Vibrio cholerae is a non-invasive enteric pathogen known to cause a major public health problem called cholera. The pathogen inhabits the aquatic environment while outside the human host, it is transmitted into the host easily through ingesting contaminated food and water containing the vibrios, thus causing diarrhoea and vomiting. V. cholerae must resist several layers of colonization resistance mechanisms derived from the host or the gut commensals to successfully survive, grow, and colonize the distal intestinal epithelium, thus causing an infection. The colonization resistance mechanisms derived from the host are not specific to V. cholerae but to all invading pathogens. However, some of the gut commensal-derived colonization resistance may be more specific to the pathogen, making it more challenging to overcome. Consequently, the pathogen has evolved well-coordinated mechanisms that sense and utilize the anti-colonization factors to modulate events that promote its survival and colonization in the gut. This review is aimed at discussing how V. cholerae interacts and resists both host- and microbe-specific colonization resistance mechanisms to cause infection.
Citation: Abdullahi Yusuf Muhammad, Malik Amonov, Chandrika Murugaiah, Atif Amin Baig, Marina Yusoff. Intestinal colonization against Vibrio cholerae: host and microbial resistance mechanisms[J]. AIMS Microbiology, 2023, 9(2): 346-374. doi: 10.3934/microbiol.2023019
[1] | Serap Özcan, Saad Ihsan Butt, Sanja Tipurić-Spužević, Bandar Bin Mohsin . Construction of new fractional inequalities via generalized n-fractional polynomial s-type convexity. AIMS Mathematics, 2024, 9(9): 23924-23944. doi: 10.3934/math.20241163 |
[2] | Hasan Kara, Hüseyin Budak, Mehmet Eyüp Kiriş . On Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions. AIMS Mathematics, 2020, 5(5): 4681-4701. doi: 10.3934/math.2020300 |
[3] | Wei Gao, Artion Kashuri, Saad Ihsan Butt, Muhammad Tariq, Adnan Aslam, Muhammad Nadeem . New inequalities via n-polynomial harmonically exponential type convex functions. AIMS Mathematics, 2020, 5(6): 6856-6873. doi: 10.3934/math.2020440 |
[4] | Naila Mehreen, Matloob Anwar . Ostrowski type inequalities via some exponentially convex functions with applications. AIMS Mathematics, 2020, 5(2): 1476-1483. doi: 10.3934/math.2020101 |
[5] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[6] | Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067 |
[7] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[8] | Anjum Mustafa Khan Abbasi, Matloob Anwar . Ostrowski type inequalities for exponentially s-convex functions on time scale. AIMS Mathematics, 2022, 7(3): 4700-4710. doi: 10.3934/math.2022261 |
[9] | Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad . (m,n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates. AIMS Mathematics, 2021, 6(5): 4677-4690. doi: 10.3934/math.2021275 |
[10] | Muhammad Uzair Awan, Nousheen Akhtar, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu . 2D approximately reciprocal ρ-convex functions and associated integral inequalities. AIMS Mathematics, 2020, 5(5): 4662-4680. doi: 10.3934/math.2020299 |
Vibrio cholerae is a non-invasive enteric pathogen known to cause a major public health problem called cholera. The pathogen inhabits the aquatic environment while outside the human host, it is transmitted into the host easily through ingesting contaminated food and water containing the vibrios, thus causing diarrhoea and vomiting. V. cholerae must resist several layers of colonization resistance mechanisms derived from the host or the gut commensals to successfully survive, grow, and colonize the distal intestinal epithelium, thus causing an infection. The colonization resistance mechanisms derived from the host are not specific to V. cholerae but to all invading pathogens. However, some of the gut commensal-derived colonization resistance may be more specific to the pathogen, making it more challenging to overcome. Consequently, the pathogen has evolved well-coordinated mechanisms that sense and utilize the anti-colonization factors to modulate events that promote its survival and colonization in the gut. This review is aimed at discussing how V. cholerae interacts and resists both host- and microbe-specific colonization resistance mechanisms to cause infection.
Calculus is a branch of mathematics which helps us to study the derivatives and integrals. The classical derivative was convoluted with the strength regulation kind kernel and eventually, this gave upward thrust to new calculus referred to as the quantum calculus. Quantum calculus (named q-calculus) is the study of calculus without limits. In recent decades, the quantum calculus has become a powerful tool in numerous branches of mathematics and physics like q-calculus, particularly q-fractional calculus, q-integral calculus, q-transform analysis. Jackson [1] is the first researcher to define the q-analogue of derivative and integral operator as well as provided its applications. It is imperative to mention that quantum integral inequalities are more practical and informative than their classical counterparts. It has been mainly due to the fact that quantum integral inequalities can describe the hereditary properties of the processes and phenomena under investigation. Historically the subject of quantum calculus can be traced back to Euler and Jacobi, but in recent decades it has experienced a rapid development, see [2,3,4,5,6,7]. As a result, new generalizations of the classical concepts of quantum calculus have been initiated and reviewed in many literature. Tariboon and Ntouyas [8,9] proposed the quantum calculus concepts on finite intervals and obtained several q-analogues of classical mathematical objects. This inspired other researchers to establish numerous novel results concerning quantum analogs of classical mathematical results. Noor et al. [10] provided the q-analogues of many known inequalities via the first order q-differentiable convex functions. Humaira et al. [11] obtained a new generalized q1q2-integral identity and established several new q1q2-analogues of first order q1q2-differentiable convex functions over finite rectangles. Wu et al. [12] gave a new corrected q-analogue of the classical Simpson inequality for preinvex function. Deng et al. [13] obtained a new generalized q-integral identity and found several new q-analogues for twice q-differentiable generalized (s,m)-preinvex functions.
The theory of post quantum calculus denoted by (p,q)-calculus is a natural generalization of the quantum calculus denoted by q-calculus, which has been studied extensively. Recently, Tunç and Göv [14] studied the concept of (p,q)-calculus on the intervals [χ1,χ2]⊆R, defined the (p,q)-derivative and (p,q)-integral and established their basic properties and integral inequalities. Integral inequalities [15,16,17,18,19,20,21,22,23,24,25,26,27] play an important role in understanding the universe, and they can be used to find the uniqueness and existence of the linear and nonlinear differential equations. While convexity is an indispensable tool in the study of inequality theory [28,29,30,31,32,33,34,35,36,37,38].
It is well-known that the Hermite-Hadamard inequality [39,40,41,42,43] is one of the most important inequalities in the convex functions theory, which can be stated as follows.
Let K:I⊂R→R be a convex function. Then the double inequality
K(χ1+χ22)≤1χ2−χ1∫χ2χ1K(t)dt≤K(χ1)+K(χ2)2 | (1.1) |
holds for all χ1,χ2∈I with χ1≠χ2.
As the generalization and refinement of the Hermite-Hadamard inequality (1.1), the Ostrowski inequality [44] can be stated in Theorem 1.1.
Theorem 1.1. Let K:[χ1,χ2]⊆R→R be continuous on [χ1,χ2] and differentiable on (χ1,χ2) such that |K′(τ)|≤M for all τ∈(χ1,χ2). Then the inequality
|K(ϱ)−1χ2−χ1∫χ2χ1K(τ)dτ|≤[14+(ϱ−χ1+χ22)2(χ2−χ1)2](χ2−χ1)M | (1.2) |
holds for all ϱ∈[χ1,χ2] with the best possible constant 14.
Inequality (1.2) can be rewritten in its equivalent form
|K(ϱ)−1χ2−χ1∫χ2χ1K(τ)dτ|≤Mχ2−χ1[(ϱ−χ1)2+(χ2−ϱ)22]. |
Recently, the generalizations, variants and applications of the Ostrowski inequality have attracted the attention of many researchers.
Now, we discuss some connections between the class of convex functions and s-type convex functions.
Definition 1.2. Let s∈[0,1]. Then the function K:I→R is said to be a s-type convex function on I if the inequality
K(χϱ+(1−χ)ρ)≤[1−s(1−χ)]K(ϱ)+[1−sχ]K(ρ) | (1.3) |
holds for all ϱ,ρ∈I and χ∈[0,1].
Remark 1. Definition 1.2 leads to the conclusion that
(1) If we choose s=1, then we get classical convex function.
(2) If we take s=0, then we have the definition of P-function [45].
(3) If K is s-type convex function on I, then the range of K is [0,∞).
Indeed, let ϱ∈I. Then it follows from the s-type convexity of K that
K(χη1+(1−χ)ϱ)≤[1−s(1−χ)]K(η1)+[1−sχ]K(ϱ) |
for all η1∈I and χ∈[0,1]. If we choose χ=1, then we get
K(η1)≤K(η1)+(1−s)K(ϱ) |
⇒(1−s)K(ρ)≥0⇒K(ϱ)≥0 |
for all ϱ∈I.
Proposition 1. Every non-negative convex function is also s-type convex function.
Proof. The proof is clearly due to
s(1−χ)≤(1−χ),χ≥sχ |
for all χ∈[0,1] and s∈[0,1].
Next, We recall the definition of n-polynomial s-type convex function.
Definition 1.3. Let s∈[0,1] and n∈N. Then the function K:I→R is said to be a n-polynomial s-type convex function on I if the inequality
K(χϱ+(1−χ)ρ)≤1nn∑i=1[1−(s(1−χ))i]K(ϱ)+1nn∑i=1[1−(sχ)i]K(ρ) | (1.4) |
holds for ϱ,ρ∈I and χ∈[0,1].
Remark 2. From Definition 1.3, one has
(1) If we choose s=0, then we get the P-function [45].
(2) If we take s=1, then we obtain the Definition given in [46].
(3) If we choose n=1, then we obtain Definition 1.2.
(4) If K is a n-polynomial s-type convex function, then the range of K is [0,∞).
Remark 3. Every non-negative n-polynomial convex function is also n-polynomial s-type convex function. Indeed
1nn∑i=1[1−(s(1−χ))i]≥1nn∑i=1[1−(1−χ)i] |
and
1nn∑i=1[1−χi]≤1nn∑i=1[1−(sχ)i] |
for all χ∈[0,1],n∈N and s∈[0,1].
In what follows, we suppose that χ1,χ2,χ3,χ4∈R with χ1<χ2 and χ3<χ4, 0<qk<pk≤1(k=1,2) are constants, N=[χ1,χ2]×[χ3,χ4]⊆R2 is a rectangle and N∘=(χ1,χ2)×(χ3,χ4) is the interior of N.
Definition 1.4. Let K:N→R be a continuous function. Then the partial (p1,q1)-, (p2,q2)- and (p1p2,q1q2)-derivatives at (z,w)∈N are respectively defined by
χ1∂p1,q1K(z,w)χ1∂p1,q1z=K(p1z+(1−p1)χ1,w)−K(q1z+(1−q1)χ1,w)(p1−q1)(z−χ1)(z≠χ1),χ3∂p2,q2K(z,w)χ3∂p2,q2w=K(z,p2w+(1−p2)χ3)−K(z,q2w+(1−q2)χ3)(p2−q2)(w−χ3)(w≠χ3),χ1,χ3∂2p1p2,q1q2K(z,w)χ1∂p1,q1zχ3∂p2,q2w=1(p1−q1)(p2−q2)(z−χ1)(w−χ3)[K(q1z+(1−q1)χ1,q2w+(1−q2)χ3)−K(q1z+(1−q1)χ1,p2w+(1−p2)χ3)−K(p1z+(1−p1)χ1,q2w+(1−q2)χ3)+K(p1z+(1−p1)χ1,p2w+(1−p2)χ3)]. |
Definition 1.5. Let K:N→R be a continuous function. Then the definite (p1p2,q1q2)-integral on N is defined by
∫tχ3∫sχ1K(z,w)χ1dp1,q1zχ3dp2,q2w=(p1−q1)(p2−q2)(s−χ1)(t−χ3)×∞∑m=0∞∑n=0qn1qm2pn+11pm+12K(qn1pn+11s+(1−qn1pn+11)χ1,qm2pm+12t+(1−qm2pm+12)χ3) | (1.5) |
for (s,t)∈N.
Definition 1.6. For any real number n, the (p,q)-analogue is defined by
[n]p,q=pn−qnp−q, |
where 0<q<p≤1 are constants.
In the present paper, we introduce new Definitions 1.7 and 1.8 for (p1p2,q1q2)-differentiable function, and (p,q)χ4χ1,(p,q)χ2χ3 and (p,q)χ2,χ4 integrals for two variables mappings over finite rectangles by using convex set. These new definitions will open new doors for convexity and (p,q)-calculus for two variables functions over the finite rectangles in the plane R2. We drive a key lemma for (p1p2,q1q2)-integral. By making use of new identity, we will obtain estimates of integral inequality whose twice partial (p1p2,q1q2)-derivatives in absolute value at certain powers are n-polynomial s-type convex function. We also discuss some new special cases of the main results. A briefly conclusion is given at the end.
