→1asβ→+∞,0≤Φ(η,ϱ,ζ)=Φ(ωη,ωϱ,ζ)≤Φ(η,ϱ,ζσ)=Φ(ωη,ωϱ,ζσ)≤Φ(η,ϱ,ζσ2)≤⋯≤Φ(η,ϱ,ζσβ)→0asβ→+∞, |
and
0≤D(η,ϱ,ζ)=D(ωη,ωϱ,ζ)≤D(η,ϱ,ζσ)=D(ωη,ωϱ,ζσ)≤D(η,ϱ,ζσ2)≤⋯≤D(η,ϱ,ζσβ)→0asβ→+∞, |
by using (iii),(viii) and (xiii), ϱ=η.
Definition 3.5. Let (Γ,Ψ,Φ,D,∗,∘,⊥) be an orthogonal neutrosophic rectangular metric space. A map ω:Γ→Γ is an orthogonal neutrosophic rectangular contraction type-2 (⊥-neutrosophic rectangular contraction type-2) if there exists 0<σ<1, such that
1Ψ(ωϱ,ωM,ζ)−1≤σ[1Ψ(ϱ,M,ζ)−1], | (3.4) |
Φ(ωϱ,ωM,ζ)≤σΦ(ϱ,M,ζ), | (3.5) |
and
D(Pϱ,PM,ζ)≤σD(ϱ,M,ζ), | (3.6) |
for all ϱ,M∈Γ with ϱ⊥M and ζ>0.
Now, we prove the theorem for O-NRT(orthogonal neutrosophic rectangular) contraction.
Theorem 3.4. Let (Γ,Ψ,Φ,D,∗,∘,⊥) be a complete orthogonal neutrosophic rectangular metric space. and ω:Γ→Γ be a mapping satisfying
(a) ω is an ⊥- neutrosophic rectangular contraction type-2,
(b) ω is an ⊥-preserving.
Then ω has a unique fixed point.
Proof. Since (Γ,⊥) is an O-set,
∃ ϱ0∈Γ:(∀ϱ∈Γ,ϱ⊥ϱ0)or(∀ϱ∈Γ,ϱ0⊥ϱ). |
It follows that ϱ0⊥ωϱ0 or ωϱ0⊥ϱ0. Let
ϱ1=ωϱ0,ϱ2=ωϱ1=ω2x0,......,ϱβ+1=ωϱβ=ωβ+1ϱ0 |
for all β∈N∪{0}.
If ϱβ0=ϱβ0+1 for any β0∈N∪{0}, then it is clear that ϱβ0 is a fixed point of ω. Assume that ϱβ0≠ϱβ0+1 for all β0∈N∪{0}. Since ω is ⊥-preserving, we have
ϱβ0⊥ϱβ0+1orϱβ0+1⊥ϱβ0 |
for all β0∈N∪{0}. This implies {ϱβ} is an O-sequence. Since ω is an ⊥-neutrosophic rectangular contraction type-2, we have
1Ψ(ϱβ,ϱβ+1,ζ)−1=1Ψ(ωϱβ−1,ωϱβ,ζ)−1≤σ[1Ψ(ϱβ−1,ϱβ,ζ)]=σΨ(ϱβ−1,ϱβ,ζ)−σ⇒1Ψ(ϱβ,ϱβ+1,ζ)≤σΨ(ϱβ−1,ϱβ,ζ)+(1−σ)≤σ2Ψ(ϱβ−2,ϱβ−1,ζ)+σ(1−σ)+(1−σ). |
Continuing in this way, we get
1Ψ(ϱβ,ϱβ+1,ζ)≤σβΨ(ϱ0,ϱ1,ζ)+σβ−1(1−σ)+σβ−2(1−σ)+⋯+σ(1−σ)+(1−σ)≤σβΨ(ϱ0,ϱ1,ζ)+(σβ−1+σβ−2+⋯+1)(1−σ)≤σβΨ(ϱ0,ϱ1,ζ)+(1−σβ). |
We obtain
1σβΨ(ϱ0,ϱ1,ζ)+(1−σβ)≤Ψ(ϱβ,ϱβ+1,ζ), | (3.7) |
Φ(ϱβ,ϱβ+1,ζ)=Φ(ωϱβ−1,ωϱβ,ζ)≤σΦ(ϱβ−1,ϱβ,ζ)=Φ(ωϱβ−2,ωϱβ−1,ζ)≤σ2Φ(ϱβ−2,ϱβ−1,ζ)≤⋯≤σβΦ(ϱ0,ϱ1,ζ) | (3.8) |
and
D(ϱβ,ϱβ+1,ζ)=D(ωϱβ−1,ωϱβ,ζ)≤σD(ϱβ−1,ϱβ,ζ)=D(ωϱβ−2,ωϱβ−1,ζ)≤σ2D(ϱβ−2,ϱβ−1,ζ)≤⋯≤σβD(ϱ0,ϱ1,ζ). | (3.9) |
Using (v),(x) and (xv), we have the following cases:
Case 1. When i=2α+1, i.e., i is odd, then
Ψ(ϱβ,ϱβ+2α+1,ζ)≥Ψ(ϱβ,ϱβ+1,ζ3)∗Ψ(ϱβ+1,ϱβ+2,ζ3)∗Ψ(ϱβ+2,ϱβ+2α+1,ζ3)≥Ψ(ϱβ,ϱβ+1,ζ3)∗Ψ(ϱβ+1,ϱβ+2,ζ3)∗Ψ(ϱβ+2,ϱβ+3,ζ32)∗Ψ(ϱβ+3,ϱβ+4,ζ32)∗Ψ(ϱβ+4,ϱβ+2α+1,ζ32)≥Ψ(ϱβ,ϱβ+1,ζ3)∗Ψ(ϱβ+1,ϱβ+2,ζ3)∗Ψ(ϱβ+2,ϱβ+3,ζ32)∗Ψ(ϱβ+3,ϱβ+4,ζ32)∗Ψ(ϱβ+4,ϱβ+5,ζ33)∗Ψ(ϱβ+5,ϱβ+6,ζ33)∗Ψ(ϱβ+6,ϱβ+2α+1,ζ33),Ψ(ϱβ,ϱβ+2α+1,ζ)≥Ψ(ϱβ,ϱβ+1,ζ3)∗Ψ(ϱβ+1,ϱβ+2,ζ3)∗Ψ(ϱβ+2,ϱβ+3,ζ32)∗Ψ(ϱβ+3,ϱβ+4,ζ32)∗Ψ(ϱβ+4,ϱβ+5,ζ33)∗Ψ(ϱβ+5,ϱβ+6,ζ33)∗Ψ(ϱβ+6,ϱβ+2α+1,ζ33)∗⋯∗Ψ(ϱβ+2α−2,ϱβ+2α−1,ζ3α)∗Ψ(ϱβ+2α−1,ϱβ+2α,ζ3α)∗Ψ(ϱβ+2α,ϱβ+2α+1,ζ3α), |
