Citation: Maria Parapouli, Anastasios Vasileiadis, Amalia-Sofia Afendra, Efstathios Hatziloukas. Saccharomyces cerevisiae and its industrial applications[J]. AIMS Microbiology, 2020, 6(1): 1-31. doi: 10.3934/microbiol.2020001
[1] | Van Thi Hong Ho, Hanh Thi Thuy Doan, Ha Thanh Vo, Thanh Thi Nguyen, Chi Thi Nguyen, Chinh Ngoc Dao, Dzung Trung Le, Trang Gia Hoang, Nga Thi Hang Nguyen, Ngoc Hoan Le, Gai Thi Tran, Duc Trong Nguyen . Effects of teaching approaches on science subject choice toward STEM career orientation of Vietnamese students. STEM Education, 2025, 5(3): 498-514. doi: 10.3934/steme.2025024 |
[2] | Rrezart Prebreza, Bleona Beqiraj, Besart Prebreza, Arianit Krypa, Marigona Krypa . Factors influencing the lower number of women in STEM compared to men: A case study from Kosovo. STEM Education, 2025, 5(1): 19-40. doi: 10.3934/steme.2025002 |
[3] | Ibrahim Khalil, Amirah AL Zahrani, Bakri Awaji, Mohammed Mohsen . Teachers' perceptions of teaching mathematics topics based on STEM educational philosophy: A sequential explanatory design. STEM Education, 2024, 4(4): 421-444. doi: 10.3934/steme.2024023 |
[4] | Dragana Martinovic, Marina Milner-Bolotin . Examination of modelling in K-12 STEM teacher education: Connecting theory with practice. STEM Education, 2021, 1(4): 279-298. doi: 10.3934/steme.2021018 |
[5] | Rommel AlAli, Wardat Yousef . Enhancing student motivation and achievement in science classrooms through STEM education. STEM Education, 2024, 4(3): 183-198. doi: 10.3934/steme.2024012 |
[6] | Yicong Zhang, Yanan Lu, Xianqing Bao, Feng-Kuang Chiang . Impact of participation in the World Robot Olympiad on K-12 robotics education from the coach's perspective. STEM Education, 2022, 2(1): 37-46. doi: 10.3934/steme.2022002 |
[7] | Ping Chen, Aminuddin Bin Hassan, Firdaus Mohamad Hamzah, Sallar Salam Murad, Heng Wu . Impact of gender role stereotypes on STEM academic performance among high school girls: Mediating effects of educational aspirations. STEM Education, 2025, 5(4): 617-642. doi: 10.3934/steme.2025029 |
[8] | Usman Ghani, Xuesong Zhai, Riaz Ahmad . Mathematics skills and STEM multidisciplinary literacy: Role of learning capacity. STEM Education, 2021, 1(2): 104-113. doi: 10.3934/steme.2021008 |
[9] | Hyunkyung Kwon, Yujin Lee . A meta-analysis of STEM project-based learning on creativity. STEM Education, 2025, 5(2): 275-290. doi: 10.3934/steme.2025014 |
[10] | Yujuan Li, Robert N. Hibbard, Peter L. A. Sercombe, Amanda L. Kelk, Cheng-Yuan Xu . Inspiring and engaging high school students with science and technology education in regional Australia. STEM Education, 2021, 1(2): 114-126. doi: 10.3934/steme.2021009 |
The concept of embedded tensors initially emerged in the research on gauged supergravity theory [1]. Using embedding tensors, the N=8 supersymmetric gauge theories as well as the Bagger-Lambert theory of multiple M2-branes were investigated in [2]. See [3,4,5] and the references therein for a great deal of literature on embedding tensors and related tensor hierarchies. In [6], the authors first observed the mathematical essence behind the embedding tensor and proved that the embedding tensor naturally produced Leibniz algebra. In the application of physics, they observed that in the construction of the corresponding gauge theory, they focused more on Leibniz algebra than on embedding tensor.
In [7], Sheng et al. considered cohomology, deformations, and homotopy theory for embedding tensors and Lie-Leibniz triples. Later on, the deformation and cohomology theory of embedding tensors on 3-Lie algebras were extensively elaborated in [8]. Tang and Sheng [9] first proposed the concept of a nonabelian embedding tensor on Lie algebras, which is a nonabelian generalization of the embedding tensors, and gave the algebraic structures behind the nonabelian embedding tensors as Leibniz-Lie algebras. This generalization for embedding tensors on associative algebras has been previously explored in [10,11], where they are referred to as average operators with any nonzero weights. Moreover, the nonabelian embedding tensor on Lie algebras has been extended to the Hom setting in [12].
On the other hand, Filippov [13] first introduced the concepts of 3-Lie algebras and, more generally, n-Lie algebras (also called Filippov algebras). Over recent years, the study and application of 3-Lie algebras have expanded significantly across the realms of mathematics and physics, including string theory, Nambu mechanics [14], and M2-branes [15,16]. Further research on 3-Lie algebras could be found in [17,18,19] and references cited therein.
Drawing inspiration from Tang and Sheng's [9] terminology of nonabelian embedding tensors and recognizing the significance of 3-Lie algebras, cohomology, and deformation theories, this paper primarily investigates the nonabelian embedding tensors on 3-Lie algebras, along with their fundamental algebraic structures, cohomology, and deformations.
This paper is organized as follows: Section 2 first recalls some basic notions of 3-Lie algebras and 3-Leibniz algebras. Then we introduce the coherent action of a 3-Lie algebra on another 3-Lie algebra and the notion of nonabelian embedding tensors on 3-Lie algebras with respect to a coherent action. In Section 3, the concept of 3-Leibniz-Lie algebra is presented as the fundamental algebraic structure for a nonabelian embedding tensor on the 3-Lie algebra. Naturally, a 3-Leibniz-Lie algebra induces a 3-Leibniz algebra. Subsequently, we study 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras. In Section 4, the cohomology theory of nonabelian embedding tensors on 3-Lie algebras is introduced. As an application, we characterize the infinitesimal deformation using the first cohomology group.
All vector spaces and algebras considered in this paper are on the field K with the characteristic of 0.
This section recalls some basic notions of 3-Lie algebras and 3-Leibniz algebras. After that, we introduce the coherent action of a 3-Lie algebra on another 3-Lie algebra, and we introduce the concept of nonabelian embedding tensors on 3-Lie algebras by its coherent action as a nonabelian generalization of embedding tensors on 3-Lie algebras [8].
Definition 2.1. (see [13]) A 3-Lie algebra is a pair (L,[−,−,−]L) consisting of a vector space L and a skew-symmetric ternary operation [−,−,−]L:∧3L→L such that
[l1,l2,[l3,l4,l5]L]L=[[l1,l2,l3]L,l4,l5]L+[l3,[l1,l2,l4]L,l5]L+[l3,l4,[l1,l2,l5]L]L, | (2.1) |
for all li∈L,1≤i≤5.
A homomorphism between two 3-Lie algebras (L1,[−,−,−]L1) and (L2,[−,−,−]L2) is a linear map f:L1→L2 that satisfies f([l1,l2,l3]L1)=[f(l1),f(l2),f(l3)]L2, for all l1,l2,l3∈L1.
Definition 2.2. 1) (see [20]) A representation of a 3-Lie algebra (L,[−,−,−]L) on a vector space H is a skew-symmetric linear map ρ:∧2L→End(H), such that
ρ([l1,l2,l3]L,l4)=ρ(l2,l3)ρ(l1,l4)+ρ(l3,l1)ρ(l2,l4)+ρ(l1,l2)ρ(l3,l4), | (2.2) |
ρ(l1,l2)ρ(l3,l4)=ρ(l3,l4)ρ(l1,l2)+ρ([l1,l2,l3]L,l4)+ρ(l3,[l1,l2,l4]L), | (2.3) |
for all l1,l2,l3,l4∈L. We also denote a representation of L on H by (H;ρ).
2) A coherent action of a 3-Lie algebra (L,[−,−,−]L) on another 3-Lie algebra (H,[−,−,−]H) is defined by a skew-symmetric linear map ρ:∧2L→Der(H) that satisfies Eqs (2.2) and (2.3), along with the condition that
[ρ(l1,l2)h1,h2,h3]H=0, | (2.4) |
for all l1,l2∈L and h1,h2,h3∈H. We denote a coherent action of L on H by (H,[−,−,−]H;ρ†).
Note that Eq (2.4) and ρ(l1,l2)∈Der(H) imply that
ρ(l1,l2)[h1,h2,h3]H=0. | (2.5) |
Example 2.3. Let (H,[−,−,−]H) be a 3-Lie algebra. Define ad:∧2H→Der(H) by
ad(h1,h2)h:=[h1,h2,h]H, for all h1,h2,h∈H. |
Then (H;ad) is a representation of (H,[−,−,−]H), which is called the adjoint representation. Furthermore, if the ad satisfies
[ad(h1,h2)h′1,h′2,h′3]H=0, for allh′1,h′2,h′3∈H, |
then (H,[−,−,−]H;ad†) is a coherent adjoint action of (H,[−,−,−]H).
Definition 2.4. (see [21]) A 3-Leibniz algebra is a vector space L together with a ternary operation [−,−,−]L:L⊗L⊗L→L such that
[l1,l2,[l3,l4,l5]L]L=[[l1,l2,l3]L,l4,l5]L+[l3,[l1,l2,l4]L,l5]L+[l3,l4,[l1,l2,l5]L]L, |
for all li∈L,1≤i≤5.
Proposition 2.5. Let (L,[−,−,−]L) and (H,[−,−,−]H) be two 3-Lie algebras, and let ρ be a coherent action of L on H. Then, L⊕H is a 3-Leibniz algebra under the following map:
[l1+h1,l2+h2,l3+h3]ρ:=[l1,l2,l3]L+ρ(l1,l2)h3+[h1,h2,h3]H, |
for all l1,l2,l3∈L and h1,h2,h3∈H. This 3-Leibniz algebra (L⊕H,[−,−,−]ρ) is called the nonabelian hemisemidirect product 3-Leibniz algebra, which is denoted by L⋉ρH.