Definition 1.7. Let K:N→R be a continuous function. Then the partial (p1,q1)-, (p2,q2)- and (p1p2,q1q2)-derivatives at (z,w)∈N are respectively defined by
χ2∂p1,q1K(z,w)χ2∂p1,q1z=K(p1z+(1−p1)χ2,w)−K(q1z+(1−q1)χ2,w)(p1−q1)(χ2−z)(χ2≠z),χ4∂p2,q2K(z,w)χ4∂p2,q2w=K(z,p2w+(1−p2)χ4)−K(z,q2w+(1−q2)χ4)(p2−q2)(χ4−w)(χ4≠w),χ4χ1∂2p1p2,q1q2K(z,w)χ1∂p1,q1zχ4∂p2,q2w=1(p1−q1)(p2−q2)(z−χ1)(χ4−w)[K(q1z+(1−q1)χ1,q2w+(1−q2)χ4)−K(q1z+(1−q1)χ1,p2w+(1−p2)χ4)−K(p1z+(1−p1)χ1,q2w+(1−q2)χ4)+K(p1z+(1−p1)χ1,p2w+(1−p2)χ4)](z≠χ1,χ4≠w),χ2χ3∂2p1p2,q1q2K(z,w)χ2∂p1,q1zχ3∂p2,q2w=1(p1−q1)(p2−q2)(χ2−z)(w−χ3)[K(q1z+(1−q1)χ2,q2w+(1−q2)χ3)−K(q1z+(1−q1)χ2,p2w+(1−p2)χ3)−K(p1z+(1−p1)χ2,q2w+(1−q2)χ3)+K(p1z+(1−p1)χ2,p2w+(1−p2)χ3)](χ2≠z,w≠χ3),χ2,χ4∂2p1p2,q1q2K(z,w)χ2∂p1,q1zχ4∂p2,q2w=(p1−q1)(p2−q2)(χ2−z)(χ4−w)[K(q1z+(1−q1)χ2,q2w+(1−q2)χ4)−K(q1z+(1−q1)χ2,p2w+(1−p2)χ4)−K(p1z+(1−p1)χ2,q2w+(1−q2)χ4)+K(p1z+(1−p1)χ2,p2w+(1−p2)χ4)](χ2≠z,χ4≠w). |
Definition 1.8. Let K:N→R be a continuous function. Then the definite (p,q)χ4χ1,(p,q)χ2χ3 and (p,q)χ2,χ4 integrals on [χ1,χ2]×[χ3,χ4] are respectively defined by
χ4∫ts∫χ1K(z,w)χ1dp1,q1zχ3dp2,q2w=(p1−q1)(p2−q2)(s−χ1)(χ4−t)×∞∑m=0∞∑n=0qn1qm2pn+11pm+12K(qn1pn+11s+(1−qn1pn+11)χ1,qm2pm+12t+(1−qm2pm+12)χ4), |
t∫χ3χ2∫sK(z,w)χ2dp1,q1zχ3dp2,q2w(p1−q1)(p2−q2)(χ2−s)(t−χ3)×∞∑m=0∞∑n=0qn1qm2pn+11pm+12K(qn1pn+11s+(1−qn1pn+11)χ2,qm2pm+12t+(1−qm2pm+12)χ3) |
and
χ4∫tχ2∫sK(z,w)χ2dp1,q1zχ4dp2,q2w(p1−q1)(p2−q2)(χ2−s)(χ4−t)×∞∑m=0∞∑n=0qn1qm2pn+11pm+12K(qn1pn+11s+(1−qn1pn+11)χ2,qm2pm+12t+(1−qm2pm+12)χ4) |
for (s,t)∈[χ1,χ2]×[χ3,χ4].
Lemma 2.1. Let K:N→R be a twice partial (p1p2,q1q2)-differentiable function on No such that the partial (p1p2,q1q2)-derivatives χ1,χ3∂2p1p2,q1q2K(z,w)χ1∂p1,q1zχ3∂p2,q2w, χ4χ1∂2p1p2,q1q2K(z,w)χ1∂p1,q1zχ4∂p2,q2w, χ2χ3∂2p1p2,q1q2K(z,w)χ2∂p1,q1zχ3∂p2,q2w and χ2,χ4∂2p1p2,q1q2K(z,w)χ2∂p1,q1zχ4∂p2,q2w are continuous and integrable on N. Then one has the equality
K(ϱ,ρ)−1p1(χ2−χ1)[∫p1ϱ+(1−p1)χ1χ1K(u,ρ)χ1dp1,q1u+∫χ2p1ϱ+(1−p1)χ2K(u,ρ)χ2dp1,q1u]−1p2(χ4−χ3)[∫p2ρ+(1−p2)χ3χ3K(ϱ,v)χ3dp2,q2v+∫χ4p2ρ+(1−p2)χ4K(ϱ,v)χ4dp2,q2v]+A=Δ{(ϱ−χ1)2(ρ−χ3)2∫10∫10zwχ1,χ3∂2p1p2,q1q2K(zϱ+(1−z)χ1,wρ+(1−w)χ3)χ1∂p1,q1zχ3∂p2,q2w0dp1,q1z0dp2,q2w+(ϱ−χ1)2(χ4−ρ)2∫10∫10zwχ4χ1∂2p1p2,q1q2K(zϱ+(1−z)χ1,wρ+(1−w)χ4)χ1∂p1,q1zχ4∂p2,q2w0dp1,q1z0dp2,q2w+(χ2−ϱ)2(ρ−χ3)2∫10∫10zwχ2χ3∂2p1p2,q1q2K(zϱ+(1−z)χ2,wρ+(1−w)χ3)χ3∂p1,q1zχ2∂p2,q2w0dp1,q1z0dp2,q2w+(χ2−ϱ)2(χ4−ρ)2∫10∫10zwχ2,χ4∂2p1p2,q1q2K(zϱ+(1−z)χ2,wρ+(1−w)χ4)χ2∂p1,q1zχ4∂p2,q2w0dp1,q1z0dp2,q2w}, | (2.1) |
where
A=1p1p2(χ2−χ1)(χ4−χ3)∫p1ϱ+(1−p1)χ1χ1∫p2ρ+(1−p2)χ3χ3K(u,v)χ1dp1,q1uχ3dp2,q2v+1p1p2(χ2−χ1)(χ4−χ3)∫p1ϱ+(1−p1)χ1χ1∫χ4p2ρ+(1−p2)χ4K(u,v)χ1dp1,q1uχ4dp2,q2v+1p1p2(χ2−χ1)(χ4−χ3)∫χ2p1ϱ+(1−p1)χ2∫p2ρ+(1−p2)χ3χ3K(u,v)χ2dp1,q1uχ3dp2,q2v+1p1p2(χ2−χ1)(χ4−χ3)∫χ2p1ϱ+(1−p1)χ2∫χ4p2ρ+(1−p2)χ4K(u,v)χ2dp1,q1uχ4dp2,q2v |
for all ϱ,ρ∈N and Δ=q1q2(χ2−χ1)(χ4−χ3).
Proof. We consider the integral
∫10∫10zwχ1,χ3∂2p1p2,q1q2K(zϱ+(1−z)χ1,wρ+(1−w)χ3)χ1∂p1,q1zχ3∂p2,q2w0dp1,q1z0dp2,q2w. |
By the definition of partial (p1p2,q1q2)-derivative and definite (p1p2,q1q2)χ1,χ3-integral, we have
∫10∫10zwχ1,χ3∂2p1p2,q1q2K(zϱ+(1−z)χ1,wρ+(1−w)χ3)χ1∂p1,q1zχ3∂p2,q2w0dp1,q1z0dp2,q2w=1(1−q1)(1−q2)(ϱ−χ1)(ρ−χ3)×[∫10∫10K(zq1ϱ+(1−zq1)χ1,wq2ρ+(1−wq2)χ3)0dp1,q1z0dp2,q2w−∫10∫10K(zq1ϱ+(1−zq1)χ1,wp2ρ+(1−wp2)χ3)0dp1,q1z0dp2,q2w−∫10∫10K(zp1ϱ+(1−zp1)χ1,wq2ρ+(1−wq2)χ3)0dp1,q1z0dp2,q2w+∫10∫10K(zp1ϱ+(1−zp1)χ1,wp2ρ+(1−wp2)χ3)0dp1,q1z0dp2,q2w]=1(ϱ−χ1)(ρ−χ3)×[∞∑n=0∞∑m=0qn1qm2pn+11pm+12K(qn+11pn+11ϱ+(1−qn+11pn+11)χ1,qm+12pm+12ρ+(1−qm+12pm+12)χ3)−∞∑n=0∞∑m=0qn1qm2pn+11pm+12K(qn+11pn+11ϱ+(1−qn+11pn+11)χ1,qm2pm2ρ+(1−qm2pm2)χ3)−∞∑n=0∞∑m=0qn1qm2pn+11pm+12K(qn1pn+11ϱ+(1−qn1pn+11)χ1,qm+12pm+12ρ+(1−qm+12pm+12)χ3)+∞∑n=0∞∑m=0qn1qm2pn+11pm+12K(qn1pn1ϱ+(1−qn1pn1)χ1,qm2pm2ρ+(1−qm2pm2)χ3)]=1q1q2(ϱ−χ1)(ρ−χ3)∞∑n=1∞∑m=1qn1qm2pn1pm2K(qn1pn1ϱ+(1−qn1pn1)χ1,qm2pm2ρ+(1−qm2pm2)χ3)−1p2q1(ϱ−χ1)(ρ−χ3)∞∑n=1∞∑m=0qn1qm2pn1pm2K(qn1pn1ϱ+(1−qn1pn1)χ1,qm2pm2ρ+(1−qm2pm2)χ3)−1p1q2(ϱ−χ1)(ρ−χ3)∞∑n=0∞∑m=1qn1qm2pn1pm2K(qn1pn1ϱ+(1−qn1pn1)χ1,qm2pm2ρ+(1−qm2pm2)χ3)+1p1p2(ϱ−χ1)(ρ−χ3)∞∑n=0∞∑m=0qn1qm2pn1pm2K(qn1pn1ϱ+(1−qn1pn1)χ1,qm2pm2ρ+(1−qm2pm2)χ3). | (2.2) |
Note that
1q1q2(ϱ−χ1)(ρ−χ3)∞∑n=1∞∑m=1qn1qm2pn1pm2K(qn1pn1ϱ+(1−qn1pn1)χ1,qm2pm2ρ+(1−qm2pm2)χ3)=−K(ϱ,ρ)q1q2(ϱ−χ1)(ρ−χ3)−1q1q2(ϱ−χ1)(ρ−χ3)∞∑n=0qn1pn1K(qn1pn1ϱ+(1−qn1pn1)χ1,ρ)−1q1q2(ϱ−χ1)(ρ−χ3)∞∑m=0qm2pm2K(ϱ,qm2pm2ρ+(1−qm2pm2)χ3)+1q1q2(ϱ−χ1)(ρ−χ3)×∞∑n=0∞∑m=0qn1qm2pn1pm2K(qn1pn1ϱ+(1−qn1pn1)χ1,qm2pm2ρ+(1−qm2pm2)χ3), | (2.3) |