Φ(ϱβ,ϱβ+2α+1,ζ)≤Φ(ϱβ,ϱβ+1,ζ3)∘Φ(ϱβ+1,ϱβ+2,ζ3)∘Φ(ϱβ+2,ϱβ+2α+1,ζ3)≤Φ(ϱβ,ϱβ+1,ζ3)∘Φ(ϱβ+1,ϱβ+2,ζ3)∘Φ(ϱβ+2,ϱβ+3,ζ32)∘Φ(ϱβ+3,ϱβ+4,ζ32)∘Φ(ϱβ+4,ϱβ+2α+1,ζ32)≤Φ(ϱβ,ϱβ+1,ζ3)∘Φ(ϱβ+1,ϱβ+2,ζ3)∘Φ(ϱβ+2,ϱβ+3,ζ32)∘Φ(ϱβ+3,ϱβ+4,ζ32)∘Φ(ϱβ+4,ϱβ+5,ζ33)∘Φ(ϱβ+5,ϱβ+6,ζ33)∘Φ(ϱβ+6,ϱβ+2α+1,ζ33),Φ(ϱβ,ϱβ+2α+1,ζ)≤Φ(ϱβ,ϱβ+1,ζ3)∘Φ(ϱβ+1,ϱβ+2,ζ3)∘Φ(ϱβ+2,ϱβ+3,ζ32)∘Φ(ϱβ+3,ϱβ+4,ζ32)∘Φ(ϱβ+4,ϱβ+5,ζ33)∘Φ(ϱβ+5,ϱβ+6,ζ33)∘Φ(ϱβ+6,ϱβ+2α+1,ζ33)∘⋯∘Φ(ϱβ+2α−2,ϱβ+2α−1,ζ3α)∘Φ(ϱβ+2α−1,ϱβ+2α,ζ3α)∘Φ(ϱβ+2α,ϱβ+2α+1,ζ3α), |
and
D(ϱβ,ϱβ+2α+1,ζ)≤D(ϱβ,ϱβ+1,ζ3)∘D(ϱβ+1,ϱβ+2,ζ3)∘D(ϱβ+2,ϱβ+2α+1,ζ3)≤D(ϱβ,ϱβ+1,ζ3)∘D(ϱβ+1,ϱβ+2,ζ3)∘D(ϱβ+2,ϱβ+3,ζ32)∘D(ϱβ+3,ϱβ+4,ζ32)∘D(ϱβ+4,ϱβ+2α+1,ζ32)≤D(ϱβ,ϱβ+1,ζ3)∘D(ϱβ+1,ϱβ+2,ζ3)∘D(ϱβ+2,ϱβ+3,ζ32)∘D(ϱβ+3,ϱβ+4,ζ32)∘D(ϱβ+4,ϱβ+5,ζ33)∘D(ϱβ+5,ϱβ+6,ζ33)∘D(ϱβ+6,ϱβ+2α+1,ζ33),D(ϱβ,ϱβ+2α+1,ζ)≤D(ϱβ,ϱβ+1,ζ3)∘D(ϱβ+1,ϱβ+2,ζ3)∘D(ϱβ+2,ϱβ+3,ζ32)∘D(ϱβ+3,ϱβ+4,ζ32)∘D(ϱβ+4,ϱβ+5,ζ33)∘D(ϱβ+5,ϱβ+6,ζ33)∘D(ϱβ+6,ϱβ+2α+1,ζ33)∘⋯∘D(ϱβ+2α−2,ϱβ+2α−1,ζ3α)∘D(ϱβ+2α−1,ϱβ+2α,ζ3α)∘D(ϱβ+2α,ϱβ+2α+1,ζ3α). |
Using (3.3) in the above inequalities, we deduce
Ψ(ϱβ,ϱβ+2α+1,ζ)≥1σβΨ(ϱ0,ϱ1,ζ3)+(1−σβ)∗1σβ+1Ψ(ϱ0,ϱ1,ζ3)+(1−σβ+1)∗1σβ+2Ψ(ϱ0,ϱ1,ζ32)+(1−σβ+2)∗1σβ+3Ψ(ϱ0,ϱ1,ζ32)+(1−σβ+3)∗1σβ+4Ψ(ϱ0,ϱ1,ζ33)+(1−σβ+4)∗1σβ+5Ψ(ϱ0,ϱ1,ζ33)+(1−σβ+5)∗1σβ+6Ψ(ϱ0,ϱ1,ζ33)+(1−σβ+6)∗⋯∗∗1σβ+2α−2Ψ(ϱ0,ϱ1,ζ3α)+(1−σβ+2α−2)∗1σβ+2α−1Ψ(ϱ0,ϱ1,ζ3α)+(1−σβ+2α−1)∗1σβ+2αΨ(ϱ0,ϱ1,ζ3α)+(1−σβ+2α), |
Φ(ϱβ,ϱβ+2α+1,ζ)≤σβΦ(ϱ0,ϱ1,ζ3)∘σβ+1Φ(ϱ0,ϱ1,ζ3)∘σβ+2Φ(ϱ0,ϱ1,ζ32)∘σβ+3Φ(ϱ0,ϱ1,ζ32)∘σβ+4Φ(ϱ0,ϱ1,ζ33)∘σβ+5Φ(ϱ0,ϱ1,ζ33)∘σβ+6Φ(ϱ0,ϱ1,ζ33)∘⋯∘σβ+2α−2Φ(ϱ0,ϱ1,ζ3α)∘σβ+2α−1Φ(ϱ0,ϱ1,ζ3α)∘σβ+2αΦ(ϱ0,ϱ1,ζ3α) |
and
D(ϱβ,ϱβ+2α+1,ζ)≤σβD(ϱ0,ϱ1,ζ3)∘σβ+1D(ϱ0,ϱ1,ζ3)∘σβ+2D(ϱ0,ϱ1,ζ32)∘σβ+3D(ϱ0,ϱ1,ζ32)∘σβ+4D(ϱ0,ϱ1,ζ33)∘σβ+5D(ϱ0,ϱ1,ζ33)∘σβ+6D(ϱ0,ϱ1,ζ33)∘⋯∘σβ+2α−2D(ϱ0,ϱ1,ζ3α)∘σβ+2α−1D(ϱ0,ϱ1,ζ3α)∘σβ+2αD(ϱ0,ϱ1,ζ3α). |
Case 2. When i=2α, i.e., i is even, then
Ψ(ϱβ,ϱβ+2α,ζ)≥Ψ(ϱβ,ϱβ+1,ζ3)∗Ψ(ϱβ+1,ϱβ+2,ζ3)∗Ψ(ϱβ+2,ϱβ+2α,ζ3)≥Ψ(ϱβ,ϱβ+1,ζ3)∗Ψ(ϱβ+1,ϱβ+2,ζ3)∗Ψ(ϱβ+2,ϱβ+3,ζ32)∗Ψ(ϱβ+3,ϱβ+4,ζ32)∗Ψ(ϱβ+4,ϱβ+2α,ζ32)≥Ψ(ϱβ,ϱβ+1,ζ3)∗Ψ(ϱβ+1,ϱβ+2,ζ3)∗Ψ(ϱβ+2,ϱβ+3,ζ32)∗Ψ(ϱβ+3,ϱβ+4,ζ32)∗Ψ(ϱβ+4,ϱβ+5,ζ33)∗Ψ(ϱβ+5,ϱβ+6,ζ33)∗Ψ(ϱβ+6,ϱβ+2α,ζ33),Ψ(ϱβ,ϱβ+2α,ζ)≥Ψ(ϱβ,ϱβ+1,ζ3)∗Ψ(ϱβ+1,ϱβ+2,ζ3)∗Ψ(ϱβ+2,ϱβ+3,ζ32)∗Ψ(ϱβ+3,ϱβ+4,ζ32)∗Ψ(ϱβ+4,ϱβ+5,ζ33)∗Ψ(ϱβ+5,ϱβ+6,ζ33)∗Ψ(ϱβ+6,ϱβ+2α,ζ33)∗⋯∗Ψ(ϱβ+2α−4,ϱβ+2α−3,ζ3α−1)∗Ψ(ϱβ+2α−3,ϱβ+2α−2,ζ3α−1)∗Ψ(ϱβ+2α−2,ϱβ+2α,ζ3α−1), |
Φ(ϱβ,ϱβ+2α,ζ)≤Φ(ϱβ,ϱβ+1,ζ3)∘Φ(ϱβ+1,ϱβ+2,ζ3)∘Φ(ϱβ+2,ϱβ+2α,ζ3)≤Φ(ϱβ,ϱβ+1,ζ3)∘Φ(ϱβ+1,ϱβ+2,ζ3)∘Φ(ϱβ+2,ϱβ+3,ζ32)∘Φ(ϱβ+3,ϱβ+4,ζ32)∘Φ(ϱβ+4,ϱβ+2α,ζ32)≤Φ(ϱβ,ϱβ+1,ζ3)∘Φ(ϱβ+1,ϱβ+2,ζ3)∘Φ(ϱβ+2,ϱβ+3,ζ32)∘Φ(ϱβ+3,ϱβ+4,ζ32)∘Φ(ϱβ+4,ϱβ+5,ζ33)∘Φ(ϱβ+5,ϱβ+6,ζ33)∘Φ(ϱβ+6,ϱβ+2α,ζ33),Φ(ϱβ,ϱβ+2α,ζ)≤Φ(ϱβ,ϱβ+1,ζ3)∘Φ(ϱβ+1,ϱβ+2,ζ3)∘Φ(ϱβ+2,ϱβ+3,ζ32)∘Φ(ϱβ+3,ϱβ+4,ζ32)∘Φ(ϱβ+4,ϱβ+5,ζ33)∘Φ(ϱβ+5,ϱβ+6,ζ33)∘Φ(ϱβ+6,ϱβ+2α,ζ33)∘⋯∘Φ(ϱβ+2α−4,ϱβ+2α−3,ζ3α−1)∘Φ(ϱβ+2α−3,ϱβ+2α−2,ζ3α−1)∘Φ(ϱβ+2α−2,ϱβ+2α,ζ3α−1), |