Proof. For any l1,l2,l3,l4,l5∈L and h1,h2,h3,h4,h5∈H, by Eqs (2.1)–(2.5), we have
[l1+h1,l2+h2,[l3+h3,l4+h4,l5+h5]ρ]ρ−[[l1+h1,l2+h2,l3+h3]ρ,l4+h4,l5+h5]ρ−[l3+h3,[l1+h1,l2+h2,l4+h4]ρ,l5+h5]ρ−[l3+h3,l4+h4,[l1+h1,l2+h2,l5+h5]ρ]ρ=[l1,l2,[l3,l4,l5]L]L+ρ(l1,l2)ρ(l3,l4)h5+ρ(l1,l2)[h3,h4,h5]H+[h1,h2,ρ(l3,l4)h5]H+[h1,h2,[h3,h4,h5]H]H−[[l1,l2,l3]L,l4,l5]L−ρ([l1,l2,l3]L,l4)h5−[ρ(l1,l2)h3,h4,h5]H−[[h1,h2,h3]H,h4,h5]H−[l3,[l1,l2,l4]L,l5]L−ρ(l3,[l1,l2,l4]L)h5−[h3,ρ(l1,l2)h4,h5]H−[h3,[h1,h2,h4]H,h5]H−[l3,l4,[l1,l2,l5]L]L−ρ(l3,l4)ρ(l1,l2)h5−ρ(l3,l4)[h1,h2,h5]H−[h3,h4,ρ(l1,l2)h5]H−[h3,h4,[h1,h2,h5]H]H=[h1,h2,ρ(l3,l4)h5]H−ρ(l3,l4)[h1,h2,h5]H=0. |
Thus, (L⊕H,[−,−,−]ρ) is a 3-Leibniz algebra.
Definition 2.6. 1) A nonabelian embedding tensor on a 3-algebra (L,[−,−,−]L) with respect to a coherent action (H,[−,−,−]H;ρ†) is a linear map Λ:H→L that satisfies the following equation:
[Λh1,Λh2,Λh3]L=Λ(ρ(Λh1,Λh2)h3+[h1,h2,h3]H), | (2.6) |
for all h1,h2,h3∈H.
2) A nonabelian embedding tensor 3-Lie algebra is a triple (H,L,Λ) consisting of a 3-Lie algebra (L,[−,−,−]L), a coherent action (H,[−,−,−]H;ρ†) of L and a nonabelian embedding tensor Λ:H→L. We denote a nonabelian embedding tensor 3-Lie algebra (H,L,Λ) by the notation HΛ⟶L.
3) Let HΛ1⟶L and HΛ2⟶L be two nonabelian embedding tensor 3-Lie algebras. Then, a homomorphism from HΛ1⟶L to HΛ2⟶L consists of two 3-Lie algebras homomorphisms fL:L→L and fH:H→H, which satisfy the following equations:
Λ2∘fH=fL∘Λ1, | (2.7) |
fH(ρ(l1,l2)h)=ρ(fL(l1),fL(l2))fH(h), | (2.8) |
for all l1,l2∈L and h∈H. Furthermore, if fL and fH are nondegenerate, (fL,fH) is called an isomorphism from HΛ1⟶L to HΛ2⟶L.
Remark 2.7. If (H,[−,−,−]H) is an abelian 3-Lie algebra, then we can get that Λ is an embedding tensor on 3-Lie algebra (see [8]). In addition, If ρ=0, then Λ is a 3-Lie algebra homomorphism from H to L.
Example 2.8. Let H be a 4-dimensional linear space spanned by α1,α2,α3 and α4. We define a skew-symmetric ternary operation [−,−,−]H:∧3H→H by
[α1,α2,α3]H=α4. |
Then (H,[−,−,−]H) is a 3-Lie algebra. It is obvious that (H,[−,−,−]H;ad†) is a coherent adjoint action of (H,[−,−,−]H). Moreover,
Λ=(1000010000000000) |
is a nonabelian embedding tensor on (H,[−,−,−]H).
Next, we use graphs to describe nonabelian embedding tensors on 3-Lie algebras.
Theorem 2.9. A linear map Λ:H→L is a nonabelian embedding tensor on a 3-Lie algebra (L,[−,−,−]L) with respect to the coherent action (H,[−,−,−]H;ρ†) if and only if the graph Gr(Λ)={Λh+h|h∈H} forms a subalgebra of the nonabelian hemisemidirect product 3-Leibniz algebra L⋉ρH.
Proof. Let Λ:H→L be a linear map. Then, for any h1,h2,h3∈H, we have
[Λh1+h1,Λh2+h2,Λh3+h3]ρ=[Λh1,Λh2,Λh3]L+ρ(Λh1,Λh2)h3+[h1,h2,h3]H, |
Thus, the graph Gr(Λ)={Λh+h|h∈H} is a subalgebra of the nonabelian hemisemidirect product 3-Leibniz algebra L⋉ρH if and only if Λ satisfies Eq (2.6), which implies that Λ is a nonabelian embedding tensor on L with respect to the coherent action (H,[−,−,−]H;ρ†).
Because H and Gr(Λ) are isomorphic as linear spaces, there is an induced 3-Leibniz algebra structure on H.
Corollary 2.10. Let HΛ⟶L be a nonabelian embedding tensor 3-Lie algebra. If a linear map [−,−,−]Λ:∧3H→H is given by
[h1,h2,h3]Λ=ρ(Λh1,Λh2)h3+[h1,h2,h3]H, | (2.9) |
for all h1,h2,h3∈H, then (H,[−,−,−]Λ) is a 3-Leibniz algebra. Moreover, Λ is a homomorphism from the 3-Leibniz algebra (H,[−,−,−]Λ) to the 3-Lie algebra (L,[−,−,−]L). This 3-Leibniz algebra (H,[−,−,−]Λ) is called the descendent 3-Leibniz algebra.
Proposition 2.11. Let (fL,fH) be a homomorphism from HΛ1⟶L to HΛ2⟶L. Then fH is a homomorphism of descendent 3-Leibniz algebra from (H,[−,−,−]Λ1) to (H,[−,−,−]Λ2).
Proof. For any h1,h2,h3∈H, by Eqs (2.7)–(2.9), we have
fH([h1,h2,h3]Λ1)=fH(ρ(Λ1h1,Λ1h2)h3+[h1,h2,h3]H)=ρ(fL(Λ1h1),fL(Λ1h2))fH(h3)+fH([h1,h2,h3]H)=ρ(Λ2fL(h1),Λ2fL(h2))fH(h3)+[fH(h1),fH(h2),fH(h3)]H=[fH(h1),fH(h2),fH(h3)]Λ2. |
The proof is finished.
In this section, we present the concept of the 3-Leibniz-Lie algebra, which serves as the fundamental algebraic framework for the nonabelian embedding tensor 3-Lie algebra. Then we study 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras.
Definition 3.1. A 3-Leibniz-Lie algebra (H,[−,−,−]H,{−,−,−}H) encompasses a 3-Lie algebra (H,[−,−,−]H) and a ternary operation {−,−,−}H:∧3H→H, which satisfies the following equations:
{h1,h2,h3}H=−{h2,h1,h3}H, | (3.1) |
{h1,h2,{h3,h4,h5}H}H={{h1,h2,h3}H,h4,h5}H+{h3,{h1,h2,h4}H,h5}H+{h3,h4,{h1,h2,h5}H}H+{[h1,h2,h3]H,h4,h5}H+{h3,[h1,h2,h4]H,h5}H, | (3.2) |
{h1,h2,[h3,h4,h5]H}H=[{h1,h2,h3}H,h4,h5]H=0, | (3.3) |
for all h1,h2,h3,h4,h5∈H.
A homomorphism between two 3-Leibniz-Lie algebras (H1,[−,−,−]H1,{−,−,−}H1) and (H2,[−,−,−]H2,{−,−,−}H2) is a 3-Lie algebra homomorphism f:(H1,[−,−,−]H1)→(H2,[−,−,−]H2) such that f({h1,h2,h3}H1)={f(h1),f(h2),f(h3)}H2, for all h1,h2,h3∈H1.
Remark 3.2. A 3-Lie algebra (H,[−,−,−]H) naturally constitutes a 3-Leibniz-Lie algebra provided that the underlying ternary operation {h1,h2,h3}H=0, for all h1,h2,h3∈H.
Example 3.3. Let (H,[−,−,−]H) be a 4-dimensional 3-Lie algebra given in Example 2.8. We define a nonzero operation {−,−,−}H:∧3H→H by
{α1,α2,α3}H=−{α2,α1,α3}H=α4. |
Then (H,[−,−,−]H,{−,−,−}H) is a 3-Leibniz-Lie algebra.
The subsequent theorem demonstrates that a 3-Leibniz-Lie algebra inherently gives rise to a 3-Leibniz algebra.
Theorem 3.4. Let (H,[−,−,−]H,{−,−,−}H) be a 3-Leibniz-Lie algebra. Then the ternary operation ⟨−,−,−⟩H:∧3H→H, defined as
⟨h1,h2,h3⟩H:=[h1,h2,h3]H+{h1,h2,h3}H, | (3.4) |
for all h1,h2,h3∈H, establishes a 3-Leibniz algebra structure on H. This structure is denoted by (H,⟨−,−,−⟩H) and is referred to as the subadjacent 3-Leibniz algebra.