−1p2q1(ϱ−χ1)(ρ−χ3)∞∑n=1∞∑m=0qn1qm2pn1pm2K(qn1pn1ϱ+(1−qn1pn1)χ1,qm2pm2ρ+(1−qm2pm2)χ3)=1p2q1(ϱ−χ1)(ρ−χ3)∞∑m=0qm2pm2K(ϱ,qm2pm2ρ+(1−qm2pm2)χ3)−1p2q1(ϱ−χ1)(ρ−χ3)×∞∑n=0∞∑m=0qn1qm2pn1pm2K(qn1pn1ϱ+(1−qn1pn1)χ1,qm2pm2ρ+(1−qm2pm2)χ3) | (2.4) |
and
−1p1q2(ϱ−χ1)(ρ−χ3)∞∑n=0∞∑m=1qn1qm2pn1pm2K(qn1pn1ϱ+(1−qn1pn1)χ1,qm2pm2ρ+(1−qm2pm2)χ3)=1p1q2(ϱ−χ1)(ρ−χ3)∞∑n=0qn1pn1K(qn1pn1ϱ+(1−qn1pn1)χ1,ρ)−1p1q2(ϱ−χ1)(ρ−χ3)×∞∑n=0∞∑m=0qn1qm2pn1pm2K(qn1pn1ϱ+(1−qn1pn1)χ1,qm2pm2ρ+(1−qm2pm2)χ3). | (2.5) |
Utilizing (2.3)–(2.5) in (2.2), we get
∫10∫10zwχ1,χ3∂2p1p2,q1q2χ1∂p1,q1zχ3∂p2,q2wK(zϱ+(1−z)χ1,wρ+(1−w)χ3)0dp1,q1z0dp2,q2w=−K(ϱ,ρ)q1q2(ϱ−χ1)(ρ−χ3)−(p2−q2)(ρ−χ3)p2q1q2(ϱ−χ1)(ρ−χ3)2∞∑m=0qm2pm2K(ϱ,qm2pm2ρ+(1−qm2pm2)χ3)−(p1−q1)(ϱ−χ1)p1q1q2(ϱ−χ1)2(ρ−χ3)∞∑n=0qn1pm2K(qn1pn1ϱ+(1−qn1pn1)χ1,ρ)+(p1−q1)(p2−q2)(ϱ−χ1)(ρ−χ3)p1p2q1q2(ϱ−χ1)2(ρ−χ3)2∞∑n=0∞∑m=0qn1qm2pn1pm2K(qn1pn1ϱ+(1−qn1pn1)χ1,qm2pm2ρ+(1−qm2pm2)χ3) |
and
∫10∫10zwχ1,χ3∂2p1p2,q1q2χ1∂p1,q1zχ3∂p2,q2wK(zϱ+(1−z)χ1,wρ+(1−w)χ3)0dp1,q1z0dp2,q2w=−K(ϱ,ρ)q1q2(ϱ−χ1)(ρ−χ3)−1p2q1q2(ϱ−χ1)(ρ−χ3)2∫p2ρ+(1−p2)χ3χ3K(ϱ,v)0dp2,q2v−1p1q1q2(ϱ−χ1)2(ρ−χ3)∫p1ϱ+(1−p1)χ1χ1K(u,ρ)0dp1,q1u+1p1p2q1q2(ϱ−χ1)2(ρ−χ3)2∫p1ϱ+(1−p1)χ1χ1∫p2ρ+(1−p2)χ3χ3K(u,v)0dp1,q1u0dp2,q2v. | (2.6) |
Multiplying both sides of equality (2.6) by Δ(ϱ−χ1)2(ρ−χ3)2 leads to
Δ(ϱ−χ1)2(ρ−χ3)2∫10∫10zwχ1,χ3∂2p1p2,q1q2χ1∂p1,q1zχ3∂p2,q2wK(zϱ+(1−z)χ1,wρ+(1−w)χ3)0dp1,q1z0dp2,q2w=−(ϱ−χ1)(ρ−χ3)(χ2−χ1)(χ4−χ3)K(ϱ,ρ)−ϱ−χ1p2(χ2−χ1)(χ4−χ3)∫p2ρ+(1−p2)χ3χ3K(ϱ,v)0dp2,q2v−ρ−χ3p1(χ2−χ1)(χ4−χ3))∫p1ϱ+(1−p1)χ1χ1K(u,ρ)0dp1,q1u+1p1p2(χ2−χ1)(χ4−χ3)∫p1ϱ+(1−p1)χ1χ1∫p2ρ+(1−p2)χ3χ3K(u,v)0dp1,q1u0dp2,q2v. | (2.7) |
Similarly, calculating the remaining integrals and by using definition 1.8 we get
Δ(ϱ−χ1)2(χ4−ρ)2∫10∫10zwχ4χ1∂2p1p2,q1q2χ1∂p1,q1zχ4∂p2,q2wK(zϱ+(1−z)χ1,wρ+(1−w)χ4)0dp1,q1z0dp2,q2w=−(ϱ−χ1)(χ4−ρ)(χ2−χ1)(χ4−χ3)K(ϱ,ρ)−ϱ−χ1p2(χ2−χ1)(χ4−χ3)∫χ4p2ρ+(1−p2)χ4K(ϱ,v)χ4dp2,q2v−χ4−ρp1(χ2−χ1)(χ4−χ3))∫p1ϱ+(1−p1)χ1χ1K(u,ρ)χ1dp1,q1u+1p1p2(χ2−χ1)(χ4−χ3)∫p1ϱ+(1−p1)χ1χ1∫χ4p2ρ+(1−p2)χ4K(u,v)χ1dp1,q1uχ4dp2,q2v, | (2.8) |
Δ(χ2−ϱ)2(ρ−χ3)2∫10∫10zwχ2χ3∂2p1p2,q1q2χ2∂p1,q1zχ3∂p2,q2wK(zϱ+(1−z)χ1,wρ+(1−w)χ3)0dp1,q1z0dp2,q2w=−(χ2−ϱ)(ρ−χ3)(χ2−χ1)(χ4−χ3)K(ϱ,ρ)−χ2−ϱp2(χ2−χ1)(χ4−χ3)∫p2ρ+(1−p2)χ3χ3K(ϱ,v)χ3dp2,q2v−ρ−χ3p1(χ2−χ1)(χ4−χ3))∫χ2p1ϱ+(1−p1)χ2K(u,ρ)χ2dp1,q1u+1p1p2(χ2−χ1)(χ4−χ3)∫p1ϱ+(1−p1)χ1χ2∫χ2p2ρ+(1−p2)χ2K(u,v)χ2dp1,q1uχ3dp2,q2v, | (2.9) |
Δ(χ2−ϱ)2(χ4−ρ)2∫10∫10zwχ2,χ4∂2p1p2,q1q2χ2∂p1,q1zχ4∂p2,q2wK(zϱ+(1−z)χ2,wρ+(1−w)χ4)0dp1,q1z0dp2,q2w=−(χ2−ϱ)(χ4−ρ)(χ2−χ1)(χ4−χ3)K(ϱ,ρ)−χ2−ϱp2(χ2−χ1)(χ4−χ3)∫χ4p2ρ+(1−p2)χ4K(ϱ,v)χ4dp2,q2v−χ4−ρp1(χ2−χ1)(χ4−χ3))∫χ2p1ϱ+(1−p1)χ2K(u,ρ)χ2dp1,q1u+1p1p2(χ2−χ1)(χ4−χ3)∫χ4p1ϱ+(1−p1)χ2∫χ4p2ρ+(1−p2)χ4K(u,v)χ2dp1,q1uχ4dp2,q2v. | (2.10) |
From (2.7)–(2.10) and (2.1), we derive the desired result of Lemma 2.1.
Remark 4. Taking pk=1 for k=1,2 we get
K(ϱ,ρ)−1(χ2−χ1)[∫ϱχ1K(u,ρ) χ1dq1u+∫χ2ϱK(u,ρ) χ2dq1u]−1(χ4−χ3)[∫ρχ3K(ϱ,v) χ3dq2v+∫χ4ρK(ϱ,v) χ4dq2v]+W=Δ{(ϱ−χ1)2(ρ−χ3)2∫10∫10zw χ1,χ3∂2q1,q2K(zϱ+(1−z)χ1,wρ+(1−w)χ3) χ1∂q1z χ3∂q2w 0dq1z 0dq2w+(ϱ−χ1)2(χ4−ρ)2∫10∫10zw χ4χ1∂2q1,q2K(zϱ+(1−z)χ1,wρ+(1−w)χ4) χ1∂q1z χ4∂q2w 0dq1z 0dq2w+(χ2−ϱ)2(ρ−χ3)2∫10∫10zw χ2χ3∂2q1,q2K(zϱ+(1−z)χ2,wρ+(1−w)χ3) χ3∂q1z χ2∂q2w 0dq1z 0dq2w+(χ2−ϱ)2(χ4−ρ)2∫10∫10zw χ2,χ4∂2q1,q2K(zϱ+(1−z)χ2,wρ+(1−w)χ4) χ2∂q1z χ4∂q2w 0dq1z 0dq2w}, | (2.11) |
where
W=1(χ2−χ1)(χ4−χ3)∫ϱχ1∫ρχ3K(u,v)χ1dq1uχ3dq2v+1(χ2−χ1)(χ4−χ3)∫ϱχ1∫χ4ρK(u,v)χ1dq1uχ4dq2v+1(χ2−χ1)(χ4−χ3)∫χ2ϱ∫ρχ3K(u,v)χ2dq1uχ3dq2v+1(χ2−χ1)(χ4−χ3)∫χ2ϱ∫χ4ρK(u,v)χ2dq1uχ4dq2v. |
In this section, we introduce (p1p2,q1q2)-Ostrowski inequalities by using n-polynomial s-type convex function on the co-ordinates.
Theorem 3.1. Suppose that n∈N, s∈[0,1] and all the assumptions of Lemma 2.1 are true. If |χ1,χ3∂2p1p2,q1q2K(z,w)χ1∂p1,q1zχ3∂p2,q2w|τ2, |χ4χ1∂2p1p2,q1q2K(z,w)χ1∂p1,q1zχ4∂p2,q2w|τ2, |χ2χ3∂2p1p2,q1q2K(z,w)χ2∂p1,q1zχ3∂p2,q2w|τ2 and |χ2,χ4∂2p1p2,q1q2K(z,w)χ2∂p1,q1zχ4∂p2,q2w|τ2 are n-polynomial s-type convex functions on the co-ordinates on N for τ1,τ2>1 with 1τ1+1τ2=1 and |χ1,χ3∂2p1p2,q1q2K(ϱ,ρ)χ1∂p1,q1zχ3∂p2,q2w|≤M, |χ4χ1∂2p1p2,q1q2K(z,w)χ1∂p1,q1zχ4∂p2,q2w|≤M, |χ2χ3∂2p1p2,q1q2K(z,w)χ2∂p1,q1zχ3∂p2,q2w|≤M, |χ2,χ4∂2p1p2,q1q2K(z,w)χ2∂p1,q1zχ4∂p2,q2w|≤M, ϱ,ρ∈N, then the following inequality holds
|K(ϱ,ρ)−1p1(χ2−χ1)[∫p1ϱ+(1−p1)χ1χ1K(u,ρ)χ1dp1,q1u+∫χ2p1ϱ+(1−p1)χ2K(u,ρ)χ2dp1,q1u]−1p2(χ4−χ3)[∫p2ρ+(1−p2)χ3χ3K(ϱ,v)χ3dp2,q2v+∫χ4p2ρ+(1−p2)χ4K(ϱ,v)χ4dp2,q2v]+A|≤ΔMτ2√(Cp1,q1+Dp1,q1)(Cp2,q2+Dp2,q2)[(ϱ−χ1)2+(χ2−ϱ)2][(ρ−χ3)2+(χ4−ρ)2]τ1√[1+τ1]p1,q1[1+τ1]p2,q2, | (3.1) |
where
Cpk,qk=1−(pk−qk)nn∑i=1∞∑e=0siqekpe+1k(1−qekpe+1k)i,Dpk,qk=1−1nn∑i=1si(pk−qkpi+1k−qi+1k) |
for k=1,2 and Δ,A are defined in Lemma 2.1.