and
D(ϱβ,ϱβ+2α,ζ)≤D(ϱβ,ϱβ+1,ζ3)∘D(ϱβ+1,ϱβ+2,ζ3)∘D(ϱβ+2,ϱβ+2α,ζ3)≤D(ϱβ,ϱβ+1,ζ3)∘D(ϱβ+1,ϱβ+2,ζ3)∘D(ϱβ+2,ϱβ+3,ζ32)∘D(ϱβ+3,ϱβ+4,ζ32)∘D(ϱβ+4,ϱβ+2α,ζ32)≤D(ϱβ,ϱβ+1,ζ3)∘D(ϱβ+1,ϱβ+2,ζ3)∘D(ϱβ+2,ϱβ+3,ζ32)∘D(ϱβ+3,ϱβ+4,ζ32)∘D(ϱβ+4,ϱβ+5,ζ33)∘D(ϱβ+5,ϱβ+6,ζ33)∘D(ϱβ+6,ϱβ+2α,ζ33),D(ϱβ,ϱβ+2α,ζ)≤D(ϱβ,ϱβ+1,ζ3)∘D(ϱβ+1,ϱβ+2,ζ3)∘D(ϱβ+2,ϱβ+3,ζ32)∘D(ϱβ+3,ϱβ+4,ζ32)∘D(ϱβ+4,ϱβ+5,ζ33)∘D(ϱβ+5,ϱβ+6,ζ33)∘D(ϱβ+6,ϱβ+2α,ζ33)∘⋯∘D(ϱβ+2α−4,ϱβ+2α−3,ζ3α−1)∘D(ϱβ+2α−3,ϱβ+2α−2,ζ3α−1)∘D(ϱβ+2α−2,ϱβ+2α,ζ3α−1). |
Using (3.3) in the above inequalities, we deduce
Ψ(ϱβ,ϱβ+2α,ζ)≥1σβΨ(ϱ0,ϱ1,ζ3)+(1−σβ)∗1σβ+1Ψ(ϱ0,ϱ1,ζ3)+(1−σβ+1)∗1σβ+2Ψ(ϱ0,ϱ1,ζ32)+(1−σβ+2)∗1σβ+3Ψ(ϱ0,ϱ1,ζ32)+(1−σβ+3)∗1σβ+4Ψ(ϱ0,ϱ1,ζ33)+(1−σβ+4)∗1σβ+5Ψ(ϱ0,ϱ1,ζ33)+(1−σβ+5)∗1σβ+6Ψ(ϱ0,ϱ1,ζ33)+(1−σβ+6)∗⋯∗1σβ+2α−4Ψ(ϱ0,ϱ1,ζ3α−1)+(1−σβ+2α−4)∗1σβ+2α−3Ψ(ϱ0,ϱ1,ζ3α−1)+(1−σβ+2α−3)∗1σβ+2α−2Ψ(ϱ0,ϱ1,ζ3α−1)+(1−σβ+2α−2), |
D(ϱβ,ϱβ+2α,ζ)≤σβD(ϱ0,ϱ1,ζ3)∘σβ+1D(ϱβ+1,ϱβ+2,ζ3)∘σβ+2D(ϱ0,ϱ1,ζ32)∘σβ+3D(ϱ0,ϱ1,ζ32)∘σβ+4D(ϱ0,ϱ1,ζ33)∘σβ+5D(ϱ0,ϱ1,ζ33)∘σβ+6D(ϱ0,ϱ1,ζ33)∘⋯∘σβ+2α−4D(ϱ0,ϱ1,ζ3α−1)∘σβ+2α−3D(ϱ0,ϱ1,ζ3α−1)∘σβ+2α−2D(ϱ0,ϱ1,ζ3α−1), |
Φ(ϱβ,ϱβ+2α,ζ)≤σβΦ(ϱ0,ϱ1,ζ3)∘σβ+1Φ(ϱβ+1,ϱβ+2,ζ3)∘σβ+2Φ(ϱ0,ϱ1,ζ32)∘σβ+3Φ(ϱ0,ϱ1,ζ32)∘σβ+4Φ(ϱ0,ϱ1,ζ33)∘σβ+5Φ(ϱ0,ϱ1,ζ33)∘σβ+6Φ(ϱ0,ϱ1,ζ33)∘⋯∘σβ+2α−4Φ(ϱ0,ϱ1,ζ3α−1)∘σβ+2α−3Φ(ϱ0,ϱ1,ζ3α−1)∘σβ+2α−2Φ(ϱ0,ϱ1,ζ3α−1). |
As β→+∞, we deduce
limβ→+∞Ψ(ϱβ,ϱβ+i,ζ)=1∗1∗⋯∗=1,limβ→+∞Φ(ϱβ,ϱβ+i,ζ)=0∘0∘⋯∘0=0, |
and
limβ→+∞D(ϱβ,ϱβ+i,ζ)=0∘0∘⋯∘0=0. |
Therefore, {ϱβ} is a Cauchy sequence. Since (Γ,Ψ,Φ,D,∗,∘,⊥) be a complete orthogonal neutrosophic rectangular metric space, we can find
limβ→+∞ϱβ=ϱ. |
Using (v),(x) and (xv), we get
1Ψ(ωϱβ,ωϱ,ζ)−1≤σ[1Ψ(ϱβ,ϱ,ζ)−1]=σΨ(ϱβ,ϱ,ζ)−σ⇒1σΨ(ϱβ,ϱ,ζ)+(1−σ)≤Ψ(ωϱβ,ωϱ,ζ). |
Using the above inequality, we obtain
Ψ(ϱ,ωϱ,ζ)≥Ψ(ϱ,ϱβ,ζ3)∗Ψ(ϱβ,ϱβ+1,ζ3)∗Ψ(ϱβ+1,ωϱ,ζ3)≥Ψ(ϱ,ϱβ,ζ3)∗Ψ(ωϱβ−1,ωϱβ,ζ3)∗Ψ(ωϱβ,ωϱ,ζ3)≥Ψ(ϱ,ϱβ,ζ3)∗1σβΨ(ϱ0,ϱ1,ζ3)+(1−σβ)∗1σΨ(ϱβ,ϱ,ζ3)+(1−σ)→1∗1∗1=1asβ→+∞, |
Φ(ϱ,ωϱ,ζ)≤Φ(ϱ,ϱβ,ζ3)∘Φ(ϱβ,ϱβ+1,ζ3)∘Φ(ϱβ+1,ωϱ,ζ3)≤Φ(ϱ,ϱβ,ζ3)∘Φ(ωϱβ−1,ωϱβ,ζ3)∘Φ(ωϱβ,ωϱ,ζ3)≤Φ(ϱ,ϱβ,ζ3)∘σβ−1Φ(ϱβ−1,ϱβ,ζ3)∘σΦ(ϱβ,ϱ,ζ3)→0∘0∘0=0asβ→+∞ |
and
D(ϱ,ωϱ,ζ)≤D(ϱ,ϱβ,ζ3)∘D(ϱβ,ϱβ+1,ζ3)∘D(ϱβ+1,ωϱ,ζ3)≤D(ϱ,ϱβ,ζ3)∘D(ωϱβ−1,ωϱβ,ζ3)∘D(ωϱβ,ωϱ,ζ3)≤D(ϱ,ϱβ,ζ3)∘σβ−1D(ϱβ−1,ϱβ,ζ3)∘σD(ϱβ,ϱ,ζ3)→0∘0∘0=0asβ→+∞. |
Hence, ωϱ=ϱ. Let ϱ,η∈Γ be two fixed points of ω and suppose that ωβϱ=ϱ≠η=ωβη for all β∈N. By choice of ϱ0, we obtain
(ϱ0⊥ϱandϱ0⊥η)or(ϱ⊥ϱ0andη⊥ϱ0). |
Since ω is ⊥-preserving, we have
(ωβϱ0⊥ωβϱandωβϱ0⊥ωβη)or(ωβϱ⊥ωβϱ0andωβη⊥ωβϱ0) |
for all n∈N. Since ⊥-neutrosophic rectangular contraction type-2, we have
1Ψ(ϱ,η,ζ)−1=1Ψ(ωϱ,ωη,ζ)−1≤σ[1Ψ(ϱ,η,ζ)−1]<1Ψ(ϱ,η,ζ)−1, |
which is a contradiction.