Proof. For any h1,h2,h3,h4,h5∈H, according to (H,[−,−,−]H) is a 3-Lie algebra and Eqs (3.2)–(3.4), we have
⟨h1,h2,⟨h3,h4,h5⟩H⟩H−⟨⟨h1,h2,h3⟩H,h4,h5⟩H−⟨h3,⟨h1,h2,h4⟩H,h5⟩H−⟨h3,h4,⟨h1,h2,h5⟩H⟩H=[h1,h2,[h3,h4,h5]H]H+[h1,h2,{h3,h4,h5}H]H+{h1,h2,[h3,h4,h5]H}H+{h1,h2,{h3,h4,h5}H}H−[[h1,h2,h3]H,h4,h5]H−[{h1,h2,h3}H,h4,h5]H−{[h1,h2,h3]H,h4,h5}H−{{h1,h2,h3}H,h4,h5}H−[h3,[h1,h2,h4]H,h5]H−[h3,{h1,h2,h4}H,h5]H−{h3,[h1,h2,h4]H,h5}H−{h3,{h1,h2,h4}H,h5}H−[h3,h4,[h1,h2,h5]H]H−[h3,h4,{h1,h2,h5}H]H−{h3,h4,[h1,h2,h5]H}H−{h3,h4,{h1,h2,h5}H}H={h1,h2,{h3,h4,h5}H}H−{[h1,h2,h3]H,h4,h5}H−{{h1,h2,h3}H,h4,h5}H−{h3,[h1,h2,h4]H,h5}H−{h3,{h1,h2,h4}H,h5}H−{h3,h4,{h1,h2,h5}H}H=0. |
Hence, (H,⟨−,−,−⟩H) is a 3-Leibniz algebra.
The following theorem shows that a nonabelian embedding tensor 3-Lie algebra induces a 3-Leibniz-Lie algebra.
Theorem 3.5. Let HΛ⟶L be a nonabelian embedding tensor 3-Lie algebra. Then (H,[−,−,−]H,{−,−,−}Λ) is a 3-Leibniz-Lie algebra, where
{h1,h2,h3}Λ:=ρ(Λh1,Λh2)h3, | (3.5) |
for all h1,h2,h3∈H.
Proof. For any h1,h2,h3,h4,h5∈H, by Eqs (2.3), (2.6), and (3.5), we have
{h1,h2,h3}Λ=ρ(Λh1,Λh2)h3=−ρ(Λh2,Λh1)h3=−{h2,h1,h3}Λ,{{h1,h2,h3}Λ,h4,h5}Λ+{h3,{h1,h2,h4}Λ,h5}Λ+{h3,h4,{h1,h2,h5}Λ}Λ+{[h1,h2,h3]H,h4,h5}Λ+{h3,[h1,h2,h4]H,h5}Λ−{h1,h2,{h3,h4,h5}Λ}Λ=ρ(Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,Λρ(Λh1,Λh2)h4)h5+ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ(Λ[h1,h2,h3]H,Λh4)h5+ρ(Λh3,Λ[h1,h2,h4]H)h5−ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=ρ(Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,Λρ(Λh1,Λh2)h4)h5+ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ([Λh1,Λh2,Λh3]L−Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,[Λh1,Λh2,Λh4]L−Λρ(Λh1,Λh2)h4)h5−ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ([Λh1,Λh2,Λh3]L,Λh4)h5+ρ(Λh3,[Λh1,Λh2,Λh4]L)h5−ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=0. |
Furthermore, by Eqs (2.4), (2.5), and (3.5), we have
[{h1,h2,h3}Λ,h4,h5]H=[ρ(Λh1,Λh2)h3,h4,h5]H=0,{h1,h2,[h3,h4,h5]H}Λ=ρ(Λh1,Λh2)[h3,h4,h5]H=0. |
Thus, (H,[−,−,−]H,{−,−,−}Λ) is a 3-Leibniz-Lie algebra.
Proposition 3.6. Let (fL,fH) be a homomorphism from HΛ1⟶L to HΛ2⟶L. Then fH is a homomorphism of 3-Leibniz-Lie algebras from (H,[−,−,−]H,{−,−,−}Λ1) to (H,[−,−,−]H,{−,−,−}Λ2).
Proof. For any h1,h2,h3∈H, by Eqs (2.7), (2.8), and (3.5), we have
fH({h1,h2,h3}Λ1)=fH(ρ(Λ1h1,Λ1h2)h3)=ρ(fL(Λ1h1),fL(Λ1h2))fH(h3)=ρ(Λ2fH(h1),Λ2fH(h2))fH(h3)={fH(h1),fH(h2),fH(h3)}Λ2. |
The proof is finished.
Motivated by the construction of 3-Lie algebras from Lie algebras [17], at the end of this section, we investigate 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras.
Definition 3.7. (see [9]) A Leibniz-Lie algebra (H,[−,−]H,⊳) encompasses a Lie algebra (H,[−,−]H) and a binary operation ⊳:H⊗H→H, ensuring that
h1⊳(h2⊳h3)=(h1⊳h2)⊳h3+h2⊳(h1⊳h3)+[h1,h2]H⊳h3,h1⊳[h2,h3]H=[h1⊳h2,h3]H=0, |
for all h1,h2,h3∈H.
Theorem 3.8. Let (H,[−,−]H,⊳) be a Leibniz-Lie algebra, and let ς∈H∗ be a trace map, which is a linear map that satisfies the following conditions:
ς([h1,h2]H)=0,ς(h1⊳h2)=0,for allh1,h2∈H. |
Define two ternary operations by
[h1,h2,h3]Hς=ς(h1)[h2,h3]H+ς(h2)[h3,h1]H+ς(h3)[h1,h2]H,{h1,h2,h3}Hς=ς(h1)h2⊳h3−ς(h2)h1⊳h3,for allh1,h2,h3∈H. |
Then (H,[−,−,−]Hς,{−,−,−}Hς) is a 3-Leibniz-Lie algebra.
Proof. First, we know from [17] that (H,[−,−,−]Hς) is a 3-Lie algebra. Next, for any h1,h2,h3,h4,h5∈H, we have
{h1,h2,h3}Hς=ς(h1)h2⊳h3−ς(h2)h1⊳h3=−(ς(h2)h1⊳h3−ς(h1)h2⊳h3)=−{h2,h1,h3}Hς |
and
{{h1,h2,h3}Hς,h4,h5}Hς+{h3,{h1,h2,h4}Hς,h5}Hς+{h3,h4,{h1,h2,h5}Hς}Hς+{[h1,h2,h3]Hς,h4,h5}Hς+{h3,[h1,h2,h4]Hς,h5}Hς−{h1,h2,{h3,h4,h5}Hς}Hς=ς(h1)ς(h2⊳h3)h4⊳h5−ς(h4)ς(h1)(h2⊳h3)⊳h5−ς(h2)ς(h1⊳h3)h4⊳h5+ς(h4)ς(h2)(h1⊳h3)⊳h5+ς(h3)ς(h1)(h2⊳h4)⊳h5−ς(h1)ς(h2⊳h4)h3⊳h5−ς(h3)ς(h2)(h1⊳h4)⊳h5+ς(h2)ς(h1⊳h4)h3⊳h5+ς(h1)ς(h3)h4⊳(h2⊳h5)−ς(h1)ς(h4)h3⊳(h2⊳h5)−ς(h2)ς(h3)h4⊳(h1⊳h5)+ς(h2)ς(h4)h3⊳(h1⊳h5)+ς(h1)ς([h2,h3]H)h4⊳h5−ς(h4)ς(h1)[h2,h3]H⊳h5+ς(h2)ς([h3,h1]H)h4⊳h5−ς(h4)ς(h2)[h3,h1]H⊳h5+ς(h3)ς([h1,h2]H)h4⊳h5−ς(h4)ς(h3)[h1,h2]H⊳h5+ς(h3)ς(h1)[h2,h4]H⊳h5−ς(h1)ς([h2,h4]H)h3⊳h5+ς(h3)ς(h2)[h4,h1]H⊳h5−ς(h2)ς([h4,h1]H)h3⊳h5+ς(h3)ς(h4)[h1,h2]H⊳h5−ς(h4)ς([h1,h2]H)h3⊳h5−ς(h1)ς(h3)h2⊳(h4⊳h5)+ς(h2)ς(h3)h1⊳(h4⊳h5)+ς(h1)ς(h4)h2⊳(h3⊳h5)−ς(h2)ς(h4)h1⊳(h3⊳h5)=−ς(h4)ς(h1)(h2⊳h3)⊳h5+ς(h4)ς(h2)(h1⊳h3)⊳h5+ς(h3)ς(h1)(h2⊳h4)⊳h5−ς(h3)ς(h2)(h1⊳h4)⊳h5+ς(h1)ς(h3)h4⊳(h2⊳h5)−ς(h1)ς(h4)h3⊳(h2⊳h5)−ς(h2)ς(h3)h4⊳(h1⊳h5)+ς(h2)ς(h4)h3⊳(h1⊳h5)−ς(h4)ς(h1)[h2,h3]H⊳h5−ς(h4)ς(h2)[h3,h1]H⊳h5+ς(h3)ς(h1)[h2,h4]H⊳h5+ς(h3)ς(h2)[h4,h1]H⊳h5−ς(h1)ς(h3)h2⊳(h4⊳h5)+ς(h2)ς(h3)h1⊳(h4⊳h5)+ς(h1)ς(h4)h2⊳(h3⊳h5)−ς(h2)ς(h4)h1⊳(h3⊳h5)=0. |
Similarly, we obtain
{h1,h2,[h3,h4,h5]Hς}Hς=ς(h1)ς(h3)h2⊳[h4,h5]H−ς(h2)ς(h3)h1⊳[h4,h5]H+ς(h1)ς(h4)h2⊳[h5,h3]H−ς(h2)ς(h4)h1⊳[h5,h3]H+ς(h1)ς(h5)h2⊳[h3,h4]H−ς(h2)ς(h5)h1⊳[h3,h4]H=0 |
and
[{h1,h2,h3}Hς,h4,h5]Hς=ς(h1)ς(h2⊳h3)[h4,h5]H+ς(h4)ς(h1)[h5,h2⊳h3]H+ς(h5)ς(h1)[h2⊳h3,h4]H−ς(h2)ς(h1⊳h3)[h4,h5]H−ς(h4)ς(h2)[h5,h1⊳h3]H−ς(h5)ς(h2)[h1⊳h3,h4]H=0. |
Hence Eqs (3.1)–(3.3) hold and we complete the proof.
In this section, we revisit fundamental results pertaining to the representations and cohomologies of 3-Leibniz algebras. We construct a representation of the descendent 3-Leibniz algebra (H,[−,−,−]Λ) on the vector space L and define the cohomologies of a nonabelian embedding tensor on 3-Lie algebras. As an application, we characterize the infinitesimal deformation using the first cohomology group.