Proof. Taking absolute value on both sides of (2.1), by applying Hölder inequality for double integrals and utilizing the fact that |∂2p1p2,q1q2K∂p1,q1z∂p2,q2w|τ2 is n-polynomial s-type convex on co-ordinates, we get the following inequality
|K(ϱ,ρ)−1p1(χ2−χ1)[∫p1ϱ+(1−p1)χ1χ1K(u,ρ)χ1dp1,q1u+∫χ2p1ϱ+(1−p1)χ2K(u,ρ)χ2dp1,q1u]−1p2(χ4−χ3)[∫p2ρ+(1−p2)χ3χ3K(ϱ,v)χ3dp2,q2v+∫χ4p2ρ+(1−p2)χ4K(ϱ,v)χ4dp2,q2v]+A|≤Δ(∫10∫10zτ1wτ10dp1,q1z0dp2,q2w)1τ1×{(ϱ−χ1)2(ρ−χ3)2(∫10∫10|χ1,χ3∂2p1p2,q1q2K(zϱ+(1−z)χ1,wρ+(1−w)χ3)χ1∂p1,q1zχ3∂p2,q2w|τ20dp1,q1z0dp2,q2w)1τ2 |
+(ϱ−χ1)2(χ4−ρ)2(∫10∫10|χ4χ1∂2p1p2,q1q2K(zϱ+(1−z)χ1,wρ+(1−w)χ4)χ1∂p1,q1zχ4∂p2,q2w|τ20dp1,q1z0dp2,q2w)1τ2+(χ2−ϱ)2(ρ−χ3)2(∫10∫10|χ2χ3∂2p1p2,q1q2K(zϱ+(1−z)χ2,wρ+(1−w)χ3)χ2∂p1,q1zχ3∂p2,q2w|τ20dp1,q1z0dp2,q2w)1τ2+(χ2−ϱ)2(χ4−ρ)2(∫10∫10|χ2,χ4∂2p1p2,q1q2K(zϱ+(1−z)χ2,wρ+(1−w)χ4)χ2∂p1,q1zχ4∂p2,q2w|τ20dp1,q1z0dp2,q2w)1τ2}. |
Considering first integral
∫10∫10|χ1,χ3∂2p1p2,q1q2K(zϱ+(1−z)χ1,wρ+(1−w)χ3)χ1∂p1,q1zχ3∂p2,q2w|τ20dp1,q1z0dp2,q2w≤∫10{∫10[1n∑ni=1[1−(s(1−z))i]|χ1,χ3∂2p1p2,q1q2K(ϱ,wρ+(1−w)χ3)χ1∂p1,q1zχ3∂p2,q2w|τ2+1n∑ni=1[1−(sz)i]|χ1,χ3∂2p1p2,q1q2K(χ1,wρ+(1−w)χ3)χ1∂p1,q1zχ1∂p2,q2w|τ2]0dp1,q1z}0dp2,q2w. | (3.2) |
Computing the (p1,q1)-integral on the right-hand side of (3.2), we have
≤∫10[1n∑ni=1[1−(s(1−z))i]|χ1,χ3∂2p1p2,q1q2K(ϱ,wρ+(1−w)χ3)χ1∂p1,q1zχ3∂p2,q2w|τ2+1n∑ni=1[1−(sz)i]|χ1,χ3∂2p1p2,q1q2K(χ1,wρ+(1−w)χ3)χ1∂p1,q1zχ1∂p2,q2w|τ2]0dp1,q1z. |
In view of the Definitions 1.4 for k=1,2, we get
Cpk,qk=1nn∑i=1∫10[1−(s(1−z))i]0dpk,qkz=1−(pk−qk)nn∑i=1∞∑e=0siqekpe+1k(1−qekpe+1k)i,Dpk,qk=1nn∑i=1∫10[1−(sz)i]0dpk,qkz=1−1nn∑i=1si(pk−qkpi+1k−qi+1k). |
Putting the above calculations into (3.2), we obtain
≤∫10[Cp1,q1|χ1,χ3∂2p1p2,q1q2K(ϱ,wρ+(1−w)χ3)χ1∂p1,q1zχ3∂p2,q2w|τ2+Dp1,q1|χ1,χ3∂2p1p2,q1q2K(χ1,wρ+(1−w)χ3)χ1∂p1,q1zχ3∂p2,q2w|τ2]0dp2,q2w. | (3.3) |
Similarly, by computing the (p2,q2)-integral, utilizing the fact |χ1,χ3∂2p1p2,q1q2K(ϱ,ρ)χ1∂p1,q1zχ3∂p2,q2w|≤M,ϱ,ρ∈N on the right-hand side of (3.3), we have
∫10∫10|χ1,χ3∂2p1p2,q1q2K(zϱ+(1−w)χ1,wρ+(1−w)χ3)χ1∂p1,q1zχ3∂p2,q2w|τ20dp1,q1z0dp2,q2w≤Mτ2(Cp1,q1+Dp1,q1)(Cp2,q2+Dp2,q2). | (3.4) |
Analogously, we get
∫10∫10|χ4χ1∂2p1p2,q1q2K(zϱ+(1−w)χ1,χ4+wρ+(1−w)χ4)χ1∂p1,q1zχ4∂p2,q2w|τ20dp1,q1z0dp2,q2w≤Mτ2(Cp1,q1+Dp1,q1)(Cp2,q2+Dp2,q2) | (3.5) |
∫10∫10|χ2χ3∂2p1p2,q1q2K(zϱ+(1−z)χ2,wρ+(1−w)χ3)χ2∂p1,q1zχ3∂p2,q2w|τ20dp1,q1z0dp2,q2w≤Mτ2(Cp1,q1+Dp1,q1)(Cp2,q2+Dp2,q2) | (3.6) |
and
∫10∫10|χ2,χ4∂2p1p2,q1q2K(zϱ+(1−z)χ2,χ4+wρ+(1−w)χ4)χ2∂p1,q1zχ4∂p2,q2w|τ20dp1,q1z0dp2,q2w≤Mτ2(Cp1,q1+Dp1,q1)(Cp2,q2+Dp2,q2). | (3.7) |
Now by making use of the inequalities (3.4)–(3.7) and using the fact that
∫10∫10zτ1wτ10dp1,q1z0dp2,q2w=1[1+τ1]p1,q1[1+τ1]p2,q2, |
we get the desired inequality (3.1). This completes the proof.
Corollary 1. I. Taking pk=1 for k=1,2 in Theorem 3.1, we get
|K(ϱ,ρ)−1(χ2−χ1)[∫ϱχ1K(u,ρ)χ1dq1u+∫χ2ϱK(u,ρ)χ2dq1u]−1(χ4−χ3)[∫ρχ3K(ϱ,v)χ3dq2v+∫χ4ρK(ϱ,v)χ4dq2v]+W|≤ΔMτ2√(Cq1+Dq1)(Cq2+Dq2)[(ϱ−χ1)2+(χ2−ϱ)2][(ρ−χ3)2+(χ4−ρ)2]τ1√[1+τ1]q1[1+τ1]q2, |
where
Cqk=1−(1−qk)nn∑i=1∞∑e=0siqek(1−qek)i,Dqk=1−1nn∑i=1si(1−qk1−qi+1k) |
and Δ,W are defined in Remark 4.
II. Taking qk→1− for k=1,2 in part I, we get
|K(ϱ,ρ)+1(χ2−χ1)(χ4−χ3)∫χ2χ1∫χ4χ3K(u,v)dvdu−Q|≤Mτ2√(2n∑ni=1(i+1−sii+1))2τ1√(1+τ1)2[(ϱ−χ1)2+(χ2−ϱ)2χ2−χ1][(ρ−χ3)2+(χ4−ρ)2χ4−χ3], |
where
Q=1χ2−χ1∫χ2χ1K(u,ρ)du+1χ4−χ3∫χ4χ3K(ϱ,v)dv. |
Remark 5. Taking n=s=1 in part II of Corollary 1, we obtain Theorem 4 of [47].
Theorem 3.2. Suppose that n∈N, s∈[0,1] and all the assumptions of Lemma 2.1 holds. If |χ1,χ3∂2p1p2,q1q2K(z,w)χ1∂p1,q1zχ3∂p2,q2w|τ, |χ4χ1∂2p1p2,q1q2K(z,w)χ1∂p1,q1zχ4∂p2,q2w|τ, |χ2χ3∂2p1p2,q1q2K(z,w)χ2∂p1,q1zχ3∂p2,q2w|τ and |χ2,χ4∂2p1p2,q1q2K(z,w)χ2∂p1,q1zχ4∂p2,q2w|τ are n-polynomial s-type convex functions on the co-ordinates on N for τ≥1, and |χ1,χ3∂2p1p2,q1q2K(ϱ,ρ)χ1∂p1,q1zχ3∂p2,q2w|≤M, |χ4χ1∂2p1p2,q1q2K(z,w)χ1∂p1,q1zχ4∂p2,q2w|≤M, |χ2χ3∂2p1p2,q1q2K(z,w)χ2∂p1,q1zχ3∂p2,q2w|≤M, |χ2,χ4∂2p1p2,q1q2K(z,w)χ2∂p1,q1zχ4∂p2,q2w|≤M, ϱ,ρ∈N, then the following inequality holds
|K(ϱ,ρ)−1p1(χ2−χ1)[∫p1ϱ+(1−p1)χ1χ1K(u,ρ)χ1dp1,q1u+∫χ2p1ϱ+(1−p1)χ2K(u,ρ)χ2dp1,q1u]−1p2(χ4−χ3)[∫p2ρ+(1−p2)χ3χ3K(ϱ,v)χ3dp2,q2v+∫χ4p2ρ+(1−p2)χ4K(ϱ,v)χ4dp2,q2v]+A|≤ΔMτ√(Ap1,q1+Bp1,q1)(Ap2,q2+Bp2,q2)[(ϱ−χ1)2+(χ2−ϱ)2][(ρ−χ3)2+(χ4−ρ)2][(p1+q1)(p2+q2)]1−1τ, | (3.8) |
where
Apk,qk=1pk+qk−(pk−qk)nn∑i=1∞∑e=0siq2ekp2e+2k(1−qekpe+1k)i,Bpk,qk=1pk+qk−1nn∑i=1si(pk−qkpi+2k−qi+2k) |
for k=1,2 and Δ,A are defined in Lemma 2.1.
Proof. Taking absolute value on both sides of (2.1), by applying power mean inequality for double integrals, we get the following inequality
|K(ϱ,ρ)−1p1(χ2−χ1)[∫p1ϱ+(1−p1)χ1χ1K(u,ρ)0dp1,q1u+∫p1ϱ+(1−p1)χ2χ2K(u,ρ)0dp1,q1u]−1p2(χ4−χ3)[∫p2ρ+(1−p2)χ3χ3K(ϱ,v)0dp2,q2v+∫p2ρ+(1−p2)χ4χ4K(ϱ,v)0dp2,q2v]+A|≤Δ(∫10∫10zw0dp1,q1z0dp2,q2w)1−1τ×{(ϱ−χ1)2(ρ−χ3)2(∫10∫10zw|χ1,χ3∂2p1p2,q1q2K(zϱ+(1−z)χ1,wρ+(1−w)χ3)χ1∂p1,q1zχ3∂p2,q2w|τ0dp1,q1z0dp2,q2w)1τ |
+(ϱ−χ1)2(χ4−ρ)2(∫10∫10zw|χ4χ1∂2p1p2,q1q2K(zϱ+(1−z)χ1,wρ+(1−w)χ4)χ1∂p1,q1zχ4∂p2,q2w|τ0dp1,q1z0dp2,q2w)1τ+(χ2−ϱ)2(ρ−χ3)2(∫10∫10zw|χ2χ3∂2p1p2,q1q2K(zϱ+(1−z)χ2,wρ+(1−w)χ3)χ2∂p1,q1zχ3∂p2,q2w|τ0dp1,q1z0dp2,q2w)1τ+(χ2−ϱ)2(χ4−ρ)2(∫10∫10zw|χ2,χ4∂2p1p2,q1q2K(zϱ+(1−z)χ2,wρ+(1−w)χ4)χ2∂p1,q1zχ4∂p2,q2w|τ0dp1,q1z0dp2,q2w)1τ}. |
Considering first integral
∫10∫10zw|χ1,χ3∂2p1p2,q1q2K(zϱ+(1−z)χ1,wρ+(1−w)χ3)χ1∂p1,q1zχ3∂p2,q2w|τ0dp1,q1z0dp2,q2w≤∫10w{∫10z[1n∑ni=1[1−(s(1−z))i]|χ1,χ3∂2p1p2,q1q2K(ϱ,wρ+(1−w)χ3)χ1∂p1,q1zχ3∂p2,q2w|τ+1n∑ni=1[1−(sz)i]|χ1,χ3∂2p1p2,q1q2K(χ1,wρ+(1−w)χ3)χ1∂p1,q1zχ3∂p2,q2w|τ]0dp1,q1z}0dp2,q2w. | (3.9) |
Computing the (p1,q1)-integral on the right-hand side of (3.9), we have
≤∫10z[1n∑ni=1[1−(s(1−z))i]|χ1,χ3∂2p1p2,q1q2K(ϱ,wρ+(1−w)χ3)χ1∂p1,q1zχ3∂p2,q2w|τ+1n∑ni=1[1−(sz)i]|χ1,χ3∂2p1p2,q1q2K(χ1,wρ+(1−w)χ3)χ1∂p1,q1zχ3∂p2,q2w|τ]0dp1,q1z. |
In view of the Definitions 1.5 fpr k=1,2, we get
Apk,qk=1nn∑i=1∫10z[1−(s(1−z))i]0dpk,qkz=1pk+qk−(pk−qk)nn∑i=1∞∑e=0siq2ekp2e+2k(1−qekpe+1k)i,Bpk,qk=1nn∑i=1∫10z[1−(sz)i]0dpk,qkz=1pk+qk−1nn∑i=1si(pk−qkpi+2k−qi+2k). |
Putting the above calculations into (3.9), we obtain
≤∫10w[Ap1,q1|χ1,χ3∂2p1p2,q1q2K(ϱ,wρ+(1−w)χ3)χ1∂p1,q1zχ3∂p2,q2w|τ+Bp1,q1|χ1,χ3∂2p1p2,q1q2K(χ1,wρ+(1−w)χ3)χ1∂p1,q1zχ3∂p2,q2w|τ]0dp2,q2w. | (3.10) |
Similarly, by computing the (p2,q2)-integral, utilizing the fact |χ1,χ3∂2p1p2,q1q2K(ϱ,ρ)χ1∂p1,q1zχ3∂p2,q2w|≤M,ϱ,ρ∈N on the right-hand side of (3.10), we have
∫10∫10zw|χ1,χ3∂2p1p2,q1q2K(zϱ+(1−w)χ1,wρ+(1−w)χ3)χ1∂p1,q1zχ3∂p2,q2w|τ0dp1,q1z0dp2,q2w≤Mτ(Ap1,q1+Bp1,q1)(Ap2,q2+Bp2,q2). | (3.11) |
Analogously, we get
∫10∫10zw|χ4χ1∂2p1p2,q1q2K(zϱ+(1−w)χ1,χ4+wρ+(1−w)χ4)χ1∂p1,q1zχ4∂p2,q2w|τ0dp1,q1z0dp2,q2w≤Mτ(Ap1,q1+Bp1,q1)(Ap2,q2+Bp2,q2), | (3.12) |
∫10∫10zw|χ2χ3∂2p1p2,q1q2K(zϱ+(1−z)χ2,wρ+(1−w)χ3)χ2∂p1,q1zχ3∂p2,q2w|τ0dp1,q1z0dp2,q2w≤Mτ(Ap1,q1+Bp1,q1)(Ap2,q2+Bp2,q2) | (3.13) |
and
∫10∫10zw|χ2,χ4∂2p1p2,q1q2K(zϱ+(1−z)χ2,χ4+wρ+(1−w)χ4)χ2∂p1,q1zχ4∂p2,q2w|τ0dp1,q1z0dp2,q2w≤Mτ(Ap1,q1+Bp1,q1)(Ap2,q2+Bp2,q2). | (3.14) |
Now by making use of the inequalities (3.11)–(3.14) and the fact that
∫10∫10zw0dp1,q1z0dp2,q2w=1(p1+q1)(p2+q2), |
we get the desired inequality (3.8). This completes the proof.