Φ(ϱ,η,ζ)=Φ(ωϱ,ωη,ζ)≤σΦ(ϱ,η,ζ)<Φ(ϱ,η,ζ), |
which is a contradiction and
D(ϱ,η,ζ)=D(ωϱ,ωη,ζ)≤σD(ϱ,η,ζ)<D(ϱ,η,ζ), |
which is a contradiction. Therefore, we must have Ψ(ϱ,η,ζ)=1,Φ(ϱ,η,ζ)=0 and D(ϱ,η,ζ)=0, hence, ϱ=η.
Example 3.3. Let Γ=[0,1]. Define the binary relation ⊥ on Γ by ϱ⊥M iff ϱ+M≥0 and Ψ,Φ,D:Γ×Γ×(0,+∞)→[0,1] by
Ψ(ϱ,M,ζ)=ζζ+|ϱ−M|,Φ(ϱ,M,ζ)=|ϱ−M|ζ+|ϱ−M|,Φ(ϱ,M,ζ)=|ϱ−M|ζ, |
for all ϱ,M∈Γ with ϱ⊥M and ζ>0. Then, (Γ,Ψ,Φ,D,∗,∘,⊥) is a complete orthogonal neutrosophic rectangular metric space with continuous t-norm ι∗ν=ιν and continuous t-co-norm ι∘ν=max{ι,ν}.
Define ω:Γ→Γ by ω(ϱ)=1−5−ϱ7 and take σ∈[12,1), then
Ψ(ωϱ,ωM,σζ)=Ψ(1−5−ϱ7,1−5−M7,σζ)=σζσζ+|1−5−ϱ7−1−5−M7|=σζσζ+|5−ϱ−5−M|7≥σζσζ+|ϱ−M|7=7σζ7σζ+|ϱ−M|≥ζζ+|ϱ−M|=Ψ(ϱ,M,ζ), |
Φ(ωϱ,ωM,σζ)=Φ(1−5−ϱ7,1−5−M7,σζ)=|1−5−ϱ7−1−5−M7|σζ+|1−5−ϱ7−1−5−M7|=|5−ϱ−5−M|7σζ+|5−ϱ−5−M|7=|5−ϱ−5−M|7σζ+|5−ϱ−5−M|≤|ϱ−M|7σζ+|ϱ−M|≤|ϱ−M|ζ+|ϱ−M|=Φ(ϱ,M,ζ) |
and
D(ωϱ,ωM,σζ)=D(1−5−ϱ7,1−5−M7,σζ)=|1−5−ϱ7−1−5−M7|σζ=|5−ϱ−5−M|7σζ=|5−ϱ−5−M|7σζ≤|ϱ−M|7σζ≤|ϱ−M|ζ=D(ϱ,M,ζ). |
Therefore ω is an orthogonal neutrosophic contraction type-1. Clearly ω is an ⊥-preserving. Hence, all the hypothesis of Theorem 3.3 are fulfilled, and 0 is the only fixed point for ω.
Suppose Γ=C([c,a],R) is the set of real value continuous functions defined on [c,a].
Suppose the integral equation:
ϱ(τ)=∧(τ)+δ∫ac℧(τ,v)ϱ(τ)dvforτ,v∈[c,a], | (4.1) |
where δ>0,∧(v) is a fuzzy function of v:v∈[c,a] and ℧:C([c,a]×R)→R+. Define the binary relation ⊥ on Γ by ϱ⊥M iff ϱ+M≥0 and Ψ,Φ,D:Γ×Γ×(0,+∞)→[0,1] by
Ψ(ϱ(τ),M(τ),ζ)=supτ∈[c,a]ζζ+|ϱ(τ)−M(τ)|,Φ(ϱ(τ),M(τ),ζ)=1−supτ∈[c,a]ζζ+|ϱ(τ)−M(τ)| |
and
D(ϱ(τ),M(τ),ζ)=supτ∈[c,a]|ϱ(τ)−M(τ)|ζ, |
for all ϱ,M∈Γ with ϱ⊥M and ζ>0, continuous t-norm and continuous t-co-norm define by ι∗ν=ι⋅ν and ι∘ν=max{ι,ν}. Then (Γ,Ψ,Φ,D,∗,∘) is a complete orthogonal neutrosophic rectangular metric space. Suppose that |℧(τ,v)ϱ(τ)−℧(τ,v)M(τ)|≤|ϱ(τ)−M(τ)| for ϱ,M∈Γ,σ∈(0,1) and ∀τ,v∈[c,a]. Also, let ℧(τ,v)(δ∫acdv)≤σ<1. Then, the integral Eq (4.1) has a unique solution.
Proof. Define ω:Γ→Γ by
ωϱ(τ)=∧(τ)+δ∫ac℧(τ,v)ϱ(τ)dvfor allτ,v∈[c,a]. |
Clearly ω is an ⊥-preserving. Now, for all ϱ,M∈Γ with ϱ⊥M, we deduce
Ψ(ωϱ(τ),ωM(τ),σζ)=supτ∈[c,a]σζσζ+|ωϱ(τ)−ωM(τ)|=supτ∈[c,a]σζσζ+|∧(τ)+δ∫ac℧(τ,v)ϱ(τ)dv−∧(τ)−δ∫ac℧(τ,v)ϱ(τ)dv|=supτ∈[c,a]σζσζ+|δ∫ac℧(τ,v)ϱ(τ)dv−δ∫ac℧(τ,v)ϱ(τ)dv|=supτ∈[c,a]σζσζ+|℧(τ,v)ϱ(τ)−℧(τ,v)M(τ)|(δ∫acdv)≥supτ∈[c,a]ζζ+|ϱ(τ)−M(τ)|≥Ψ(ϱ(τ),M(τ),ζ), |
Φ(ωϱ(τ),ωM(τ),σζ)=1−supτ∈[c,a]σζσζ+|ωϱ(τ)−ωM(τ)|=1−supτ∈[c,a]σζσζ+|∧(τ)+δ∫ac℧(τ,v)ϱ(τ)dv−∧(τ)−δ∫ac℧(τ,v)ϱ(τ)dv|=1−supτ∈[c,a]σζσζ+|δ∫ac℧(τ,v)ϱ(τ)dv−δ∫ac℧(τ,v)ϱ(τ)dv|=1−supτ∈[c,a]σζσζ+|℧(τ,v)ϱ(τ)−℧(τ,v)M(τ)|(δ∫acdv)≤1−supτ∈[c,a]ζζ+|ϱ(τ)−M(τ)|≤Φ(ϱ(τ),M(τ),ζ), |
and
\begin{align*} \mathcal{D}(\omega\varrho(\tau), \omega\mathcal{M}(\tau), \sigma\zeta)& = \sup\limits_{\tau\in[\mathfrak{c}, \mathfrak{a}]}\frac{|\omega\varrho(\tau)-\omega\mathcal{M}(\tau)|}{\sigma\zeta}\\ & = \sup\limits_{\tau\in[\mathfrak{c}, \mathfrak{a}]}\frac{|\wedge(\tau)+\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mho(\tau, \mathfrak{v})\varrho(\tau)\mathfrak{d}\mathfrak{v}-\wedge(\tau)-\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mho(\tau, \mathfrak{v})\varrho(\tau)\mathfrak{d}\mathfrak{v}|}{\sigma\zeta}\\ & = \sup\limits_{\tau\in[\mathfrak{c}, \mathfrak{a}]}\frac{|\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mho(\tau, \mathfrak{v})\varrho(\tau)\mathfrak{d}\mathfrak{v}-\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mho(\tau, \mathfrak{v})\varrho(\tau)\mathfrak{d}\mathfrak{v}|}{\sigma\zeta}\\ & = \sup\limits_{\tau\in[\mathfrak{c}, \mathfrak{a}]}\frac{|\mho(\tau, \mathfrak{v})\varrho(\tau)-\mho(\tau, \mathfrak{v})\mathcal{M}(\tau)|(\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mathfrak{d}\mathfrak{v})}{\sigma\zeta}\\ &\leq\sup\limits_{\tau\in[\mathfrak{c}, \mathfrak{a}]}\frac{|\varrho(\tau)-\mathcal{M}(\tau)|}{\zeta}\\ &\leq\varPsi(\varrho(\tau), \mathcal{M}(\tau), \zeta). \end{align*} |
Therefore, \omega is an orthogonal neutrosophic contraction type-1. Hence, all the conditions of Theorem 3.3 are satisfied and operator \omega has a unique fixed point.