Definition 4.1. (see [22]) A representation of the 3-Leibniz algebra (H,[−,−,−]H) is a vector space V equipped with 3 actions
l:H⊗H⊗V→V,m:H⊗V⊗H→V,r:V⊗H⊗H→V, |
satisfying for any a1,a2,a3,a4,a5∈H and u∈V
l(a1,a2,l(a3,a4,u))=l([a1,a2,a3]H,a4,u)+l(a3,[a1,a2,a4]H,u)+l(a3,a4,l(a1,a2,u)), | (4.1) |
l(a1,a2,m(a3,u,a5))=m([a1,a2,a3]H,u,a5)+m(a3,l(a1,a2,u),a5)+m(a3,u,[a1,a2,a5]H), | (4.2) |
l(a1,a2,r(u,a4,a5))=r(l(a1,a2,u),a4,a5)+r(u,[a1,a2,a4]H,a5)+r(u,a4,[a1,a2,a5]H), | (4.3) |
m(a1,u,[a3,a4,a5]H)=r(m(a1,u,a3),a4,a5)+m(a3,m(a1,u,a4),a5)+l(a3,a4,m(a1,u,a5)), | (4.4) |
r(u,a2,[a3,a4,a5]H)=r(r(u,a2,a3),a4,a5)+m(a3,r(u,a2,a4),a5)+l(a3,a4,r(u,a2,a5)). | (4.5) |
For n≥1, denote the n-cochains of 3-Leibniz algebra (H,[−,−,−]H) with coefficients in a representation (V;l,m,r) by
Cn3Leib(H,V)=Hom(n−1⏞∧2H⊗⋯⊗∧2H⊗H,V). |
The coboundary map δ:Cn3Leib(H,V)→Cn+13Leib(H,V), for Ai=ai∧bi∈∧2H,1≤i≤n and c∈H, as
(δφ)(A1,A2,…,An,c)=∑1≤j<k≤n(−1)jφ(A1,…,^Aj,…,Ak−1,ak∧[aj,bj,bk]H+[aj,bj,ak]H∧bk,…,An,c)+n∑j=1(−1)jφ(A1,…,^Aj,…,An,[aj,bj,c]H)+n∑j=1(−1)j+1l(Aj,φ(A1,…,^Aj,…,An,c))+(−1)n+1(m(an,φ(A1,…,An−1,bn),c)+r(φ(A1,…,An−1,an),bn,c)). |
It was proved in [23,24] that δ2=0. Therefore, (⊕+∞n=1Cn3Leib(H,V),δ) is a cochain complex.
Let HΛ⟶L be a nonabelian embedding tensor 3-Lie algebra. By Corollary 2.10, (H,[−,−,−]Λ) is a 3-Leibniz algebra. Next we give a representation of (H,[−,−,−]Λ) on L.
Lemma 4.2. With the above notations. Define 3 actions
lΛ:H⊗H⊗L→L,mΛ:H⊗L⊗H→L,rΛ:L⊗H⊗H→L, |
by
lΛ(h1,h2,l)=[Λh1,Λh2,l]L,mΛ(h1,l,h2)=[Λh1,l,Λh2]L−Λρ(Λh1,l)h2,rΛ(l,h1,h2)=[l,Λh1,Λh2]L−Λρ(l,Λh1)h2, |
for all h1,h2∈H,l∈L. Then (L;lΛ,mΛ,rΛ) is a representation of the descendent 3-Leibniz algebra (H,[−,−,−]Λ).
Proof. For any h1,h2,h3,h4,h5∈H and l∈L, by Eqs (2.1), (2.3)–(2.6), and (2.9), we have
lΛ(h1,h2,lΛ(h3,h4,l))−lΛ([h1,h2,h3]Λ,h4,l)−lΛ(h3,[h1,h2,h4]Λ,l)−lΛ(h3,h4,lΛ(h1,h2,l))=[Λh1,Λh2,[Λh3,Λh4,l]L]L−[[Λh1,Λh2,Λh3]L,Λh4,l]L−[Λh3,[Λh1,Λh2,Λh4]L,l]L−[Λh3,Λh4,[Λh1,Λh2,l]L]L=0 |
and
lΛ(h1,h2,mΛ(h3,l,h5))−mΛ([h1,h2,h3]Λ,l,h5)−mΛ(h3,lΛ(h1,h2,l),h5)−mΛ(h3,l,[h1,h2,h5]Λ)=[Λh1,Λh2,[Λh3,l,Λh5]L]L−[Λh1,Λh2,Λρ(Λh3,l)h5]L−[[Λh1,Λh2,Λh3]L,l,Λh5]L+Λρ([Λh1,Λh2,Λh3]L,l)h5−[Λh3,[Λh1,Λh2,l]L,Λh5]L+Λρ(Λh3,[Λh1,Λh2,l]L)h5−[Λh3,l,[Λh1,Λh2,Λh5]L]L+Λρ(Λh3,l)ρ(Λh1,Λh2)h5+Λρ(Λh3,l)[h1,h2,h5]H=−[Λh1,Λh2,Λρ(Λh3,l)h5]L+Λρ([Λh1,Λh2,Λh3]L,l)h5+Λρ(Λh3,[Λh1,Λh2,l]L)h5+Λρ(Λh3,l)ρ(Λh1,Λh2)h5+Λρ(Λh3,l)[h1,h2,h5]H=−Λ(ρ(Λh1,Λh2)ρ(Λh3,l)h5+[h1,h2,ρ(Λh3,l)h5]H)+Λρ(Λh1,Λh2)ρ(Λh3,l)h5+Λρ(Λh3,l)[h1,h2,h5]H=−Λ[h1,h2,ρ(Λh3,l)h5]H+Λρ(Λh3,l)[h1,h2,h5]H=0, |
which imply that Eqs (4.1) and (4.2) hold. Similarly, we can prove that Eqs (4.3)–(4.5) are true. The proof is finished.
Proposition 4.3. Let HΛ1⟶L and HΛ2⟶L be two nonabelian embedding tensor 3-Lie algebras and (fL,fH) a homomorphism from HΛ1⟶L to HΛ2⟶L. Then the induced representation (L;lΛ1,mΛ1,rΛ1) of the descendent 3-Leibniz algebra (H,[−,−,−]Λ1) and the induced representation (L;lΛ2,mΛ2,rΛ2) of the descendent 3-Leibniz algebra (H,[−,−,−]Λ2) satisfying the following equations:
fL(lΛ1(h1,h2,l))=lΛ2(fH(h1),fH(h2),fL(l)), | (4.6) |
fL(mΛ1(h1,l,h2))=mΛ2(fH(h1),fL(l),fH(h2)), | (4.7) |
fL(rΛ1(l,h1,h2))=rΛ2(fL(l),fH(h1),fH(h2)), | (4.8) |
for all h1,h2∈H,l∈L. In other words, the following diagrams commute:
![]() |
Proof. For any h1,h2∈H,l∈L, by Eqs (2.7) and (2.8), we have
fL(lΛ1(h1,h2,l))=fL([Λ1h1,Λ1h2,l]L)=[fL(Λ1h1),fL(Λ1h2),fL(l)]L=[Λ2fH(h1),Λ2fH(h2),fL(l)]L=lΛ2(fH(h1),fH(h2),fL(l)),fL(mΛ1(h1,l,h2))=fL([Λ1h1,l,Λ1h2]L−Λ1ρ(Λ1h1,l)h2)=[fL(Λ1h1),fL(l),fL(Λ1h2)]L−fL(Λ1ρ(Λ1h1,l)h2)=[Λ2fH(h1),fL(l),Λ2fH(h2)]L−Λ2fH(ρ(Λ1h1,l)h2)=[Λ2fH(h1),fL(l),Λ2fH(h2)]L−Λ2ρ(Λ2fH(h1),fL(l))fH(h2)=mΛ2(fH(h1),fL(l),fH(h2)). |
And the other equation is similar to provable.
For n≥1, let δΛ:Cn3Leib(H,L)→Cn+13Leib(H,L) be the coboundary operator of the 3-Leibniz algebra (H,[−,−,−]Λ) with coefficients in the representation (L;lΛ,mΛ,rΛ). More precisely, for all ϕ∈Cn3Leib(H,L),Hi=ui∧vi∈∧2H,1≤i≤n and w∈H, we have
(δΛϕ)(H1,H2,…,Hn,w)=∑1≤j<k≤n(−1)jϕ(H1,…,^Hj,…,Hk−1,uk∧[uj,vj,vk]Λ+[uj,vj,uk]Λ∧vk,…,Hn,w)+n∑j=1(−1)jϕ(H1,…,^Hj,…,Hn,[uj,vj,w]Λ)+n∑j=1(−1)j+1lΛ(Hj,ϕ(H1,…,^Hj,…,Hn,w))+(−1)n+1(mΛ(un,ϕ(H1,…,Hn−1,vn),w)+rΛ(ϕ(H1,…,Hn−1,un),vn,w)). |
In particular, for ϕ∈C13Leib(H,L):=Hom(H,L) and u1,v1,w∈H, we have
(δΛϕ)(u1,v1,w)=−ϕ([u1,v1,w]Λ)+lΛ(u1,v1,ϕ(w))+mΛ(u1,ϕ(v1),w)+rΛ(ϕ(u1),v1,w)=−ϕ([u1,v1,w]Λ)+[Λu1,Λv1,ϕ(w)]L+[Λu1,ϕ(v1),Λw]L−Λρ(Λu1,ϕ(v1))w+[ϕ(u1),Λv1,Λw]L−Λρ(ϕ(u1),Λv1)w. |
For any (a1,a2)∈C03Leib(H,L):=∧2L, we define δΛ:C03Leib(H,L)→C13Leib(H,L),(a1,a2)↦δΛ(a1,a2) by
δΛ(a1,a2)u=Λρ(a1,a2)u−[a1,a2,Λu]L,∀u∈H. |
Proposition 4.4. Let HΛ⟶L be a nonabelian embedding tensor 3-Lie algebra. Then δΛ(δΛ(a1,a2))=0, that is, the composition C03Leib(H,L)δΛ⟶C13Leib(H,L)δΛ⟶C23Leib(H,L) is the zero map.