Corollary 2. I. Taking τ=1 in Theorem 3.2, we get
|K(ϱ,ρ)−1p1(χ2−χ1)[∫p1ϱ+(1−p1)χ1χ1K(u,ρ)χ1dp1,q1u+∫χ2p1ϱ+(1−p1)χ2K(u,ρ)χ2dp1,q1u]−1p2(χ4−χ3)[∫p2ρ+(1−p2)χ3χ3K(ϱ,v)χ3dp2,q2v+∫χ4p2ρ+(1−p2)χ4K(ϱ,v)χ4dp2,q2v]+A|≤ΔM(Ap1,q1+Bp1,q1)(Ap2,q2+Bp2,q2)[(ϱ−χ1)2+(χ2−ϱ)2][(ρ−χ3)2+(χ4−ρ)2]. |
II. Taking pk=1 for k=1,2 in Theorem 3.2, we obtain
|K(ϱ,ρ)−1(χ2−χ1)[∫ϱχ1K(u,ρ)χ1dq1u+∫χ2ϱK(u,ρ)χ2dq1u]−1(χ4−χ3)[∫ρχ3K(ϱ,v)χ3dq2v+∫χ4ρK(ϱ,v)χ4dq2v]+W|≤ΔMτ√(Aq1+Bq1)(Aq2+Bq2)[(1+q1)(1+q2)]1−1τ[(ϱ−χ1)2+(χ2−ϱ)2][(ρ−χ3)2+(χ4−ρ)2], |
where
Aqk=11+qk−1−qknn∑i=1∞∑e=0siq2ek(1−qek)i,Bqk=11+qk−1nn∑i=1si(1−qk1−qi+2k), |
and Δ,W are defined in Remark 4.
III. Taking pk=1 for k=1,2, and qk→1− in part II, we get
|K(ϱ,ρ)+1(χ2−χ1)(χ4−χ3)∫χ2χ1∫χ4χ3K(u,v)dvdu−Q|≤M41τ−1(1nn∑i=1i2+5i+6−6si2(i+1)(i+2))2τ[(ϱ−χ1)2+(χ2−ϱ)2χ2−χ1][(ρ−χ3)2+(χ4−ρ)2χ4−χ3], |
where Q is defined in part II of Corollary 1.
IV. Taking n=1=s in part III, we have the following inequality
|K(ϱ,ρ)+1(χ2−χ1)(χ4−χ3)∫χ2χ1∫χ4χ3K(u,v)dvdu−Q|≤M4[(ϱ−χ1)2+(χ2−ϱ)2χ2−χ1][(ρ−χ3)2+(χ4−ρ)2χ4−χ3], |
where Q is defined in part II of Corollary 1.
Let k∈R∖{−1,0}, and φ1 and φ2 be two distinct positive real numbers. Then the generalized logarithmic mean Lk(φ1,φ2) is defined by
Lk(φ1,φ2)=(φk+12−φk+11(k+1)(φ2−φ1))1k. |
Proposition 2. If m,k>1 and χ1,χ2,χ3,χ4 are positive real numbers such that χ1<χ2 and χ3<χ4, then one has
|ϱm×ρk−ρk(χ2−χ1)[Lmm(ϱ,χ1)+Lmm(χ2,ϱ)]−ϱk(χ4−χ3)[Lkk(ρ,χ3)+Lkk(χ4,ρ)]+1(χ2−χ1)(χ4−χ3)(Lmm(ϱ,χ1)+Lmm(χ2,ϱ))(Lkk( ρ,χ3)+Lkk(χ4,ρ))|≤M (1+τ1)2τ1[(ϱ−χ1)2+(χ2−ϱ)2χ2−χ1][(ρ−χ3)2+(χ4−ρ)2χ4−χ3]. |
Proof. Let K(ϱ,ρ)=ϱm×ρk for m,k>1. Then, we have
∫ϱχ1um×ρkχ1dq1u=ρk[1−q11−qm+11](ϱm+1−χm+11ϱ−χ1), |
∫χ2ϱum×ρkχ2dq1u=ρk[1−q11−qm+11](χm+12−ϱm+1χ2−ϱ), |
∫ρχ3ϱm×vkχ3dq2v=ϱm[1−q21−qk+12](ρk+1−χk+13 ρ−χ3), |
∫χ4ρϱm×vkχ4dq2v=ϱm[1−q21−qk+12](χk+14−ρk+1χ4−ρ), |
∫ϱχ1∫ρχ3um×vkχ1dq1uχ3dq2v=[1−q11−qm+11][1−q21−qk+12](ϱm+1−χm+11ϱ−χ1)(ρk+1−χk+13ρ−χ3), |
∫ϱχ1∫χ4ρum×vkχ1dq1uχ4dq2v=[1−q11−qm+11][1−q21−qk+12](ϱm+1−χm+11ϱ−χ1)(χk+14−ρk+1χ4−ρ), |
∫χ2ϱ∫ρχ3um×vkχ2dq1uχ3dq2v=[1−q11−qm+11][1−q21−qk+12](χm+12−ϱm+1χ2−ϱ)(ρk+1−χk+13ρ−χ3) |
and
∫χ2ϱ∫χ4ρum×vkχ2dq1uχ4dq2v=[1−q11−qm+11][1−q21−qk+12](χm+12−ϱm+1χ2−ϱ)(χk+14−ρk+1χ4−ρ). |
It follows from part I of Corollary 1 that
|K(ϱ,ρ)−ρk(χ2−χ1)[1−q11−qm+11][(ϱm+1−χm+11ϱ−χ1)+(χm+12−ϱm+1χ2−ϱ)]−ϱk(χ4−χ3)[1−q21−qk+12][(ρk+1−χk+13 ρ−χ3)+(χk+14−ρk+1χ4−ρ)]+Z|≤ΔMτ2√(Cq1+Dq1)(Cq2+Dq2)[(ϱ−χ1)2+(χ2−ϱ)2][(ρ−χ3)2+(χ4−ρ)2]τ1√[1+τ1]q1[1+τ1]q2, |
where
Z=1(χ2−χ1)(χ4−χ3)[1−q11−qm+11][1−q21−qk+12][(ϱm+1−χm+11ϱ−χ1)(ρk+1−χk+13ρ−χ3)+(ϱm+1−χm+11ϱ−χ1)(χk+14−ρk+1χ4−ρ)+(χm+12−ϱm+1χ2−ϱ)(ρk+1−χk+13ρ−χ3)+(χm+12−ϱm+1χ2−ϱ)(χk+14−ρk+1χ4−ρ)], |
Cqk=1−(1−qk)nn∑i=1∞∑e=0siqek(1−qek)i,Dqk=1−1nn∑i=1si(1−qk1−qi+1k). |
Remark 6. Applying the same idea as in Proposition 2 and using Theorems 3.1, 3.2 and their corresponding corollaries, and choosing suitable functions, for example K(ϱ,ρ)=ϱm×ρk,m,k>1 and ϱ,ρ>0;K(ϱ,ρ)=1ϱρ,ϱ,ρ>0;K(ϱ,ρ)=eϱ+ρ,ϱ,ρ∈R, and so on, we can obtain other new interesting inequalities for special means. We omit their proofs and the details are left to the interested readers.
In this paper, we have defined several new partial post quantum derivatives and integrals for the functions with two variables, provided some new generalizations in the frame of a new class of convex functions named n-polynomial s-type convex functions, found a new version (p1p2,q1q2)-Ostrowski type inequality via the class of n-polynomial s-type convex functions on co-ordinates, established a twice partial integral identitity involving (p1p2,q1q2)-differentiable functions, and generalized the Ostrowski type inequality. Our results are the generalizations of many previous known results, and our ideas and approach may lead to a lot of follow-up research.
The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 61673169, 11701176, 11871202).
The authors declare that they have no competing interests.