Example 4.1. Assume the following non-linear integral equation.
\begin{align*} \varrho(\tau) = |\sin\tau|+\frac{1}{7}\int_{0}^{1}\mathfrak{v}\varrho(\mathfrak{v})\mathfrak{d}\mathfrak{v}, \quad\ {for \ all}\quad\mathfrak{v}\in[0, 1]. \end{align*} |
Then it has a solution in \varGamma .
Proof. Let \omega\colon\varGamma\rightarrow \varGamma be defined by
\begin{align*} \omega\varrho(\tau) = |\sin\tau|+\frac{1}{7}\int_{0}^{1}\mathfrak{v}\varrho(\mathfrak{v})\mathfrak{d}\mathfrak{v}, \end{align*} |
and set \mho(\tau, \mathfrak{v})\varrho(\tau) = \frac{1}{7}\mathfrak{v}\varrho(\mathfrak{v}) and \mho(\tau, \mathfrak{v})\mathcal{M}(\tau) = \frac{1}{7}\mathfrak{v}\mathcal{M}(\mathfrak{v}) , where \varrho, \mathcal{M}\in\varGamma , and for all \tau, \mathfrak{v}\in[0, 1] . Then, we have
\begin{align*} &|\mho(\tau, \mathfrak{v})\varrho(\tau)-\mho(\tau, \mathfrak{v})\mathcal{M}(\tau)|\\& = |\frac{1}{7}\mathfrak{v}\varrho(\mathfrak{v})-\frac{1}{7}\mathfrak{v}\mathcal{M}(\mathfrak{v})|\\ & = \frac{\mathfrak{v}}{7}|\varrho(\mathfrak{v})-\mathcal{M}(\mathfrak{v})|\leq|\varrho(\mathfrak{v})-\mathcal{M}(\mathfrak{v})|. \end{align*} |
Furthermore, see that \frac{1}{7}\int_{0}^{1}\mathfrak{v}\mathfrak{d}\mathfrak{v} = \frac{1}{7}\big(\frac{(1)^2}{2}-\frac{(0)^2}{2}\big) = \frac{1}{7} = \sigma\leq1 , where \delta = \frac{1}{7} . Hence, it is easy to see that all other conditions of the above application are easy to examine and the above problem has a solution in \varGamma .
Let us consider a series electric circuit which contain a resistor ( \mathcal{R} , Ohms) a capacitor ( \mathcal{C} , Faradays), an inductor ( \mathcal{L} , Henries) a voltage ( \mathcal{V} , Volts) and an electromotive force ( \mathcal{E} , Volts), as in the following scheme, Figure 1.
Considering the definition of the intensity of electric current \mathcal{I} = \frac{d\mathcal{M}}{d\mathfrak{t}} , where \mathcal{M} denote the electric charge and \mathfrak{t} -the time, let us recall the following usual formulas
● \mathcal{V}_{\mathcal{R}} = \mathcal{I}\mathcal{R};
● \mathcal{V}_{\mathcal{C}} = \frac{\mathcal{M}}{\mathcal{C}};
● \mathcal{V}_{\mathcal{L}} = \mathcal{L}\frac{d\mathcal{I}}{d\mathfrak{t}}.
Since in a series circuit there is only one current flowing, then \mathcal{I} have the same value in the entire circuit. Kirchhoff's Voltage Law is the second of his fundamental laws we can use for circuit analysis. His voltage law states that for a closed loop series path the algebraic sum of all the voltages around any closed loop in a circuit is equal to zero. The Kirchhoff's Voltage Law states: "the algebraic sum of all the voltages around any closed loop in a circuit is equal to zero".
The main idea of the Kirchhoff's Voltage Law is that as you move around a closed loop/circuit, you will end up back where you started in the circuit. Therefore you back to the same initial potential without voltage losses around the loop. Therefore, any voltage drop around the loop must be equal to any voltage source encountered along the way. The mathematical expression of this consequence of the Kirchhoff's Voltage Law is: "the sum of the voltage rises across any loops is equal to the sum of voltage drops across that loop". Then we have the following relation:
\begin{align*} \mathcal{I}\mathcal{R}+\frac{\mathcal{M}}{\mathcal{C}}+\mathcal{L}\frac{d\mathcal{I}}{d\mathfrak{t}} = \mathcal{V}(\mathfrak{t}). \end{align*} |
We can write this voltage equation in the parameters of a second-order differential equation as follows.
\begin{align} \mathcal{L}\frac{d^{2}{\mathcal{M}}}{d\mathfrak{t}^{2}}+\mathcal{R}\frac{d\mathcal{M}}{d\mathfrak{t}}+\frac{\mathcal{M}}{\mathcal{C}} = \mathcal{V}(\mathfrak{t}), \text{with the initial conditions}, \mathcal{M}(0) = 0, \mathcal{M}^{'}(0) = 0, \end{align} | (5.1) |
where \mathcal{C} = \frac{4\mathcal{L}}{\mathcal{R}^{2}} and \tau = \frac{\mathcal{R}}{2\mathcal{L}} - the nondimensional time for the resonance case in Physics. The Green function associated with Eq (5.1) is the following:
\begin{align*} \mathcal{G}(\mathfrak{t}, \mathfrak{s}) = \begin{cases} -\mathfrak{s}\mathfrak{e}^{-\tau(\mathfrak{s}-\mathfrak{t})}, if 0\leq\mathfrak{s}\leq\mathfrak{t}\leq1, \\ -\mathfrak{t}\mathfrak{e}^{-\tau(\mathfrak{s}-\mathfrak{t})}, if 0\leq\mathfrak{t}\leq\mathfrak{s}\leq1. \end{cases} \end{align*} |
The seccond order differential Eq (5.1) can be rewrite as the following integral equation by using the above conditions, we have
\begin{align} \varrho(\mathfrak{t}) = \int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}) \mathfrak{f}(\mathfrak{s}, \varrho(\mathfrak{s}))d\mathfrak{s}, \, \, \text{where}\, \, \mathfrak{t}\in[0, 1] \end{align} | (5.2) |
and \mathfrak{f} (\mathfrak{s}, \cdot) : [0, 1] \times \mathbb{R} \rightarrow \mathbb{R} is a monotone non decreasing mapping for all \mathfrak{s} \in [0, 1] .
Let \varGamma = (C[0, 1], \mathbb{R}) be the set of all continuous functions defined on [0, 1] . Define the binary relation \bot on \varGamma by \varrho\bot\mathcal{M} iff \varrho+\mathcal{M}\geq 0 and \varPsi, \varPhi, \mathcal{D}\colon\varGamma\times\varGamma\times(0, +\infty)\rightarrow [0, 1] by
\begin{align*} \varPsi(\varrho(\vartheta), \mathcal{M}(\vartheta), \zeta)& = \sup\limits_{\vartheta\in[\mathfrak{c}, \mathfrak{a}]}\frac{\zeta}{\zeta+|\varrho(\vartheta)-\mathcal{M}(\vartheta)|}, \\ \varPhi(\varrho(\vartheta), \mathcal{M}(\vartheta), \zeta)& = 1-\sup\limits_{\vartheta\in[\mathfrak{c}, \mathfrak{a}]}\frac{\zeta}{\zeta+|\varrho(\vartheta)-\mathcal{M}(\vartheta)|}, \end{align*} |
and
\begin{align*} \mathcal{D}(\varrho(\vartheta), \mathcal{M}(\vartheta), \zeta)& = \sup\limits_{\vartheta\in[\mathfrak{c}, \mathfrak{a}]}\frac{|\varrho(\vartheta)-\mathcal{M}(\vartheta)|}{\zeta}, \end{align*} |
for all \varrho, \mathcal{M}\in\varGamma with \varrho\bot\mathcal{M} and \zeta > 0 , continuous t-norm and continuous t-co-norm define by \mathfrak{e}\ast\flat = \mathfrak{e}\flat and \mathfrak{e}\circ\flat = \max\{\mathfrak{e}, \flat\} . Then (\varGamma, \varPsi, \varPhi, \mathcal{D}, \ast, \circ, \bot) is a complete orthogonal neutrosophic rectangular metric space. Further, let us give the main result of the section.