Proof. For any u1,v1,w∈V, by Eqs (2.1)–(2.6) and (2.9) we have
δΛ(δΛ(a1,a2))(u1,v1,w)=−δΛ(a1,a2)([u1,v1,w]Λ)+[Λu1,Λv1,δΛ(a1,a2)(w)]L+[Λu1,δΛ(a1,a2)(v1),Λw]L−Λρ(Λu1,δΛ(a1,a2)(v1))w+[δΛ(a1,a2)(u1),Λv1,Λw]L−Λρ(δΛ(a1,a2)(u1),Λv1)w=−Λρ(a1,a2)[u1,v1,w]Λ+[a1,a2,[Λu1,Λv1,Λw]L]L+[Λu1,Λv1,Λρ(a1,a2)w]L−[Λu1,Λv1,[a1,a2,Λw]L]L+[Λu1,Λρ(a1,a2)v1,Λw]L−[Λu1,[a1,a2,Λv1]L,Λw]L−Λρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+[Λρ(a1,a2)u1,Λv1,Λw]L−[[a1,a2,Λu1]L,Λv1,Λw]L−Λρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=−Λρ(a1,a2)ρ(Λu1,Λv1)w−Λρ(a1,a2)[u1,v1,w]H+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λ[u1,v1,ρ(a1,a2)w]H+Λρ(Λu1,Λρ(a1,a2)v1)w+Λ[u1,ρ(a1,a2)v1,w]H−Λρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λ(Λρ(a1,a2)u1,Λv1)w+Λ[ρ(a1,a2)u1,v1,w]H−Λρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=−Λρ(a1,a2)ρ(Λu1,Λv1)w+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λρ(Λu1,Λρ(a1,a2)v1)w−Λρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λ(Λρ(a1,a2)u1,Λv1)w−Λρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=−Λρ(a1,a2)ρ(Λu1,Λv1)w+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λρ([a1,a2,Λu1]L,Λv1)w=0. |
Therefore, we deduce that δΛ(δΛ(a1,a2))=0.
Now we develop the cohomology theory of a nonabelian embedding tensor Λ on the 3-Lie algebra (L,[−,−,−]L) with respect to the coherent action (H,[−,−,−]H;ρ†).
For n≥0, define the set of n-cochains of Λ by CnΛ(H,L):=Cn3Leib(H,L). Then (⊕∞n=0CnΛ(H,L),δΛ) is a cochain complex.
For n≥1, we denote the set of n-cocycles by ZnΛ(H,L), the set of n-coboundaries by BnΛ(H,L), and the n-th cohomology group of the nonabelian embedding tensor Λ by
HHnΛ(H,L)=ZnΛ(H,L)BnΛ(H,L). |
Proposition 4.5. Let HΛ1⟶L and HΛ2⟶L be two nonabelian embedding tensor 3-Lie algebras and let (fL,fH) be a homomorphism from HΛ1⟶L to HΛ2⟶L in which fH is invertible. We define a map Ψ:CnΛ1(H,L)→CnΛ2(H,L) by
Ψ(ϕ)(H1,H2,…,Hn−1,w)=fL(ϕ(f−1H(u1)∧f−1H(v1),…,f−1H(un−1)∧f−1H(vn−1),f−1H(w))), |
for all ϕ∈CnΛ1(H,L),Hi=ui∧vi∈∧2H,1≤i≤n−1, and w∈H. Then Ψ:(Cn+1Λ1(H,L),δΛ1)→(Cn+1Λ2(H,L),δΛ2) is a cochain map.
That is, the following diagram commutes:
![]() |
Consequently, it induces a homomorphism Ψ∗ from the cohomology group HHn+1Λ1(H,L) to HHn+1Λ2(H,L).
Proof. For any ϕ∈CnΛ1(H,L),Hi=ui∧vi∈∧2H,1≤i≤n, and w∈H, by Eqs (4.6)–(4.8) and Proposition 2.11, we have
(δΛ2Ψ(ϕ))(H1,H2,…,Hn,w)=∑1≤j<k≤n(−1)jΨ(ϕ)(H1,…,^Hj,…,Hk−1,uk∧[uj,vj,vk]Λ2+[uj,vj,uk]Λ2∧vk,…,Hn,w)+n∑j=1(−1)jΨ(ϕ)(H1,…,^Hj,…,Hn,[uj,vj,w]Λ2)+n∑j=1(−1)j+1lΛ2(Hj,Ψ(ϕ)(H1,…,^Hj,…,Hn,w))+(−1)n+1mΛ2(un,Ψ(ϕ)(H1,…,Hn−1,vn),w)+(−1)n+1rΛ2(Ψ(ϕ)(H1,…,Hn−1,un),vn,w)=∑1≤j<k≤n(−1)jfL(ϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(uk−1)∧f−1H(vk−1),f−1H(uk)∧f−1H([uj,vj,vk]Λ2)+f−1H([uj,vj,uk]Λ2)∧f−1H(vk),…,f−1H(un)∧f−1H(vn),f−1H(w)))+n∑j=1(−1)jfL(ϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(un)∧f−1H(vn),f−1H([uj,vj,w]Λ2)))+n∑j=1(−1)j+1lΛ2(Hj,fL(ϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(un)∧f−1H(vn),f−1H(w))))+(−1)n+1mΛ2(un,fL(ϕ(f−1H(u1)∧f−1H(v1),…,f−1H(un−1)∧f−1H(vn−1),f−1H(vn))),w)+(−1)n+1rΛ2(fL(ϕ(f−1H(u1)∧f−1H(v1),…,f−1H(un−1)∧f−1H(vn−1),f−1H(un))),vn,w)=fL(∑1≤j<k≤n(−1)jϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(uk−1)∧f−1H(vk−1),f−1H(uk)∧[f−1H(uj),f−1H(vj),f−1H(vk)]Λ1+[f−1H(uj),f−1H(vj),f−1H(uk)]Λ1∧f−1H(vk),…,f−1H(un)∧f−1H(vn),f−1H(w))+n∑j=1(−1)jϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(un)∧f−1H(vn),[f−1H(uj),f−1H(vj),f−1H(w)]Λ1)+n∑j=1(−1)j+1lΛ1(f−1H(uj),f−1H(vj),ϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(un)∧f−1H(vn),f−1H(w)))+(−1)n+1mΛ1(f−1H(un),ϕ(f−1H(u1),f−1H(v1),…,f−1H(un−1)∧f−1H(vn−1),f−1H(vn)),f−1H(w))+(−1)n+1rΛ1(ϕ(f−1H(u1)∧f−1H(v1),…,f−1H(un−1)∧f−1H(vn−1),f−1H(un)),f−1H(vn),f−1H(w)))=fL(δΛ1ϕ)(f−1H(u1)∧f−1H(v1),…,f−1H(un)∧f−1H(vn),f−1H(w))=Ψ(δΛ1ϕ)(H1,H2,…,Hn,w). |
Hence, Ψ is a cochain map and induces a cohomology group homomorphism Ψ∗:HHn+1Λ1(H,L) →HHn+1Λ2(H,L).
At the conclusion of this section, we employ the well-established cohomology theory to describe the infinitesimal deformations of nonabelian embedding tensors on 3-Lie algebras.
Definition 4.6. Let Λ:H→L be a nonabelian embedding tensor on a 3-Lie algebra (L,[−,−,−]L) with respect to a coherent action (H,[−,−,−]H;ρ†). An infinitesimal deformation of Λ is a nonabelian embedding tensor of the form Λt=Λ+tΛ1, where t is a parameter with t2=0.
Let Λt=Λ+tΛ1 be an infinitesimal deformation of Λ, then we have
[Λtu1,Λtu2,Λtu3]L=Λtρ(Λtu1,Λtu2)u3+Λt[u1,u2,u3]H, |
for all u1,u2,u3∈H. Therefore, we obtain the following equation:
[Λ1u1,Λu2,Λu3]L+[Λu1,Λ1u2,Λu3]L+[Λu1,Λu2,Λ1u3]L=Λ1ρ(Λu1,Λu2)u3+Λρ(Λ1u1,Λu2)u3+Λρ(Λu1,Λ1u2)u3+Λ1[u1,u2,u3]H. | (4.9) |
It follows from Eq (4.9) that Λ1∈C1Λ(H,L) is a 1-cocycle in the cohomology complex of Λ. Thus the cohomology class of Λ1 defines an element in HH1Λ(H,L).
Let Λt=Λ+tΛ1 and Λ′t=Λ+tΛ′1 be two infinitesimal deformations of Λ. They are said to be equivalent if there exists a1∧a2∈∧2L such that the pair (idL+tad(a1,a2),idH+tρ(a1,a2)) is a homomorphism from HΛt⟶L to HΛ′t⟶L. That is, the following conditions must hold:
1) The maps idL+tad(a1,a2):L→L and idH+tρ(a1,a2):H→H are two 3-Lie algebra homomorphisms,
2) The pair (idL+tad(a1,a2),idH+tρ(a1,a2)) satisfies:
(idH+tρ(a1,a2))(ρ(a,b)u)=ρ((idL+tad(a1,a2))a,(idL+tad(a1,a2))b)(idH+tρ(a1,a2))(u),(Λ+tΛ′1)(idH+tρ(a1,a2))(u)=(idL+tad(a1,a2))((Λ+tΛ1)u), | (4.10) |
for all a,b∈L,u∈H. It is easy to see that Eq (4.10) gives rise to
Λ1u−Λ′1u=Λρ(a1,a2)u−[a1,a2,Λu]=δΛ(a1,a2)u∈C1Λ(H,L). |
This shows that Λ1 and Λ′1 are cohomologous. Thus, their cohomology classes are the same in HH1Λ(H,L).
Conversely, any 1-cocycle Λ1 gives rise to the infinitesimal deformation Λ+tΛ1. Furthermore, we have arrived at the following result.