[1] |
Hsiao A, Zhu J (2020) Pathogenicity and virulence regulation of Vibrio cholerae at the interface of host-gut microbiome interactions. Virulence 11: 1582-1599. https://doi.org/10.1080/21505594.2020.1845039 ![]() |
[2] | World Health Organization=Organisation mondiale de la Santé.Weekly epidemiological record. Weekly Epidemiological Record=Relevé épidémiologique hebdomadaire (2018) 93: 489-500. Available from: https://apps.who.int/iris/handle/10665/274654. |
[3] |
Cho JY, Liu R, Macbeth JC, et al. (2021) The interface of Vibrio cholerae and the gut microbiome. Gut Microbes 13: 1937015. https://doi.org/10.1080/19490976.2021.1937015 ![]() |
[4] |
Islam MS, Zaman MH, Islam MS, et al. (2020) Environmental reservoirs of Vibrio cholerae. Vaccine 38: A52-A62. https://doi.org/10.1016/j.vaccine.2019.06.033 ![]() |
[5] |
Kaper JB, Morris JG, Levine MM (1995) Cholera. Clini Microbiol Rev 8: 48-86. https://doi.org/10.1128/CMR.8.1.48 ![]() |
[6] |
Faruque SM, Albert MJ, Mekalanos JJ (1998) Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. MMBR 62: 1301-1314. https://doi.org/10.1128/MMBR.62.4.1301-1314.1998 ![]() |
[7] |
Millet YA, Alvarez D, Ringgaard S, et al. (2014) Insights into Vibrio cholerae intestinal colonization from monitoring fluorescently labeled bacteria. PLoS Pathog 10: e1004405. https://doi.org/10.1371/journal.ppat.1004405 ![]() |
[8] |
Sender R, Fuchs S, Milo R (2016) Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans. Cell 164: 337-340. https://doi.org/10.1016/j.cell.2016.01.013 ![]() |
[9] | Pop M, Paulson JN, Chakraborty S, et al. (2016) Individual-specific changes in the human gut microbiota after challenge with enterotoxigenic Escherichia coli and subsequent ciprofloxacin treatment. BMC Genomics 17. https://doi.org/10.1186/s12864-016-2777-0 |
[10] |
Thelin KH, Taylor RK (1996) Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by Vibrio cholerae O1 El Tor biotype and O139 strains. Infect Immun 64: 2853-2856. https://doi.org/10.1128/iai.64.7.2853-2856.1996 ![]() |
[11] |
Peterson KM, Gellings PS (2018) Multiple intraintestinal signals coordinate the regulation of Vibrio cholerae virulence determinants. Pathog Dis 76. https://doi.org/10.1093/femspd/ftx126 ![]() |
[12] |
Ducarmon QR, Zwittink RD, Hornung B, et al. (2019) Gut microbiota and colonization resistance against bacterial enteric infection. MMBR 83: e00007-19. https://doi.org/10.1128/MMBR.00007-19 ![]() |
[13] |
Sack RB, Miller CE (1969) Progressive changes of Vibrio serotypes in germ-free mice infected with Vibrio cholerae. J Bacteriol 99: 688-695. https://doi.org/10.1128/jb.99.3.688-695.1969 ![]() |
[14] |
Pickard JM, Zeng MY, Caruso R, et al. (2017) Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 279: 70-89. https://doi.org/10.1111/imr.12567 ![]() |
[15] | Wang H, Naseer N, Chen Y, et al. (2017) OxyR2 modulates OxyR1 activity and Vibrio cholerae oxidative stress response. Infect Immun 85: e00929-16. https://doi.org/10.1128/IAI.00929-16 |
[16] |
Wang H, Chen S, Zhang J, et al. (2012) Catalases promote resistance of oxidative stress in Vibrio cholerae. PloSOne 7: e53383. https://doi.org/10.1371/journal.pone.0053383 ![]() |
[17] |
Xia X, Larios-Valencia J, Liu Z, et al. (2017) OxyR-activated expression of Dps is important for Vibrio cholerae oxidative stress resistance and pathogenesis. PloS One 12: e0171201. https://doi.org/10.1371/journal.pone.0171201 ![]() |
[18] |
Wang H, Xing X, Wang J, et al. (2018) Hypermutation-induced in vivo oxidative stress resistance enhances Vibrio cholerae host adaptation. PLoS Pathog 14: e1007413. https://doi.org/10.1371/journal.ppat.1007413 ![]() |
[19] |
Stern AM, Hay AJ, Liu Z, et al. (2012) The NorR regulon is critical for Vibrio cholerae resistance to nitric oxide and sustained colonization of the intestines. mBio 3: e00013-e12. https://doi.org/10.1128/mBio.00013-12 ![]() |
[20] |
Stern AM, Liu B, Bakken LR, et al. (2013) A novel protein protects bacterial iron-dependent metabolism from nitric oxide. J bacterial 195: 4702-4708. https://doi.org/10.1128/JB.00836-13 ![]() |
[21] |
Faruque SM, Biswas K, Udden SM, et al. (2006) Transmissibility of cholera: in vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc Natl Acad Sci USA 103: 6350-6355. https://doi.org/10.1073/pnas.0601277103 ![]() |
[22] |
Sengupta C, Mukherjee O, Chowdhury R (2016) adherence to intestinal cells promotes biofilm formation in Vibrio cholerae. J Infect Dis 214: 1571-1578. https://doi.org/10.1093/infdis/jiw435 ![]() |
[23] | Hofmann AF (1999) Bile acids: The good, the bad, and the ugly. Am Physiol Soc 14: 24-29. https://doi.org/10.1152/physiologyonline.1999.14.1.24 |
[24] |
Ridlon JM, Harris SC, Bhowmik S, et al. (2016) Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7: 22-39. https://doi.org/10.1080/19490976.2015.1127483 ![]() |
[25] |
Song Z, Cai Y, Lao X, et al. (2019) Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome 7: 9. https://doi.org/10.1186/s40168-019-0628-3 ![]() |
[26] |
Wahlström A, Sayin SI, Marschall HU, et al. (2016) intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24: 41-50. https://doi.org/10.1016/j.cmet.2016.05.005 ![]() |
[27] |
Hay AJ, Zhu J (2014) host intestinal signal-promoted biofilm dispersal induces vibrio cholerae colonization. Infect Immun 83: 317-323. https://doi.org/10.1128/IAI.02617-14 ![]() |
[28] |
Lowden MJ, Skorupski K, Pellegrini M, et al. (2010) Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes. Proc Natl Acad Sci 107: 2860-2865. https://doi.org/10.1073/pnas.0915021107 ![]() |
[29] |
Bina XR, Howard MF, Taylor-Mulneix DL, et al. (2018) The Vibrio cholerae RND efflux systems impact virulence factor production and adaptive responses via periplasmic sensor proteins. PLoS Pathog 14: e1006804. https://doi.org/10.1371/journal.ppat.1006804 ![]() |
[30] |
Simonet VC, Baslé A, Klose KE, et al. (2003) The Vibrio cholerae porins OmpU and OmpT have distinct channel properties. J Biol Chem 278: 17539-17545. https://doi.org/10.1074/jbc.M301202200 ![]() |
[31] |
Cerda-Maira FA, Ringelberg CS, Taylor RK (2008) The bile response repressor BreR regulates expression of the Vibrio cholerae breAB efflux system operon. J Bacteriol 190: 7441-7452. https://doi.org/10.1128/JB.00584-08 ![]() |
[32] |
Provenzano D, Klose KE (2000) Altered expression of the ToxR-regulated porins OmpU and OmpT diminishes Vibrio cholerae bile resistance, virulence factor expression, and intestinal colonization. Proc Natl Acad Sci USA 97: 10220-4. https://doi.org/10.1073/pnas.170219997 ![]() |
[33] |
Ante VM, Bina XR, Howard MF, et al. (2015) Vibrio cholerae leuO transcription is positively regulated by ToxR and contributes to bile resistance. J Bacteriol 197: 3499-3510. https://doi.org/10.1128/JB.00419-15 ![]() |
[34] |
Chatterjee A, Chaudhuri S, Saha G, et al. (2004) Effect of bile on the cell surface permeability barrier and efflux system of Vibrio cholerae. J Bacteriology 186: 6809-6814. https://doi.org/10.1128/JB.186.20.6809-6814.2004 ![]() |
[35] |
Depuydt M, Messens J, Collet JF (2011) How proteins form disulfide bonds. Antioxid Redox Signal 15: 49-66. https://doi.org/10.1089/ars.2010.3575 ![]() |
[36] |
Xue Y, Tu F, Shi M, et al. (2016) Redox pathway sensing bile salts activates virulence gene expression in Vibrio cholerae. Mol Microbiol 102: 909-924. https://doi.org/10.1111/mmi.13497 ![]() |
[37] | Hay AJ, Yang M, Xia X, et al. (2017) Calcium enhances bile salt-dependent virulence activation in Vibrio cholerae. Infect Immun 85. https://doi.org/10.1128/IAI.00707-16 |
[38] |
Fengler VH, Boritsch EC, Tutz S, et al. (2012) Disulfide bond formation and ToxR activity in Vibrio cholerae. PloS One 7: e47756. https://doi.org/10.1371/journal.pone.0047756 ![]() |
[39] |
Qin Z, Yang X, Chen G, et al. (2020) Crosstalks between gut microbiota and Vibrio Cholerae. Front Cell Infect Microbiol 10: 582554. https://doi.org/10.3389/fcimb.2020.582554 ![]() |
[40] |
Johansson ME, Larsson JM, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA 108: 4659-4665. https://doi.org/10.1073/pnas.1006451107 ![]() |
[41] |
Desai MS, Seekatz AM, Koropatkin NM, et al. (2016) A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167: 1339-1353.e21. https://doi.org/10.1016/j.cell.2016.10.043 ![]() |
[42] |
Unterweger D, Kitaoka M, Miyata ST, et al. (2012) Constitutive type VI secretion system expression gives Vibrio cholerae intra- and interspecific competitive advantages. PloS One 7: e48320. https://doi.org/10.1371/journal.pone.0048320 ![]() |
[43] |
Miyata ST, Kitaoka M, Brooks TM, et al. (2011) Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect Immunity 79: 2941-2949. https://doi.org/10.1128/IAI.01266-10 ![]() |
[44] |
Fu Y, Waldor MK, Mekalanos JJ (2013) Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe 14: 652-663. https://doi.org/10.1016/j.chom.2013.11.001 ![]() |
[45] |
Zhao W, Caro F, Robins W, et al. (2018) Antagonism toward the intestinal microbiota and its effect on Vibrio cholerae virulence. Science 359: 210-213. https://doi.org/10.1126/science.aap8775 ![]() |
[46] |
Selwal KK, Selwal MK, Yu Z (2021) Mucolytic bacteria: prevalence in various pathological diseases. World J Microbiol Biotechnol 37: 176. https://doi.org/10.1007/s11274-021-03145-9 ![]() |
[47] | Sharmila T, Thomas TA (2018) Pathogenesis of cholera: recent prospectives in rapid detection and prevention of Cholera. Bacterial Pathogenesis and Antibacterial Control . IntechOpen. https://doi.org/10.5772/intechopen.74071 |
[48] |
Wang J, Xing X, Yang X, et al. (2018) Gluconeogenic growth of Vibrio cholerae is important for competing with host gut microbiota. J Med Microbiol 67: 1628-1637. https://doi.org/10.1099/jmm.0.000828 ![]() |
[49] |
Xu Q, Dziejman M, Mekalanos JJ (2003) Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc Natl Acad Sci USA 100: 1286-1291. https://doi.org/10.1073/pnas.0337479100 ![]() |
[50] |
Van Alst AJ, DiRita VJ (2020) Aerobic metabolism in Vibrio cholerae is required for population expansion during infection. mBio 11: e01989-20. https://doi.org/10.1128/mBio.01989-20 ![]() |
[51] |
Braun M, Thöny-Meyer L (2005) Cytochrome c maturation and the physiological role of c-type cytochromes in Vibrio cholerae. J Bacteriol 187: 5996-6004. https://doi.org/10.1128/JB.187.17.5996-6004.2005 ![]() |
[52] |
Lee KM, Park Y, Bari W, et al. (2012) Activation of cholera toxin production by anaerobic respiration of trimethylamine N-oxide in Vibrio cholerae. J Biol Chem 287: 39742-39752. https://doi.org/10.1074/jbc.M112.394932 ![]() |
[53] |
Liu Z, Wang H, Zhou Z, et al. (2016) Differential thiol-based switches jump-start vibrio cholerae pathogenesis. Cell Rep 14: 347-354. https://doi.org/10.1016/j.celrep.2015.12.038 ![]() |
[54] |
Mukherjee S, Bassler BL (2019) Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol 17: 371-382. https://doi.org/10.1038/s41579-019-0186-5 ![]() |
[55] |
Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21: 319-346. https://doi.org/10.1146/annurev.cellbio.21.012704.131001 ![]() |
[56] |
Kim EK, Lee KA, Hyeon DY, et al. (2020) Bacterial nucleoside catabolism controls quorum sensing and commensal-to-pathogen transition in the drosophila Gut. Cell Host Microbe 27: 345-357.e6. https://doi.org/10.1016/j.chom.2020.01.025 ![]() |
[57] |
Jung SA, Chapman CA, Ng WL (2015) Quadruple quorum-sensing inputs control Vibrio cholerae virulence and maintain system robustness. PLoS Pathog 11: e1004837. https://doi.org/10.1371/journal.ppat.1004837 ![]() |