Theorem 5.1. Let \omega\colon\varGamma\rightarrow \varGamma be a mapping such that the following assertions hold:
(i) \mathcal{G}\colon[0, 1]^2\rightarrow [0, \infty) is a continuous function;
(ii) \mathfrak{f}(\mathfrak{s}, \cdot)\colon[0, 1]\times\mathbb{R}\rightarrow \mathbb{R} is a monotone non decreasing function for all \mathfrak{s}\in[0, 1] such that \varrho, \mathcal{M}\in\varGamma , we have the inequality:
\begin{align*} |\mathfrak{f}(\mathfrak{t}, \varrho)-\mathfrak{f}(\mathfrak{t}, \mathcal{M})\leq|\varrho(\mathfrak{t})-\mathcal{M}(\mathfrak{t})|; \end{align*} |
(iii) \int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s})d\mathfrak{s}\leq \sigma < 1.
Then the voltage differential Eq (5.1) has a unique solution.
Proof. Define \omega\colon\varGamma\rightarrow \varGamma by
\begin{align*} \omega\varrho(\mathfrak{t}) = \int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}) \mathfrak{f}(\mathfrak{s}, \varrho(\mathfrak{s}))d\mathfrak{s}, \, \, \text{where}\, \, \mathfrak{t}\in[0, 1]. \end{align*} |
Clearly \omega is an \bot -preserving. Now, for all \varrho, \mathcal{M}\in \varGamma with \varrho\bot\mathcal{M} , we deduce
\begin{align*} \varPsi(\omega\varrho(\mathfrak{t}), \omega\mathcal{M}(\mathfrak{t}), \sigma\zeta)& = \sup\limits_{\mathfrak{t}\in[0, 1]}\frac{\sigma\zeta}{\sigma\zeta+|\omega\varrho(\mathfrak{t})-\omega\mathcal{M}(\mathfrak{t})|}\\ & = \sup\limits_{\mathfrak{t}\in[0, 1]}\frac{\sigma\zeta}{\sigma\zeta+|\int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}) \mathfrak{f}(\mathfrak{s}, \varrho(\mathfrak{s}))d\mathfrak{s}-\int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}) \mathfrak{f}(\mathfrak{s}, \mathcal{M}(\mathfrak{s}))d\mathfrak{s}|}\\ & = \sup\limits_{\mathfrak{t}\in[0, 1]}\frac{\sigma\zeta}{\sigma\zeta+\int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s})|\mathfrak{f}(\mathfrak{s}, \varrho(\mathfrak{s}))-\mathfrak{f}(\mathfrak{s}, \mathcal{M}(\mathfrak{s}))|d\mathfrak{s}}\\ & = \sup\limits_{\mathfrak{t}\in[0, 1]}\frac{\sigma\zeta}{\sigma\zeta+|\mathfrak{f}(\mathfrak{s}, \varrho(\mathfrak{s}))-\mathfrak{f}(\mathfrak{s}, \mathcal{M}(\mathfrak{s}))|}\\ &\geq\sup\limits_{\mathfrak{t}\in[0, 1]}\frac{\zeta}{\zeta+|\varrho(\mathfrak{t})-\mathcal{M}(\mathfrak{t})|}\\ &\geq\varPsi(\varrho(\mathfrak{t}), \mathcal{M}(\mathfrak{t}), \zeta), \end{align*} |
\begin{align*} \varPhi(\omega\varrho(\mathfrak{t}), \omega\mathcal{M}(\mathfrak{t}), \sigma\zeta)& = 1-\sup\limits_{\mathfrak{t}\in[0, 1]}\frac{\sigma\zeta}{\sigma\zeta+|\omega\varrho(\mathfrak{t})-\omega\mathcal{M}(\mathfrak{t})|}\\ & = 1-\sup\limits_{\mathfrak{t}\in[0, 1]}\frac{\sigma\zeta}{\sigma\zeta+|\int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}) \mathfrak{f}(\mathfrak{s}, \varrho(\mathfrak{s}))d\mathfrak{s}-\int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}) \mathfrak{f}(\mathfrak{s}, \mathcal{M}(\mathfrak{s}))d\mathfrak{s}|}\\ & = 1-\sup\limits_{\mathfrak{t}\in[0, 1]}\frac{\sigma\zeta}{\sigma\zeta+\int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s})|\mathfrak{f}(\mathfrak{s}, \varrho(\mathfrak{s}))-\mathfrak{f}(\mathfrak{s}, \mathcal{M}(\mathfrak{s}))|d\mathfrak{s}}\\ &\leq1-\sup\limits_{\mathfrak{t}\in[0, 1]}\frac{\zeta}{\zeta+|\varrho(\mathfrak{t})-\mathcal{M}(\mathfrak{t})|}\\ &\leq\varPhi(\varrho(\mathfrak{t}), \mathcal{M}(\mathfrak{t}), \zeta), \end{align*} |
and
\begin{align*} \mathcal{D}(\omega\varrho(\mathfrak{t}), \omega\mathcal{M}(\mathfrak{t}), \sigma\zeta)& = \sup\limits_{\mathfrak{t}\in[0, 1]}\frac{|\omega\varrho(\mathfrak{t})-\omega\mathcal{M}(\mathfrak{t})|}{\sigma\zeta}\\ & = \sup\limits_{\mathfrak{t}\in[0, 1]}\frac{|\int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}) \mathfrak{f}(\mathfrak{s}, \varrho(\mathfrak{s}))d\mathfrak{s}-\int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}) \mathfrak{f}(\mathfrak{s}, \mathcal{M}(\mathfrak{s}))d\mathfrak{s}|}{\sigma\zeta}\\ & = \sup\limits_{\mathfrak{t}\in[0, 1]}\frac{\int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s})|\mathfrak{f}(\mathfrak{s}, \varrho(\mathfrak{s}))-\mathfrak{f}(\mathfrak{s}, \mathcal{M}(\mathfrak{s}))|d\mathfrak{s}}{\sigma\zeta}\\ &\leq\sup\limits_{\mathfrak{t}\in[0, 1]}\frac{|\varrho(\mathfrak{t})-\mathcal{M}(\mathfrak{t})|}{\zeta}\\ &\leq\mathcal{D}(\varrho(\mathfrak{t}), \mathcal{M}(\mathfrak{t}), \zeta). \end{align*} |
Therefore, all the hypothesis of Theorem 3.3 are satisfied and \omega has a unique fixed-point and the differential voltage Eq (5.1) has a unique solution.
In this paper, we introduced the concept of orthogonal neutrosophic rectangular metric space and prove fixed point theorems. Recently, Khaelehoghli, Rahimi and Eshaghi Gordji [24,25] introduced R-metric spaces and obtained a generalization of Banach's fixed point theorem. It is an interesting open problem to study the relation R instead of orthogonal relation and obtained neutrosophic rectangular metric space results on R-complete neutrosophic rectangular metric spaces.
The authors declare no conflicts of interest.