Theorem 4.7. Let Λ:H→L be a nonabelian embedding tensor on (L,[−,−,−]L) with respect to (H,[−,−,−]H;ρ†). Then, there exists a bijection between the set of all equivalence classes of infinitesimal deformations of Λ and the first cohomology group HH1Λ(H,L).
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research is supported by the National Natural Science Foundation of China (Grant No. 12361005) and the Universities Key Laboratory of System Modeling and Data Mining in Guizhou Province (Grant No. 2023013).
The authors declare there is no conflicts of interest.
[1] |
Goffeau A, Barrell BG, Bussey H, et al. (1996) Life with 6000 genes. Science 274: 563-547. doi: 10.1126/science.274.5287.546
![]() |
[2] |
Wood V, Rutherford KM, Ivens A, et al. (2001) A re-annotation of the Saccharomyces cerevisiae genome. Comp Funct Genomics 2: 143-154. doi: 10.1002/cfg.86
![]() |
[3] |
Doolittle WF (1999) Lateral genomics. Trends Cell Biol 9: M5-8. doi: 10.1016/S0962-8924(99)01664-5
![]() |
[4] |
Hall C, Brachat S, Dietrich FS (2005) Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot Cell 4: 1102-1115. doi: 10.1128/EC.4.6.1102-1115.2005
![]() |
[5] |
Galeote V, Novo M, Salema-Oom M, et al. (2010) FSY1, a horizontally transferred gene in the Saccharomyces cerevisiae EC1118 wine yeast strain, encodes a high-affinity fructose/H+ symporter. Microbiology 156: 3754-3761. doi: 10.1099/mic.0.041673-0
![]() |
[6] |
de Zamaroczy M, Bernardi G (1985) Sequence organization of the mitochondrial genome of yeast--a review. Gene 37: 1-17. doi: 10.1016/0378-1119(85)90252-5
![]() |
[7] |
Foury F, Roganti T, Lecrenier N, et al. (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 440: 325-331. doi: 10.1016/S0014-5793(98)01467-7
![]() |
[8] |
Futcher AB (1988) The 2 micron circle plasmid of Saccharomyces cerevisiae. Yeast 4: 27-40. doi: 10.1002/yea.320040104
![]() |
[9] |
Wickner RB (1996) Double-stranded RNA viruses of Saccharomyces cerevisiae. Microbiol Rev 60: 250-265. doi: 10.1128/MMBR.60.1.250-265.1996
![]() |
[10] |
Thomson JM, Gaucher EA, Burgan MF, et al. (2005) Resurrecting ancestral alcohol dehydrogenases from yeast. Nat Genet 37: 630-635. doi: 10.1038/ng1553
![]() |
[11] |
Pronk JT, Yde Steensma H, Van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12: 1607-1633. doi: 10.1002/(SICI)1097-0061(199612)12:16<1607::AID-YEA70>3.0.CO;2-4
![]() |
[12] |
Hagman A, Sall T, Compagno C, et al. (2013) Yeast ‘make-accumulate-consume’ life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS One 8: e68734. doi: 10.1371/journal.pone.0068734
![]() |
[13] |
Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708-713. doi: 10.1038/42711
![]() |
[14] |
Ihmels J, Bergmann S, Gerami-Nejad M, et al. (2005) Rewiring of the yeast transcriptional network through the evolution of motif usage. Science 309: 938-940. doi: 10.1126/science.1113833
![]() |
[15] |
Rozpedowska E, Hellborg L, Ishchuk OP, et al. (2011) Parallel evolution of the make-accumulate-consume strategy in Saccharomyces and Dekkera yeasts. Nat Commun 2: 302. doi: 10.1038/ncomms1305
![]() |
[16] |
Mortimer R, Polsinelli M (1999) On the origins of wine yeast. Res Microbiol 150: 199-204. doi: 10.1016/S0923-2508(99)80036-9
![]() |
[17] |
Taylor MW, Tsai P, Anfang N, et al. (2014) Pyrosequencing reveals regional differences in fruit-associated fungal communities. Environ Microbiol 16: 2848-2858. doi: 10.1111/1462-2920.12456
![]() |
[18] |
Stefanini I, Dapporto L, Legras JL, et al. (2012) Role of social wasps in Saccharomyces cerevisiae ecology and evolution. Proc Natl Acad Sci USA 109: 13398-13403. doi: 10.1073/pnas.1208362109
![]() |
[19] |
Buser CC, Newcomb RD, Gaskett AC, et al. (2014) Niche construction initiates the evolution of mutualistic interactions. Ecol Lett 17: 1257-1264. doi: 10.1111/ele.12331
![]() |
[20] |
Wang QM, Liu WQ, Liti G, et al. (2012) Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. Mol Ecol 21: 5404-5417. doi: 10.1111/j.1365-294X.2012.05732.x
![]() |
[21] |
Camarasa C, Sanchez I, Brial P, et al. (2011) Phenotypic landscape of Saccharomyces cerevisiae during wine fermentation: evidence for origin-dependent metabolic traits. PLoS One 6: e25147. doi: 10.1371/journal.pone.0025147
![]() |
[22] |
Stewart GG (2014) SACCHAROMYCES | Saccharomyces cerevisiae. Encyclopedia of Food Microbiology (Second Edition) Oxford: Academic Press, 309-315. doi: 10.1016/B978-0-12-384730-0.00292-5
![]() |
[23] |
Hittinger CT, Steele JL, Ryder DS (2018) Diverse yeasts for diverse fermented beverages and foods. Curr Opin Biotechnol 49: 199-206. doi: 10.1016/j.copbio.2017.10.004
![]() |
[24] |
McGovern PE, Glusker DL, Exner LJ, et al. (1996) Neolithic resinated wine. Nature 381: 480. doi: 10.1038/381480a0
![]() |
[25] |
Cavalieri D, McGovern PE, Hartl DL, et al. (2003) Evidence for S. cerevisiae fermentation in ancient wine. J Mol Evol 57 Suppl 1: S226-232. doi: 10.1007/s00239-003-0031-2
![]() |
[26] | Pasteur L (1860) Mémoire sur la fermentation alcoolique Mallet-Bachelier. |
[27] |
Marsit S, Dequin S (2015) Diversity and adaptive evolution of Saccharomyces wine yeast: a review. FEMS Yeast Res 15: fov067. doi: 10.1093/femsyr/fov067
![]() |
[28] | Bauer F, Pretorius IS (2000) Yeast stress response and fermentation efficiency: how to survive the making of wine-a review. S Afr J Enol Vitic 21: 27-51. |
[29] |
Eldarov MA, Kishkovskaia SA, Tanaschuk TN, et al. (2016) Genomics and biochemistry of Saccharomyces cerevisiae wine yeast strains. Biochemistry (Mosc) 81: 1650-1668. doi: 10.1134/S0006297916130046
![]() |
[30] |
Swiegers JH, Saerens SM, Pretorius IS (2016) Novel yeast strains as tools for adjusting the flavor of fermented beverages to market specifications. Biotechnol Flavor Prod 62-132. doi: 10.1002/9781118354056.ch3
![]() |
[31] |
Matallana E, Aranda A (2017) Biotechnological impact of stress response on wine yeast. Lett Appl Microbiol 64: 103-110. doi: 10.1111/lam.12677
![]() |
[32] | Mina M, Tsaltas D (2017) Contribution of yeast in wine aroma and flavour. Yeast - industrial applications . |
[33] |
Cordente AG, Curtin CD, Varela C, et al. (2012) Flavour-active wine yeasts. Appl Microbiol Biotechnol 96: 601-618. doi: 10.1007/s00253-012-4370-z
![]() |
[34] |
Ehrlich F (1907) Über die Bedingungen der Fuselölbildung und über ihren Zusammenhang mit dem Eiweißaufbau der Hefe. Berichte der deutschen chemischen Gesellschaft 40: 1027-1047. doi: 10.1002/cber.190704001156
![]() |
[35] |
Hazelwood LA, Daran JM, van Maris AJ, et al. (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74: 2259-2266. doi: 10.1128/AEM.02625-07
![]() |
[36] |
Styger G, Jacobson D, Bauer FF (2011) Identifying genes that impact on aroma profiles produced by Saccharomyces cerevisiae and the production of higher alcohols. Appl Microbiol Biotechnol 91: 713-730. doi: 10.1007/s00253-011-3237-z
![]() |
[37] |
Styger G, Jacobson D, Prior BA, et al. (2013) Genetic analysis of the metabolic pathways responsible for aroma metabolite production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97: 4429-4442. doi: 10.1007/s00253-012-4522-1
![]() |
[38] |
Swiegers JH, Pretorius IS (2005) Yeast modulation of wine flavor. Adv Appl Microbiol 57: 131-175. doi: 10.1016/S0065-2164(05)57005-9
![]() |
[39] | Ugliano MA, Henschke P, Herderich M, et al. (2007) Nitrogen management is critical for wine flavour and style. Aust N Z Wine Ind J 22: 24-30. |
[40] |
Vilanova M, Pretorius IS, Henschke PA (2015) Influence of diammonium phosphate addition to fermentation on wine biologicals. Processing and impact on active components in Food San Diego: Academic Press, 483-491. doi: 10.1016/B978-0-12-404699-3.00058-5
![]() |
[41] |
Carrau FM, Medina K, Farina L, et al. (2008) Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains. FEMS Yeast Res 8: 1196-1207. doi: 10.1111/j.1567-1364.2008.00412.x
![]() |
[42] |
Verstrepen KJ, Van Laere SD, Vanderhaegen BM, et al. (2003) Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol 69: 5228-5237. doi: 10.1128/AEM.69.9.5228-5237.2003
![]() |
[43] | Lambrechts MG, Pretorius IS (2000) Yeast and its importance to wine aroma—A Review. S Afri J Enology Viti 21: 97-129. |
[44] |
Ruiz J, Kiene F, Belda I, et al. (2019) Effects on varietal aromas during wine making: a review of the impact of varietal aromas on the flavor of wine. Appl Microbiol Biotechnol 103: 7425-7450. doi: 10.1007/s00253-019-10008-9