[58] |
Herzog R, Peschek N, Fröhlich KS, et al. (2019) Three autoinducer molecules act in concert to control virulence gene expression in Vibrio cholerae. Nucleic Acids Res 47: 3171-3183. https://doi.org/10.1093/nar/gky1320 ![]() |
[59] |
Duan F, March JC (2010) Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc Natl Acad Sci USA 107: 11260-11264. https://doi.org/10.1073/pnas.1001294107 ![]() |
[60] |
Hsiao A, Ahmed AM, Subramanian S, et al. (2014) Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515: 423-426. https://doi.org/10.1038/nature13738 ![]() |
[61] |
Sun J, Daniel R, Wagner-Döbler I, et al. (2004) Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol Biol 4: 36. https://doi.org/10.1186/1471-2148-4-36 ![]() |
[62] |
Chen X, Schauder S, Potier N, et al. (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415: 545-549. https://doi.org/10.1038/415545a ![]() |
[63] |
Pereira CS, Thompson JA, Xavier KB (2013) AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 37: 156-181. https://doi.org/10.1111/j.1574-6976.2012.00345.x ![]() |
[64] |
Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor Perspect Med 2: a012427. https://doi.org/10.1101/cshperspect.a012427 ![]() |
[65] |
Zhu J, Mekalanos JJ (2003) Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell 5: 647-656. https://doi.org/10.1016/s1534-5807(03)00295-8 ![]() |
[66] |
Zhu J, Miller MB, Vance RE, et al. (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proce Natl Acad Sci USA 99: 3129-3134. https://doi.org/10.1073/pnas.052694299 ![]() |
[67] |
Freeman JA, Bassler BL (1999) Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. J Bacteriol 181: 899-906. https://doi.org/10.1128/JB.181.3.899-906.1999 ![]() |
[68] |
Freeman JA, Bassler BL (1999) A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi. Mol Microbiol 31: 665-677. https://doi.org/10.1046/j.1365-2958.1999.01208.x ![]() |
[69] |
Lenz DH, Mok KC, Lilley BN, et al. (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118: 69-82. https://doi.org/10.1016/j.cell.2004.06.009 ![]() |
[70] |
Feng L, Rutherford ST, Papenfort K, et al. (2015) A qrr noncoding RNA deploys four different regulatory mechanisms to optimize quorum-sensing dynamics. Cell 160: 228-240. https://doi.org/10.1016/j.cell.2014.11.051 ![]() |
[71] |
Shao Y, Bassler BL (2014) Quorum regulatory small RNAs repress type VI secretion. Mol Microbiol 92: 921-930. https://doi.org/10.1111/mmi.12599 ![]() |
[72] |
Jung SA, Hawver LA, Ng WL (2016) Parallel quorum sensing signaling pathways in Vibrio cholerae. Curr genet 62: 255-260. https://doi.org/10.1007/s00294-015-0532-8 ![]() |
[73] |
Rutherford ST, van Kessel JC, Shao Y, et al. (2011) AphA and LuxR/HapR reciprocally control quorum sensing in vibrios. Genes Dev 25: 397-408. https://doi.org/10.1101/gad.2015011 ![]() |
[74] |
Finkelstein RA, Boesman-Finkelstein M, Chang Y, et al. (1992) Vibrio cholerae hemagglutinin/protease, colonial variation, virulence, and detachment. Infect Immun 60: 472-478. https://doi.org/10.1128/iai.60.2.472-478.1992 ![]() |
[75] |
Gorelik O, Levy N, Shaulov L, et al. (2019) Vibrio cholerae autoinducer-1 enhances the virulence of enteropathogenic Escherichia coli. Sci Rep 9: 4122. https://doi.org/10.1038/s41598-019-40859-1 ![]() |
[76] |
Momose Y, Hirayama K, Itoh K (2008) Competition for proline between indigenous Escherichia coli and E. coli O157:H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157:H7. Antonie van Leeuwenhoek 94: 165-171. https://doi.org/10.1007/s10482-008-9222-6 ![]() |
[77] |
Fabich AJ, Jones SA, Chowdhury FZ, et al. (2008) Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun 76: 1143-1152. https://doi.org/10.1128/IAI.01386-07 ![]() |
[78] |
Sicard JF, Le Bihan G, Vogeleer P, et al. (2017) Interactions of intestinal bacteria with components of the intestinal mucus. Front Cell Infect Microbiol 7: 387. https://doi.org/10.3389/fcimb.2017.00387 ![]() |
[79] |
Tailford LE, Crost EH, Kavanaugh D, et al. (2015) Mucin glycan foraging in the human gut microbiome. Front Genet 6: 81. https://doi.org/10.3389/fgene.2015.00081 ![]() |
[80] |
Rohmer L, Hocquet D, Miller SI (2011) Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiology 19: 341-348. https://doi.org/10.1016/j.tim.2011.04.003 ![]() |
[81] |
Idota T, Kawakami H, Nakajima I (1994) Growth-promoting effects of N-acetylneuraminic acid-containing substances on bifidobacteria. Biosci Biotechnol Biochem 58: 1720-1722. https://doi.org/10.1271/bbb.58.1720 ![]() |
[82] |
Almagro-Moreno S, Boyd EF (2009) Sialic acid catabolism confers a competitive advantage to pathogenic vibrio cholerae in the mouse intestine. Infect Immun 77: 3807-3816. https://doi.org/10.1128/IAI.00279-09 ![]() |
[83] |
Reddi G, Pruss K, Cottingham KL, et al. (2018) Catabolism of mucus components influences motility of Vibrio cholerae in the presence of environmental reservoirs. PloS One 13: e0201383. https://doi.org/10.1371/journal.pone.0201383 ![]() |
[84] | Pereira FC, Wasmund K, Čobanković I, et al. (2020) Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat Commun 11. https://doi.org/10.1038/s41467-020-18928-1 |
[85] | Rosenberger J, McDonald ND, Boyd EF (2020) L-ascorbic acid (vitamin C) fermentation by the human pathogen Vibrio cholerae. bioRxiv . https://doi.org/10.1101/2020.09.08.288738 |
[86] |
Roth JR, Lawrence JG, Bobik TA (1996) Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 50: 137-181. https://doi.org/10.1146/annurev.micro.50.1.137 ![]() |
[87] | Soto-Martin EC, Warnke I, Farquharson FM, et al. (2020) Vitamin biosynthesis by human gut butyrate-producing bacteria and cross-feeding in synthetic microbial communities. mBio 11: e00886-20. https://doi.org/10.1128/mBio.00886-20 |
[88] |
Bogard RW, Davies B, Mekalanos JJ (2012) MetR-regulated Vibrio cholerae metabolism is required for virulence. mBio 3: e00236-12. https://doi.org/10.1128/mBio.00236-12 ![]() |
[89] |
Waldron KJ, Rutherford JC, Ford D, et al. (2009) Metalloproteins and metal sensing. Nature 460: 823-830. https://doi.org/10.1038/nature08300 ![]() |
[90] |
Sheng Y, Fan F, Jensen O, et al. (2015) Dual zinc transporter systems in Vibrio cholerae promote competitive advantages over gut microbiome. Infect Immun 83: 3902-3908. https://doi.org/10.1128/IAI.00447-15 ![]() |
[91] |
Rivera-Chávez F, Mekalanos JJ (2019) Cholera toxin promotes pathogen acquisition of host-derived nutrients. Nature 572: 244-248. https://doi.org/10.1038/s41586-019-1453-3 ![]() |
[92] |
Jaeggi T, Kortman GA, Moretti D, et al. (2015) Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut 64: 731-742. https://doi.org/10.1136/gutjnl-2014-307720 ![]() |
[93] |
Rea MC, Sit CS, Clayton E, et al. (2010) Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proce Natl Acad Sci USA 107: 9352-9357. https://doi.org/10.1073/pnas.0913554107 ![]() |
[94] |
Hammami R, Fernandez B, Lacroix C, et al. (2013) Anti-infective properties of bacteriocins: an update. CMLS 70: 2947-2967. https://doi.org/10.1007/s00018-012-1202-3 ![]() |
[95] |
Venkova T, Yeo CC, Espinosa M (2018) Editorial: The good, the bad, and the ugly: multiple roles of bacteria in human life. Front Microbiol 9: 1702. https://doi.org/10.3389/fmicb.2018.01702 ![]() |
[96] |
Cotter PD, Ross RP, Hill C (2013) Bacteriocins-a viable alternative to antibiotics?. Nat Rev Microbiol 11: 95-105. https://doi.org/10.1038/nrmicro2937 ![]() |
[97] |
Spelhaug SR, Harlander SK (1989) Inhibition of foodborne bacterial pathogens by bacteriocins from Lactococcus lactis and Pediococcus pentosaceous1. J Food Prot 52: 856-862. https://doi.org/10.4315/0362-028X-52.12.856 ![]() |
[98] |
Olasupo NA, Olukoya DK, Odunfa SA (2008) Assessment of a bacteriocin-producingLactobacillus strain in the control of spoilage of a cereal-based African fermented food. Folia Microbiol 42: 31-34. https://doi.org/10.1007/BF02898642 ![]() |
[99] |
Merino-Contreras ML, Sánchez-Morales F, Jiménez-Badillo MD, et al. (2018) Partial characterization of digestive proteases in sheepshead, Archosargus probatocephalus (Spariformes: Sparidae). Neotrop Ichthyol 16. https://doi.org/10.1590/1982-0224-20180020 ![]() |
[100] |
Duperthuy M, Sjöström AE, Sabharwal D, et al. (2013) Role of the Vibrio cholerae matrix protein Bap1 in cross-resistance to antimicrobial peptides. PLoS Pathog 9: e1003620. https://doi.org/10.1371/journal.ppat.1003620 ![]() |
[101] |
Saul-McBeth J, Matson JS (2019) A periplasmic antimicrobial peptide-binding protein is required for stress survival in Vibrio cholerae. Front Microbiol 10: 161. https://doi.org/10.3389/fmicb.2019.00161 ![]() |
[102] |
Bina XR, Howard MF, Taylor-Mulneix DL, et al. (2018) The Vibrio cholerae RND efflux systems impact virulence factor production and adaptive responses via periplasmic sensor proteins. PLoS Pathog 14: e1006804. https://doi.org/10.1371/journal.ppat.1006804 ![]() |
[103] |
Ríos-Covián D, Ruas-Madiedo P, Margolles A, et al. (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7: 185. https://doi.org/10.3389/fmicb.2016.00185 ![]() |
[104] |
Parada Venegas D, De la Fuente MK, Landskron G, et al. (2019) Short chain fatty acids (scfas)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10: 277. https://doi.org/10.3389/fimmu.2019.00277 ![]() |
[105] |
Repaske DR, Adler J (1981) Change in intracellular pH of Escherichia coli mediates the chemotactic response to certain attractants and repellents. J Bacteriol 145: 1196-1208. https://doi.org/10.1128/jb.145.3.1196-1208.1981 ![]() |
[106] | Tang JY, Izenty BI, Nur' Izzati AJ, et al. (2013) Survivability of Vibrio cholerae O1 in cooked rice, coffee, and tea. Int J Food Sci 2013: 581648. https://doi.org/10.1155/2013/581648 |
[107] |
Mottawea W, Chiang CK, Mühlbauer M, et al. (2016) Altered intestinal microbiota-host mitochondria crosstalk in new onset Crohn's disease. Nat Commun 7: 13419. https://doi.org/10.1038/ncomms13419 ![]() |
[108] |
Kamareddine L, Wong A, Vanhove AS, et al. (2018) Activation of Vibrio cholerae quorum sensing promotes survival of an arthropod host. Nat Microbiol 3: 243-252. https://doi.org/10.1038/s41564-017-0065-7 ![]() |
[109] |
Monira S, Hoq M, Chowdhury A, et al. (2010) Short-chain fatty acids and commensal microbiota in the faeces of severely malnourished children with cholera rehydrated with three different carbohydrates. Eur J Clin Nutr 64: 1116-1124. https://doi.org/10.1038/ejcn.2010.123 ![]() |
[110] |
You JS, Yong JH, Kim GH, et al. (2019) Commensal-derived metabolites govern Vibrio cholerae pathogenesis in host intestine. Microbiome 7: 132. https://doi.org/10.1186/s40168-019-0746-y ![]() |
[111] |
Resch CT, Winogrodzki JL, Patterson CT, et al. (2010) The putative Na+/H+ antiporter of Vibrio cholerae, Vc-NhaP2, mediates the specific K+/H+ exchange in vivo. Biochemistry 49: 2520-2528. https://doi.org/10.1021/bi902173y ![]() |
[112] |
Chand D, Avinash VS, Yadav Y, et al. (2017) Molecular features of bile salt hydrolases and relevance in human health. Biochim Biophys Acta Gene Subj 1861: 2981-2991. https://doi.org/10.1016/j.bbagen.2016.09.024 ![]() |
[113] | Smet ID, Hoorde LV, Saeyer ND, et al. (1994) in vitro study of bile salt hydrolase (BSH) activity of BSH isogenic lactobacillus plantarum 80 strains and estimation of cholesterol lowering through enhanced BSH activity. Microb Ecol Health Dis 7: 315-329. https://doi.org/10.3109/08910609409141371 |