[1] |
S. M. Salman, Memory and media coverage effect on an HIV/AIDS epidemic model with treatment, J. Comput. Appl. Math., 385 (2021), 113203. http://dx.doi.org/10.1016/j.cam.2020.113203 doi: 10.1016/j.cam.2020.113203
![]() |
[2] | HIV, World Health Organization, 2022. |
[3] | A. S. Perelson, Modeling the interaction of the immune system with HIV, In: Mathematical and statistical approaches to AIDS epidemiology, Berlin, Heidelberg: Springer, 1989. http://dx.doi.org/10.1007/978-3-642-93454-4_17 |
[4] | H. Ye, Modeling and analyzing of the dynamics of HIV infections based on fractional differential equations, Doctoral thesis, Donghua University, 2009. |
[5] |
R. Xu, C. Song, Dynamics of an HIV infection model with virus diffusion and latently infected cell activation, Nonlinear Anal. Real World Appl., 67 (2022), 103618. https://doi.org/10.1016/j.nonrwa.2022.103618 doi: 10.1016/j.nonrwa.2022.103618
![]() |
[6] |
P. Wu, S. Zheng, Z. He, Evolution dynamics of a time-delayed reaction-diffusion HIV latent infection model with two strains and periodic therapies, Nonlinear Anal. Real World Appl., 67 (2022), 103559. https://doi.org/10.1016/j.nonrwa.2022.103559 doi: 10.1016/j.nonrwa.2022.103559
![]() |
[7] |
P. Wu, H. Zhao, Mathematical analysis of an age-structured HIV/AIDS epidemic model with HAART and spatial diffusion, Nonlinear Anal. Real World Appl., 60 (2021), 103289. https://doi.org/10.1016/j.nonrwa.2021.103289 doi: 10.1016/j.nonrwa.2021.103289
![]() |
[8] |
B. J. Nath, K. Dehingia, K. Sadri, H. K. Sarmah, K. Hosseini, C. Park, Optimal control of combined antiretroviral therapies in an HIV infection model with cure rate and fusion effect, Int. J. Biomath, 16 (2023), 2250062. https://doi.org/10.1142/S1793524522500620 doi: 10.1142/S1793524522500620
![]() |
[9] |
Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, Stationary distribution and extinction of a stochastic HIV-1 infection model with distributed delay and logistic growth, J. Nonlinear Sci., 30 (2020), 369–395. https://doi.org/10.1007/s00332-019-09576-x doi: 10.1007/s00332-019-09576-x
![]() |
[10] |
K. Qi, D. Jiang, The impact of virus carrier screening and actively seeking treatment on dynamical behavior of a stochastic HIV/AIDS infection model, Appl. Math. Model., 85 (2020), 378–404. https://doi.org/10.1016/j.apm.2020.03.027 doi: 10.1016/j.apm.2020.03.027
![]() |
[11] |
Q. Liu, Dynamics of a stochastic SICA epidemic model for HIV transmission with higher-order perturbation, Stoch. Anal. Appl., 40 (2022), 209–235. https://doi.org/10.1080/07362994.2021.1898979 doi: 10.1080/07362994.2021.1898979
![]() |
[12] |
J. Ren, Q. Zhang, X. Li, F. Cao, M. Ye, A stochastic age-structured HIV/AIDS model based on parameters estimation and its numerical calculation, Math. Comput. Simulat., 190 (2021), 159–180. https://doi.org/10.1016/j.matcom.2021.04.024 doi: 10.1016/j.matcom.2021.04.024
![]() |
[13] |
Y. Tan, Y. Cai, X. Sun, K. Wang, R. Yao, W. Wang, et al., A stochastic SICA model for HIV/AIDS transmission, Chaos Soliton Fract., 165 (2022), 112768. https://doi.org/10.1016/j.chaos.2022.112768 doi: 10.1016/j.chaos.2022.112768
![]() |
[14] |
F. Rao, J. Luo, Stochastic effects on an HIV/AIDS infection model with incomplete diagnosis, Chaos Soliton Fract., 152 (2021), 111344. https://doi.org/10.1016/j.chaos.2021.111344 doi: 10.1016/j.chaos.2021.111344
![]() |
[15] |
R. Shi, T. Lu, C. Wang, Dynamic analysis of a fractional-order model for HIV with drug-resistance and CTL immune response, Math. Comput. Simulat., 188 (2021), 509–536. https://doi.org/10.1016/j.matcom.2021.04.022 doi: 10.1016/j.matcom.2021.04.022
![]() |
[16] |
H. Singh, Analysis of drug treatment of the fractional HIV infection model of CD4^{+}T-cells, Chaos Soliton Fract., 146 (2021), 11068. https://doi.org/10.1016/j.chaos.2021.110868 doi: 10.1016/j.chaos.2021.110868
![]() |
[17] |
Y. Zhao, E. E. Elattar, M. A. Khan, Fatmawati, M. Asiri, P. Sunthrayuth, The dynamics of the HIV/AIDS infection in the framework of piecewise fractional differential equation, Results Phys., 40 (2022), 105842. https://doi.org/10.1016/j.rinp.2022.105842 doi: 10.1016/j.rinp.2022.105842
![]() |
[18] |
M. Jafari, H. Kheiri, Free terminal time optimal control of a fractional-order model for the HIV/AIDS epidemic, Int. J. Biomath., 15 (2022), 2250022. https://doi.org/10.1142/S179352452250022X doi: 10.1142/S179352452250022X
![]() |
[19] |
B. Asquith, C. Bangham, Quantifying HTLV-I dynamics, Immunol. Cell Biol., 85 (2007), 280–286. https://doi.org/10.1038/sj.icb.7100050 doi: 10.1038/sj.icb.7100050
![]() |
[20] |
L. M. Mansky, In vivo analysis of human T-cell leukemia virus type Ⅰ reverse transcription accuracy, J. Virol., 74 (2000), 9525–9531. https://doi.org/10.1128/JVI.74.20.9525-9531.2000 doi: 10.1128/JVI.74.20.9525-9531.2000
![]() |
[21] |
Q. Kai, D. Jiang, Threshold behavior in a stochastic HTLV-I infection model with CTL immune response and regime switching, Math. Method. Appl. Sci., 41 (2018), 6866–6882. https://doi.org/10.1002/mma.5198 doi: 10.1002/mma.5198
![]() |
[22] |
Z. Shi, D. Jiang, Dynamical behaviors of a stochastic HTLV-I infection model with general infection form and Ornstein-Uhlenbeck process, Chaos Soliton Fract., 165 (2022), 112789. https://doi.org/10.1016/j.chaos.2022.112789 doi: 10.1016/j.chaos.2022.112789
![]() |
[23] |
S. Bera, S. Khajanchi, T. K. Roy, Dynamics of an HTLV-I infection model with delayed CTLs immune response, Appl. Math. Comput., 430 (2022), 127206. https://doi.org/10.1016/j.amc.2022.127206 doi: 10.1016/j.amc.2022.127206
![]() |
[24] |
A. M. Elaiw, A. S. Shflot, A. D. Hobiny, Global stability of a general HTLV-I infection model with Cytotoxic T-Lymphocyte immune response and mitotic transmission, Alexandria Eng., 67 (2023), 77–91. https://doi.org/10.1016/j.aej.2022.08.021 doi: 10.1016/j.aej.2022.08.021
![]() |
[25] |
S. Khajanchi, S. Bera, T. K. Roy, Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes, Math. Comput. Simulat., 180 (2021), 354–378. https://doi.org/10.1016/j.matcom.2020.09.009 doi: 10.1016/j.matcom.2020.09.009
![]() |
[26] |
N. Kobayashi, Y. Hamamoto, N. Yamamoto, Production of tumor necrosis factors by human T cell lines infected with HTLV-1 may cause their high susceptibility to human immunodeficiency virus infection, Med. Microbiol. Immunol., 179 (1990), 115–122. https://doi.org/10.1007/BF00198532 doi: 10.1007/BF00198532
![]() |
[27] |
C. D. Mendoza, E. Caballero, A. Aguilera, R. Benito, D. Maciá, J. García-Costa, et al., HIV co-infection in HTLV-1 carriers in Spain, Virus Res., 266 (2019), 48–51. https://doi.org/10.1016/j.virusres.2019.04.004 doi: 10.1016/j.virusres.2019.04.004
![]() |
[28] |
M. A. Alshaikh, N. H. Alshamrani, A. M. Elaiw, Stability of HIV/HTLV co-infection model with effective HIV-specific antibody immune response, Results Phys., 27 (2021), 104448. https://doi.org/10.1016/j.rinp.2021.104448 doi: 10.1016/j.rinp.2021.104448
![]() |
[29] |