![]() |
[45] |
Saerens SM, Delvaux FR, Verstrepen KJ, et al. (2010) Production and biological function of volatile esters in Saccharomyces cerevisiae. Microb Biotechnol 3: 165-177. doi: 10.1111/j.1751-7915.2009.00106.x
![]() |
[46] |
Mason AB, Dufour JP (2000) Alcohol acetyltransferases and the significance of ester synthesis in yeast. Yeast 16: 1287-1298. doi: 10.1002/1097-0061(200010)16:14<1287::AID-YEA613>3.0.CO;2-I
![]() |
[47] |
Lilly M, Lambrechts MG, Pretorius IS (2000) Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Appl Environ Microbiol 66: 744-753. doi: 10.1128/AEM.66.2.744-753.2000
![]() |
[48] |
Lilly M, Bauer FF, Lambrechts MG, et al. (2006) The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast 23: 641-659. doi: 10.1002/yea.1382
![]() |
[49] |
Kruis AJ, Levisson M, Mars AE, et al. (2017) Ethyl acetate production by the elusive alcohol acetyltransferase from yeast. Metab Eng 41: 92-101. doi: 10.1016/j.ymben.2017.03.004
![]() |
[50] |
Kruis AJ, Gallone B, Jonker T, et al. (2018) Contribution of Eat1 and Other Alcohol Acyltransferases to Ester Production in Saccharomyces cerevisiae. Front Microbiol 9: 3202. doi: 10.3389/fmicb.2018.03202
![]() |
[51] |
Saerens SM, Verstrepen KJ, Van Laere SD, et al. (2006) The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J Biol Chem 281: 4446-4456. doi: 10.1074/jbc.M512028200
![]() |
[52] |
Fukuda K, Kuwahata O, Kiyokawa Y, et al. (1996) Molecular cloning and nucleotide sequence of the isoamyl acetate-hydrolyzing esterase gene (EST2) from Saccharomyces cerevisiae. J Ferment Bioeng 82: 8-15. doi: 10.1016/0922-338X(96)89447-5
![]() |
[53] |
Fukuda K, Yamamoto N, Kiyokawa Y, et al. (1998) Balance of activities of alcohol acetyltransferase and esterase in Saccharomyces cerevisiae is important for production of isoamyl acetate. Appl Environ Microbiol 64: 4076-4078. doi: 10.1128/AEM.64.10.4076-4078.1998
![]() |
[54] |
Liu S-Q, Pilone GJ (2000) An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int J Food Sci Technol 35: 49-61. doi: 10.1046/j.1365-2621.2000.00341.x
![]() |
[55] |
Styger G, Prior B, Bauer FF (2011) Wine flavor and aroma. J Ind Microbiol Biotechnol 38: 1145-1159. doi: 10.1007/s10295-011-1018-4
![]() |
[56] |
de Assis LJ, Zingali RB, Masuda CA, et al. (2013) Pyruvate decarboxylase activity is regulated by the Ser/Thr protein phosphatase Sit4p in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 13: 518-528. doi: 10.1111/1567-1364.12052
![]() |
[57] |
Eglinton J, Griesser M, Henschke P, et al. (2004) Yeast-mediated formation of pigmented polymers in red wine. Red wine color American Chemical Society, 7-21. doi: 10.1021/bk-2004-0886.ch002
![]() |
[58] |
Klosowski G, Mikulski D, Rolbiecka A, et al. (2017) Changes in the concentration of carbonyl compounds during the alcoholic fermentation process carried out with Saccharomyces cerevisiae yeast. Pol J Microbiol 66: 327-334. doi: 10.5604/01.3001.0010.4861
![]() |
[59] |
Romano P, Suzzi G, Turbanti L, et al. (1994) Acetaldehyde production in Saccharomyces cerevisiae wine yeasts. FEMS Microbiol Lett 118: 213-218. doi: 10.1111/j.1574-6968.1994.tb06830.x
![]() |
[60] |
Schuller D, Casal M (2005) The use of genetically modified Saccharomyces cerevisiae strains in the wine industry. Appl Microbiol Biotechnol 68: 292-304. doi: 10.1007/s00253-005-1994-2
![]() |
[61] |
Scacco A, Oliva D, Di Maio S, et al. (2012) Indigenous Saccharomyces cerevisiae strains and their influence on the quality of Cataratto, Inzolia and Grillo white wines. Food Res Int 46: 1-9. doi: 10.1016/j.foodres.2011.10.038
![]() |
[62] |
Alves Z, Melo A, Figueiredo AR, et al. (2015) Exploring the Saccharomyces cerevisiae volatile metabolome: indigenous versus commercial strains. PLoS One 10: e0143641. doi: 10.1371/journal.pone.0143641
![]() |
[63] | Álvarez-Pérez JM, Álvarez-Rodríguez ML, Campo E, et al. (2016) Selection of Saccharomyces cerevisiae strains applied to the production of Prieto Picudo Rosé wines with a different aromatic profile. S Afri J Enology Viti 35: 15. |
[64] |
Tufariello M, Chiriatti MA, Grieco F, et al. (2014) Influence of autochthonous Saccharomyces cerevisiae strains on volatile profile of Negroamaro wines. LWT - Food Sci Technol 58: 35-48. doi: 10.1016/j.lwt.2014.03.016
![]() |
[65] |
Parapouli M, Sfakianaki A, Monokrousos N, et al. (2019) Comparative transcriptional analysis of flavour-biosynthetic genes of a native Saccharomyces cerevisiae strain fermenting in its natural must environment, vs. a commercial strain and correlation of the genes' activities with the produced flavour compounds. J Biol Res (Thessalon) 26: 5. doi: 10.1186/s40709-019-0096-8
![]() |
[66] |
Romano P, Capece A (2017) Wine microbiology. Starter Cultures in Food Production 255-282. doi: 10.1002/9781118933794.ch13
![]() |
[67] |
Bokulich NA, Thorngate JH, Richardson PM, et al. (2014) Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc Natl Acad Sci USA 111: E139-148. doi: 10.1073/pnas.1317377110
![]() |
[68] | Ciani M, Morales P, Comitini F, et al. (2016) Non-conventional yeast species for lowering ethanol content of wines. Front Microbiol 7: 642. |
[69] |
Maturano YP, Assof M, Fabani MP, et al. (2015) Enzymatic activities produced by mixed Saccharomyces and non-Saccharomyces cultures: relationship with wine volatile composition. Antonie Van Leeuwenhoek 108: 1239-1256. doi: 10.1007/s10482-015-0578-0
![]() |
[70] |
Tristezza M, Tufariello M, Capozzi V, et al. (2016) The oenological potential of hanseniaspora uvarum in simultaneous and sequential co-fermentation with Saccharomyces cerevisiae for industrial wine production. Front Microbiol 7: 670. doi: 10.3389/fmicb.2016.00670
![]() |
[71] |
Viana F, Belloch C, Valles S, et al. (2011) Monitoring a mixed starter of Hanseniaspora vineae-Saccharomyces cerevisiae in natural must: impact on 2-phenylethyl acetate production. Int J Food Microbiol 151: 235-240. doi: 10.1016/j.ijfoodmicro.2011.09.005
![]() |
[72] |
Medina K, Boido E, Farina L, et al. (2013) Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae. Food Chem 141: 2513-2521. doi: 10.1016/j.foodchem.2013.04.056
![]() |
[73] |
Kim DH, Hong YA, Park HD (2008) Co-fermentation of grape must by Issatchenkia orientalis and Saccharomyces cerevisiae reduces the malic acid content in wine. Biotechnol Lett 30: 1633-1638. doi: 10.1007/s10529-008-9726-1
![]() |
[74] |
Gobbi M, Comitini F, Domizio P, et al. (2013) Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: a strategy to enhance acidity and improve the overall quality of wine. Food Microbiol 33: 271-281. doi: 10.1016/j.fm.2012.10.004
![]() |
[75] |
Comitini F, Gobbi M, Domizio P, et al. (2011) Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol 28: 873-882. doi: 10.1016/j.fm.2010.12.001
![]() |
[76] |
Sadineni V, Kondapalli N, Obulam VSR (2011) Effect of co-fermentation with Saccharomyces cerevisiae and Torulaspora delbrueckii or Metschnikowia pulcherrima on the aroma and sensory properties of mango wine. Ann Microbiol 62: 1353-1360. doi: 10.1007/s13213-011-0383-6
![]() |
[77] |
Parapouli M, Hatziloukas E, Drainas C, et al. (2010) The effect of Debina grapevine indigenous yeast strains of Metschnikowia and Saccharomyces on wine flavour. J Ind Microbiol Biotechnol 37: 85-93. doi: 10.1007/s10295-009-0651-7
![]() |
[78] | Saez JS, Lopes CA, Kirs VC, et al. (2010) Enhanced volatile phenols in wine fermented with Saccharomyces cerevisiae and spoiled with Pichia guilliermondii and Dekkera bruxellensis. Lett Appl Microbiol 51: 170-176. |
[79] |
Azzolini M, Fedrizzi B, Tosi E, et al. (2012) Effects of Torulaspora delbrueckii and Saccharomyces cerevisiae mixed cultures on fermentation and aroma of Amarone wine. European Food Res Technol 235: 303-313. doi: 10.1007/s00217-012-1762-3
![]() |
[80] |
Renault P, Coulon J, de Revel G, et al. (2015) Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement. Int J Food Microbiol 207: 40-48. doi: 10.1016/j.ijfoodmicro.2015.04.037
![]() |
[81] |
Izquierdo Cañas PM, García-Romero E, Heras Manso JM, et al. (2014) Influence of sequential inoculation of Wickerhamomyces anomalus and Saccharomyces cerevisiae in the quality of red wines. European Food Res Technol 239: 279-286. doi: 10.1007/s00217-014-2220-1
![]() |
[82] |
Kontoudakis N, Gonzalez E, Gil M, et al. (2011) Influence of wine pH on changes in color and polyphenol composition induced by micro-oxygenation. J Agric Food Chem 59: 1974-1984. doi: 10.1021/jf103038g