[114] |
Song Z, Cai Y, Lao X, et al. (2019) Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome 7: 9. https://doi.org/10.1186/s40168-019-0628-3 ![]() |
[115] |
Alavi S, Mitchell JD, Cho JY, et al. (2020) Interpersonal gut microbiome variation drives susceptibility and resistance to cholera infection. Cell 181: 1533-1546.e13. https://doi.org/10.1016/j.cell.2020.05.036 ![]() |
[116] |
Yang M, Liu Z, Hughes C, et al. (2013) Bile salt-induced intermolecular disulfide bond formation activates Vibrio cholerae virulence. Proc Natl Acad Sci USA 110: 2348-2353. https://doi.org/10.1073/pnas.1218039110 ![]() |
[117] |
Bachmann V, Kostiuk B, Unterweger D, et al. (2015) Bile salts modulate the mucin-activated type vi secretion system of pandemic vibrio cholerae. PLoS Neglected Trop Dis 9: e0004031. https://doi.org/10.1371/journal.pntd.0004031 ![]() |
[118] |
King AA, Ionides EL, Pascual M, et al. (2008) Inapparent infections and cholera dynamics. Nature 454: 877-880. https://doi.org/10.1038/nature07084 ![]() |
[119] |
Midgett CR, Almagro-Moreno S, Pellegrini M, et al. (2017) Bile salts and alkaline pH reciprocally modulate the interaction between the periplasmic domains of Vibrio cholerae ToxR and ToxS. Mol Microbiol 105. https://doi.org/10.1111/mmi.13699 ![]() |
[120] |
Hung DT, Mekalanos JJ (2005) Bile acids induce cholera toxin expression in Vibrio cholerae in a ToxT-independent manner. Proce Natl Acad Sci USA 102: 3028-3033. https://doi.org/10.1073/pnas.0409559102 ![]() |
[121] |
Barrasso K, Chac D, Debela MD, et al. (2022) Impact of a human gut microbe on Vibrio cholerae host colonization through biofilm enhancement. eLife 11: e73010. https://doi.org/10.7554/eLife.73010 ![]() |
[122] |
Dickinson EC, Gorga JC, Garrett M, et al. (1998) Immunoglobulin A supplementation abrogates bacterial translocation and preserves the architecture of the intestinal epithelium. Surgery 124: 284-290. https://doi.org/10.1016/S0039-6060(98)70132-1 ![]() |
[123] |
Macpherson AJ, Hunziker L, McCoy K, et al. (2001) IgA responses in the intestinal mucosa against pathogenic and non-pathogenic microorganisms. Microbes Infect 3: 1021-1035. https://doi.org/10.1016/s1286-4579(01)01460-5 ![]() |
[124] |
Mantis NJ, Rol N, Corthésy B (2011) Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 4: 603-611. https://doi.org/10.1038/mi.2011.41 ![]() |
[125] |
Hsiao A, Liu Z, Joelsson A, et al. (2006) Vibrio cholerae virulence regulator-coordinated evasion of host immunity. Proc Natl Acad Sci USA 103: 14542-14547. https://doi.org/10.1073/pnas.0604650103 ![]() |
[126] |
Watnick PI, Fullner KJ, Kolter R (1999) A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J Bacteriol 181: 3606-3609. https://doi.org/10.1128/JB.181.11.3606-3609.1999 ![]() |
[127] |
Çakar F, Zingl FG, Moisi M, et al. (2018) In vivo repressed genes of Vibrio cholerae reveal inverse requirements of an H+/Cl− transporter along the gastrointestinal passage. Proc Natl Acad Sci USA 115: E2376-E2385. https://doi.org/10.1073/pnas.1716973115 ![]() |
[128] |
Chakrabarti S, Sengupta N, Chowdhury R (1999) Role of DnaK in in vitro and in vivo expression of virulence factors of Vibrio cholerae. Infect Immun 67: 1025-1033. https://doi.org/10.1128/IAI.67.3.1025-1033.1999 ![]() |
[129] |
Higa N, Honma Y, Albert MJ, et al. (1993) Characterization of Vibrio cholerae O139 Synonym bengal isolated from patients with cholera-like disease in Bangladesh. Microbiol Immunol 37: 971-974. https://doi.org/10.1111/j.1348-0421.1993.tb01731.x ![]() |
[130] |
Lee SH, Hava DL, Waldor MK, et al. (1999) Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell 99: 625-634. https://doi.org/10.1016/s0092-8674(00)81551-2 ![]() |
[131] |
Mandlik A, Livny J, Robins WP, et al. (2011) RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe 10: 165-174. https://doi.org/10.1016/j.chom.2011.07.007 ![]() |
[132] |
Osorio CG, Crawford JA, Michalski J, et al. (2005) Second-generation recombination-based in vivo expression technology for large-scale screening for Vibrio cholerae genes induced during infection of the mouse small intestine. Infect Immun 73: 972-980. https://doi.org/10.1128/IAI.73.2.972-980.2005 ![]() |
[133] |
Schild S, Tamayo R, Nelson EJ, et al. (2007) Genes induced late in infection increase fitness of Vibrio cholerae after release into the environment. Cell Host Microbe 2: 264-277. https://doi.org/10.1016/j.chom.2007.09.004 ![]() |
[134] |
DiRita VJ, Parsot C, Jander G, et al. (1991) Regulatory cascade controls virulence in Vibrio cholerae. Proc Natl Acad Sci USA 88: 5403-5407. https://doi.org/10.1073/pnas.88.12.5403 ![]() |
[135] |
Nygren E, Li BL, Holmgren J, et al. (2009) Establishment of an adult mouse model for direct evaluation of the efficacy of vaccines against Vibrio cholerae. Infect Immun 77: 3475-3484. https://doi.org/10.1128/IAI.01197-08 ![]() |
[136] |
Butterton JR, Ryan ET, Shahin RA, et al. (1996) Development of a germfree mouse model of Vibrio cholerae infection. Infect Immun 64: 4373-4377. https://doi.org/10.1128/iai.64.10.4373-4377.1996 ![]() |
[137] |
Sawasvirojwong S, Srimanote P, Chatsudthipong V, et al. (2013) An adult mouse model of vibrio cholerae-induced diarrhea for studying pathogenesis and potential therapy of cholera. PLoS Neglected Trop Dis 7: e2293. https://doi.org/10.1371/journal.pntd.0002293 ![]() |
[138] |
Olivier V, Queen J, Satchell KJF (2009) Successful small intestine colonization of adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins. PLoS One 4: e7352. https://doi.org/10.1371/journal.pone.0007352 ![]() |
[139] |
Watve S, Barrasso K, Jung SA, et al. (2020) Parallel quorum-sensing system in Vibrio cholerae prevents signal interference inside the host. PLoS Pathog 16: e1008313. https://doi.org/10.1371/journal.ppat.1008313 ![]() |
[140] |
Levade I, Saber MM, Midani FS, et al. (2021) Predicting Vibrio cholerae infection and disease severity using metagenomics in a prospective cohort study. J Infect Dis 223: 342-351. https://doi.org/10.1093/infdis/jiaa358 ![]() |
[141] |
Midani FS, Weil AA, Chowdhury F, et al. (2018) Human gut microbiota predicts susceptibility to Vibrio cholerae infection. J Infect Dis 218: 645-653. https://doi.org/10.1093/infdis/jiy192 ![]() |
[142] |
Saha D, LaRocque RC, Khan, AI, et al. (2004) Incomplete correlation of serum vibriocidal antibody titer with protection from Vibrio cholerae infection in urban Bangladesh. J Infect Dis 189: 2318-2322. https://doi.org/10.1086/421275 ![]() |
[143] |
Yoon MY, Min KB, Lee KM, et al. (2016) A single gene of a commensal microbe affects host susceptibility to enteric infection. Nat Commun 7: 11606. https://doi.org/10.1038/ncomms11606 ![]() |
[144] |
Stecher B, Chaffron S, Käppeli R, et al. (2010) Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog 6: e1000711. https://doi.org/10.1371/journal.ppat.1000711 ![]() |
[145] | David LA, Weil A, Ryan ET, et al. (2015) Gut microbial succession follows acute secretory diarrhea in humans. mBio 6: e00381-15. https://doi.org/10.1128/mBio.00381-15 |
[146] |
Yatsunenko T, Rey FE, Manary MJ, et al. (2012) Human gut microbiome viewed across age and geography. Nature 486: 222-227. https://doi.org/10.1038/nature11053 ![]() |
[147] | World Health Organization = Organisation mondiale de la Santé.Cholera, 2017 – Choléra, 2017. Weekly Epidemiological Record = Relevé épidémiologique hebdomadaire (2018) 93: 489-496. https://apps.who.int/iris/handle/10665/274655 |
[148] |
Matson JS (2018) Infant mouse model of vibrio cholerae infection and colonization. Methods Mol Biol 1839: 147-152. https://doi.org/10.1007/978-1-4939-8685-9_13 ![]() |
[149] |
Sawasvirojwong S, Srimanote P, Chatsudthipong V, et al. (2013) An adult mouse model of Vibrio cholerae-induced diarrhea for studying pathogenesis and potential therapy of cholera. PLoS Neglected Trop Dis 7: e2293. https://doi.org/10.1371/journal.pntd.0002293 ![]() |
[150] |
Mohd Rani F, A Rahman NI, Ismail S, et al. (2017) Acinetobacter spp. infections in malaysia: a review of antimicrobial resistance trends, mechanisms and epidemiology. Front Microbiol 8: 2479. https://doi.org/10.3389/fmicb.2017.02479 ![]() |
[151] |
DE SN (1959) Enterotoxicity of bacteria-free culture-filtrate of Vibrio cholerae. Nature 183: 1533-1534. https://doi.org/10.1038/1831533a0 ![]() |
[152] |
Rui H, Ritchie JM, Bronson RT, et al. (2010) Reactogenicity of live-attenuated Vibrio cholerae vaccines is dependent on flagellins. Proc Natl Acad Sci USA 107: 4359-4364. https://doi.org/10.1073/pnas.0915164107 ![]() |
[153] |
Mitchell KC, Breen P, Britton S, et al. (2017) Quantifying Vibrio cholerae enterotoxicity in a Zebrafish infection model. Appl Environ Microbiol 83: e00783-17. https://doi.org/10.1128/AEM.00783-17 ![]() |
[154] |
Burns A, Stephens W, Stagaman K, et al. (2016) Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J 10: 655-664. https://doi.org/10.1038/ismej.2015.142 ![]() |
[155] | Park SY, Heo YJ, Kim KS, et al. (2005) Drosophila melanogaster is susceptible to Vibrio cholerae infection. Mol Cell 20: 409-415. https://doi.org/10.1159/000086648 |
[156] |
Neyen C, Bretscher AJ, Binggeli O, et al. (2014) Methods to study Drosophila immunity. Methods 68: 116-128. https://doi.org/10.1016/j.ymeth.2014.02.023 ![]() |
1. | Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Yu-Ming Chu, Khalida Inayat Noor, On post quantum estimates of upper bounds involving twice (p,q)-differentiable preinvex function, 2020, 2020, 1029-242X, 10.1186/s13660-020-02496-5 | |
2. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Zakia Hammouch, Yu-Ming Chu, New fractional approaches for n-polynomial P-convexity with applications in special function theory, 2020, 2020, 1687-1847, 10.1186/s13662-020-03000-5 | |
3. | Yu-Ming Chu, Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Khalida Inayat Noor, New post quantum analogues of Ostrowski-type inequalities using new definitions of left–right (p,q)-derivatives and definite integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03094-x | |
4. | Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y | |
5. | Hua Wang, Humaira Kalsoom, Hüseyin Budak, Muhammad Idrees, Ahmet Ocak Akdemir, q -Hermite–Hadamard Inequalities for Generalized Exponentially s , m ; η -Preinvex Functions, 2021, 2021, 2314-4785, 1, 10.1155/2021/5577340 | |
6. | Humaira Kalsoom, Muhammad Aamir Ali, Muhammad Idrees, Praveen Agarwal, Muhammad Arif, Adrian Neagu, New Post Quantum Analogues of Hermite–Hadamard Type Inequalities for Interval-Valued Convex Functions, 2021, 2021, 1563-5147, 1, 10.1155/2021/5529650 | |
7. | Humaira Kalsoom, Miguel Vivas-Cortez, Muhammad Idrees, Praveen Agarwal, New Parameterized Inequalities for η-Quasiconvex Functions via (p, q)-Calculus, 2021, 23, 1099-4300, 1523, 10.3390/e23111523 | |
8. | Saad Ihsan Butt, Hüseyin Budak, Muhammad Tariq, Muhammad Nadeem, Integral inequalities for n ‐polynomial s ‐type preinvex functions with applications , 2021, 44, 0170-4214, 11006, 10.1002/mma.7465 | |
9. | Humaira Kalsoom, Miguel Vivas-Cortez, Muhammad Amer Latif, Trapezoidal-Type Inequalities for Strongly Convex and Quasi-Convex Functions via Post-Quantum Calculus, 2021, 23, 1099-4300, 1238, 10.3390/e23101238 | |
10. | YONGFANG QI, GUOPING LI, FRACTIONAL OSTROWSKI TYPE INEQUALITIES FOR (s,m)-CONVEX FUNCTION WITH APPLICATIONS, 2023, 31, 0218-348X, 10.1142/S0218348X23501281 |