A. M. Elaiw, N. H. Alshamrani, Analysis of a within-host HIV/HTLV-I co-infection model with immunity, Virus Res., 295 (2021), 198204. https://doi.org/10.1016/j.virusres.2020.198204 doi: 10.1016/j.virusres.2020.198204
![]() |
[30] |
A. M. Elaiw, N. H. Alshamrani, E. Dahy, A. A. Abdellatif, Stability of within host HTLV-I/HIV-1 co-infection in the presence of macrophages, Int. J. Biomath, 16 (2023), 2250066. https://doi.org/10.1142/S1793524522500668 doi: 10.1142/S1793524522500668
![]() |
[31] |
Z. Guo, H. Huo, H. Xiang, Optimal control of TB transmission based on an age structured HIV-TB co-infection model, J. Franklin Inst., 359 (2022), 4116–4137. https://doi.org/10.1016/j.jfranklin.2022.04.005 doi: 10.1016/j.jfranklin.2022.04.005
![]() |
[32] |
A. Mallela, S. Lenhart, N. K. Vaidya, HIV-TB co-infection treatment: Modeling and optimal control theory perspectives, J. Comput. Appl. Math., 307 (2016), 143–161. https://doi.org/10.1016/j.cam.2016.02.051 doi: 10.1016/j.cam.2016.02.051
![]() |
[33] |
Tanvi, R. Aggarwal, Stability analysis of a delayed HIV-TB co-infection model in resource limitation settings, Chaos Soliton Fract., 140 (2020), 110138. https://doi.org/10.1016/j.chaos.2020.110138 doi: 10.1016/j.chaos.2020.110138
![]() |
[34] |
L. Zhang, M. U. Rahman, M. Arfan, A. Ali, Investigation of mathematical model of transmission co-infection TB in HIV community with a non-singular kernel, Results Phys., 28 (2021), 104559. https://doi.org/10.1016/j.rinp.2021.104559 doi: 10.1016/j.rinp.2021.104559
![]() |
[35] |
N. H. Shah, N. Sheoran, Y. Shah, Dynamics of HIV-TB co-infection model, Axioms, 9 (2020), 29. https://doi.org/10.3390/axioms9010029 doi: 10.3390/axioms9010029
![]() |
[36] |
I. Ahmed, E. F. D. Goufo, A. Yusuf, P. Kumam, K. Nonlaopon, An epidemic prediction from analysis of a combined HIV-COVID-19 co-infection model via ABC-fractional operator, Alexandria Eng. J., 60 (2021), 2979–2995. https://doi.org/10.1016/j.aej.2021.01.041 doi: 10.1016/j.aej.2021.01.041
![]() |
[37] |
N. Ringa, M. L. Diagne, H. Rwezaura, A. Omame, S. Y. Tchoumi, J. M. Tchuenche, HIV and COVID-19 co-infection: A mathematical model and optimal control, Inform. Med. Unlocked, 31 (2022), 100978. https://doi.org/10.1016/j.imu.2022.100978 doi: 10.1016/j.imu.2022.100978
![]() |
[38] |
A. Omame, M. E. Isah, M. Abbas, A. H. Abdel-Aty, C. P. Onyenegecha, A fractional order model for Dual Variants of COVID-19 and HIV co-infection via Atangana-Baleanu derivative, Alexandria Eng. J., 61 (2022), 9715–9731. https://doi.org/10.1016/j.aej.2022.03.013 doi: 10.1016/j.aej.2022.03.013
![]() |
[39] |
V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. Theor., 69 (2008), 2677–2682. https://doi.org/10.1016/j.na.2007.08.042 doi: 10.1016/j.na.2007.08.042
![]() |
[40] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1999. |
[41] |
K. Hattaf, A new generalized definition of fractional derivative with non-singular kernel, Computation, 8 (2020), 49. https://doi.org/10.3390/computation8020049 doi: 10.3390/computation8020049
![]() |
[42] |
M. Bachraoui, K. Hattaf, N. Yousfi, Analysis of a fractional reaction-diffusion HBV model with cure of infected cells, Discrete Dyn. Nat. Soc., 2020 (2020), 3140275. https://doi.org/10.1155/2020/3140275 doi: 10.1155/2020/3140275
![]() |
[43] |
C. Huang, L. Cai, J. Cao, Linear control for synchronization of a fractional-order time-delayed chaotic financial system, Chaos Soliton Fract., 113 (2018), 326–332. https://doi.org/10.1016/j.chaos.2018.05.022 doi: 10.1016/j.chaos.2018.05.022
![]() |
[44] |
R. Rakkiyappan, G. Velmurugan, J. Cao, Stability analysis of fractional-order complex-valued neural networks with time delays, Chaos Soliton Fract., 78 (2015), 297–316. https://doi.org/10.1016/j.chaos.2015.08.003 doi: 10.1016/j.chaos.2015.08.003
![]() |
[45] |
H. Li, Y. Shen, Y. Han, J. Dong, J. Li, Determining Lyapunov exponents of fractional-order systems: A general method based on memory principle, Chaos Soliton Fract., 168 (2023), 113167. https://doi.org/10.1016/j.chaos.2023.113167 doi: 10.1016/j.chaos.2023.113167
![]() |
[46] |
Q. Gao, J. Cai, Y. Liu, Y. Chen, L. Shi, W. Xu, Power mapping-based stability analysis and order adjustment control for fractional-order multiple delayed systems, ISA Trans., 138 (2023), 10–19. https://doi.org/10.1016/j.isatra.2023.02.019 doi: 10.1016/j.isatra.2023.02.019
![]() |
[47] |
C. Pinto, A. Carvalho, The role of synaptic transmission in a HIV model with memory, Appl. Math. Comput., 292 (2017), 76–95. https://doi.org/10.1016/j.amc.2016.07.031 doi: 10.1016/j.amc.2016.07.031
![]() |
[48] |
T. Sardar, S. Rana, S. Bhattacharya, K. Al-Khaled, J. Chattopadhyay, A generic model for a single strain mosquito-transmitted disease with memory on the host and the vector, Math. Biosci., 263 (2015), 18–36. https://doi.org/10.1016/j.mbs.2015.01.009 doi: 10.1016/j.mbs.2015.01.009
![]() |
[49] |
K. Diethelm, Monotonicity of functions and sign changes of their Caputo derivatives, Fract. Calc. Appl. Anal., 19 (2016), 561–566. https://doi.org/10.1515/FCA-2016-0029 doi: 10.1515/FCA-2016-0029
![]() |
[50] | C. Kou, Y. Yan, J. Liu, Stability analysis for fractional differential equations and their applications in the models of HIV-1 infection, Comput. Model. Eng. Sci., 39 (2009), 301–317. |
[51] |
W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332 (2007), 709–726. https://doi.org/10.1016/j.jmaa.2006.10.040 doi: 10.1016/j.jmaa.2006.10.040
![]() |
[52] |
P. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental systems of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
![]() |
[53] |
E. Ahmed, A. M. A. El-Sayed, H. A. A. El-Saka, On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rssler, Chua and Chen systems, Phys. Lett. A, 358 (2006), 1–4. https://doi.org/10.1016/j.physleta.2006.04.087 doi: 10.1016/j.physleta.2006.04.087
![]() |
[54] |
J. P. LaSalle, Stability theory for ordinary differential equations, J. Differ. Equ., 4 (1968), 57–65. https://doi.org/10.1016/0022-0396(68)90048-X doi: 10.1016/0022-0396(68)90048-X
![]() |
[55] |
R. Shi, T. Lu, Dynamic analysis and optimal control of a fractional order model for hand-foot-mouth Disease, J. Appl. Math. Comput., 64 (2020), 565–590. https://doi.org/10.1007/s12190-020-01369-w doi: 10.1007/s12190-020-01369-w
![]() |
[56] |
E. Roxin, Differential equations: Classical to controlled, Am. Math. Mon., 92 (1985), 223–225. https://doi.org/10.1080/00029890.1985.11971586 doi: 10.1080/00029890.1985.11971586
![]() |
[57] | L. S. Pontryagin, V. G. Boltyanskii, R. V. Gramkrelidze, E. F. Mischenko, The mathematical theory of optimal processes, New York: Interscience Publishers, 1962. |
[58] |
N. H. Sweilam, S. M. Al-Mekhlafi, On the optimal control for fractional multi-strain TB model, Optim. Contr. Appl. Met., 37 (2016), 1355–1374. https://doi.org/10.1002/oca.2247 doi: 10.1002/oca.2247
![]() |
[59] | L. Zhang, HIV viral load and CD4^+T lymphocyte count in HIV-1/HTLV-1 co-infected patients, Foreign Med. Sci. Sect. Virol., 5 (1998), 27–29. |