![]() |
[83] |
Ozturk B, Anli E (2014) Different techniques for reducing alcohol levels in wine: A review. BIO Web of Conferences 3: 02012. doi: 10.1051/bioconf/20140302012
![]() |
[84] |
García-Martín N, Perez-Magariño S, Ortega-Heras M, et al. (2010) Sugar reduction in musts with nanofiltration membranes to obtain low alcohol-content wines. Sep Purif Technol 76: 158-170. doi: 10.1016/j.seppur.2010.10.002
![]() |
[85] |
Salgado CM, Palacio L, Prádanos P, et al. (2015) Comparative study of red grape must nanofiltration: Laboratory and pilot plant scales. Food Bioprod Process 94: 610-620. doi: 10.1016/j.fbp.2014.08.007
![]() |
[86] | Mira H, de Pinho MN, Guiomar A, et al. (2017) Membrane processing of grape must for control of the alcohol content in fermented beverages. J Membr Sci Res 3: 308-312. |
[87] |
Barrio E, González SS, Arias A, et al. (2006) Molecular mechanisms involved in the adaptive evolution of industrial yeasts. Yeasts in food and beverages Berlin, Heidelberg: Springer Berlin Heidelberg, 153-174. doi: 10.1007/978-3-540-28398-0_6
![]() |
[88] |
Alonso-Del-Real J, Contreras-Ruiz A, Castiglioni GL, et al. (2017) The use of mixed populations of Saccharomyces cerevisiae and S. kudriavzevii to reduce ethanol content in wine: limited aeration, inoculum proportions, and sequential inoculation. Front Microbiol 8: 2087. doi: 10.3389/fmicb.2017.02087
![]() |
[89] | Wang C, Mas A, Esteve-Zarzoso B (2016) The interaction between Saccharomyces cerevisiae and non-Saccharomyces yeast during alcoholic fermentation is species and strain specific. Front Microbiol 7: 502. |
[90] |
Curiel JA, Morales P, Gonzalez R, et al. (2017) Different non-Saccharomyces yeast species stimulate nutrient consumption in S. cerevisiae mixed cultures. Front Microbiol 8: 2121. doi: 10.3389/fmicb.2017.02121
![]() |
[91] |
Branco P, Francisco D, Chambon C, et al. (2014) Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions. Appl Microbiol Biotechnol 98: 843-853. doi: 10.1007/s00253-013-5411-y
![]() |
[92] |
Perez-Torrado R, Rantsiou K, Perrone B, et al. (2017) Ecological interactions among Saccharomyces cerevisiae strains: insight into the dominance phenomenon. Sci Rep 7: 43603. doi: 10.1038/srep43603
![]() |
[93] |
Longo R, Blackman JW, Torley PJ, et al. (2017) Changes in volatile composition and sensory attributes of wines during alcohol content reduction. J Sci Food Agric 97: 8-16. doi: 10.1002/jsfa.7757
![]() |
[94] |
Heitmann M, Zannini E, Arendt E (2018) Impact of Saccharomyces cerevisiae metabolites produced during fermentation on bread quality parameters: A review. Crit Rev Food Sci Nutr 58: 1152-1164. doi: 10.1080/10408398.2016.1244153
![]() |
[95] |
Joseph R, Bachhawat AK (2014) Yeasts: Production and Commercial Uses. Encyclopedia of Food Microbiology, 2 Eds Oxford: Academic Press, 823-830. doi: 10.1016/B978-0-12-384730-0.00361-X
![]() |
[96] |
Nielsen J (2019) Yeast systems biology: model organism and cell factory. Biotechnol J 14: e1800421. doi: 10.1002/biot.201800421
![]() |
[97] | Money NP (2018) The Rise of Yeast: How the Sugar Fungus Shaped Civilization Oxford University Press. |
[98] |
Carbonetto B, Ramsayer J, Nidelet T, et al. (2018) Bakery yeasts, a new model for studies in ecology and evolution. Yeast 35: 591-603. doi: 10.1002/yea.3350
![]() |
[99] |
Duan SF, Han PJ, Wang QM, et al. (2018) The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nat Commun 9: 2690. doi: 10.1038/s41467-018-05106-7
![]() |
[100] |
Menezes R, Tenreiro S, Macedo D, et al. (2015) From the baker to the bedside: yeast models of Parkinson's disease. Microb Cell 2: 262-279. doi: 10.15698/mic2015.08.219
![]() |
[101] |
Hidalgo A, Brandolini A (2014) BREAD | Bread from Wheat Flour. Encyclopedia of Food Microbiology, 2Eds Oxford: Academic Press, 303-308. doi: 10.1016/B978-0-12-384730-0.00044-6
![]() |
[102] |
De Vuyst L, Harth H, Van Kerrebroeck S, et al. (2016) Yeast diversity of sourdoughs and associated metabolic properties and functionalities. Int J Food Microbiol 239: 26-34. doi: 10.1016/j.ijfoodmicro.2016.07.018
![]() |
[103] |
Legras JL, Merdinoglu D, Cornuet JM, et al. (2007) Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol Ecol 16: 2091-2102. doi: 10.1111/j.1365-294X.2007.03266.x
![]() |
[104] |
Albertin W, Marullo P, Aigle M, et al. (2009) Evidence for autotetraploidy associated with reproductive isolation in Saccharomyces cerevisiae: towards a new domesticated species. J Evol Biol 22: 2157-2170. doi: 10.1111/j.1420-9101.2009.01828.x
![]() |
[105] |
Peter J, De Chiara M, Friedrich A, et al. (2018) Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556: 339-344. doi: 10.1038/s41586-018-0030-5
![]() |
[106] |
De Bellis P, Rizzello CG, Sisto A, et al. (2019) Use of a selected Leuconostoc Citreum strain as a starter for making a ‘Yeast-Free’ bread. Foods 8: 70. doi: 10.3390/foods8020070
![]() |
[107] |
Heitmann M, Zannini E, Arendt EK (2015) Impact of different beer yeasts on wheat dough and bread quality parameters. J Cereal Sci $V 63: 49-56. doi: 10.1016/j.jcs.2015.02.008
![]() |
[108] |
Schwan RF, Wheals AE (2004) The microbiology of cocoa fermentation and its role in chocolate quality. Crit Rev Food Sci Nutr 44: 205-221. doi: 10.1080/10408690490464104
![]() |
[109] |
De Vuyst L, Weckx S (2016) The cocoa bean fermentation process: from ecosystem analysis to starter culture development. J Appl Microbiol 121: 5-17. doi: 10.1111/jam.13045
![]() |
[110] |
Aprotosoaie AC, Luca SV, Miron A (2016) Flavor chemistry of Cocoa and Cocoa products-an overview. Compr Rev Food Sci Food Saf 15: 73-91. doi: 10.1111/1541-4337.12180
![]() |
[111] |
Gutiérrez TJ (2017) State-of-the-Art Chocolate manufacture: a review. Compr Rev Food Sci Food Saf 16: 1313-1344. doi: 10.1111/1541-4337.12301
![]() |
[112] |
Papalexandratou Z, De Vuyst L (2011) Assessment of the yeast species composition of cocoa bean fermentations in different cocoa-producing regions using denaturing gradient gel electrophoresis. FEMS Yeast Res 11: 564-574. doi: 10.1111/j.1567-1364.2011.00747.x
![]() |
[113] |
Meersman E, Steensels J, Struyf N, et al. (2016) Tuning chocolate flavor through development of thermotolerant Saccharomyces cerevisiae starter cultures with increased acetate ester production. Appl Environ Microbiol 82: 732-746. doi: 10.1128/AEM.02556-15
![]() |
[114] |
Meersman E, Steensels J, Paulus T, et al. (2015) Breeding strategy to generate robust yeast starter cultures for Cocoa pulp fermentations. Appl Environ Microbiol 81: 6166-6176. doi: 10.1128/AEM.00133-15
![]() |
[115] |
Ho VT, Zhao J, Fleet G (2014) Yeasts are essential for cocoa bean fermentation. Int J Food Microbiol 174: 72-87. doi: 10.1016/j.ijfoodmicro.2013.12.014
![]() |
[116] |
Ho VT, Zhao J, Fleet G (2015) The effect of lactic acid bacteria on cocoa bean fermentation. Int J Food Microbiol 205: 54-67. doi: 10.1016/j.ijfoodmicro.2015.03.031
![]() |
[117] |
Ho VTT, Fleet GH, Zhao J (2018) Unravelling the contribution of lactic acid bacteria and acetic acid bacteria to cocoa fermentation using inoculated organisms. Int J Food Microbiol 279: 43-56. doi: 10.1016/j.ijfoodmicro.2018.04.040
![]() |
[118] |
Schwan RF (1998) Cocoa fermentations conducted with a defined microbial cocktail inoculum. Appl Environ Microbiol 64: 1477-1483. doi: 10.1128/AEM.64.4.1477-1483.1998
![]() |
[119] |
Jespersen L, Nielsen DS, Honholt S, et al. (2005) Occurrence and diversity of yeasts involved in fermentation of West African cocoa beans. FEMS Yeast Res 5: 441-453. doi: 10.1016/j.femsyr.2004.11.002
![]() |
[120] |
Daniel HM, Vrancken G, Takrama JF, et al. (2009) Yeast diversity of Ghanaian cocoa bean heap fermentations. FEMS Yeast Res 9: 774-783. doi: 10.1111/j.1567-1364.2009.00520.x
![]() |
[121] |
Meersman E, Steensels J, Mathawan M, et al. (2013) Detailed analysis of the microbial population in Malaysian spontaneous cocoa pulp fermentations reveals a core and variable microbiota. PLoS One 8: e81559. doi: 10.1371/journal.pone.0081559
![]() |
[122] |
Ramos CL, Dias DR, Miguel M, et al. (2014) Impact of different cocoa hybrids (Theobroma cacao L.) and S. cerevisiae UFLA CA11 inoculation on microbial communities and volatile compounds of cocoa fermentation. Food Res Int 64: 908-918. doi: 10.1016/j.foodres.2014.08.033
![]() |
[123] |
Batista NN, Ramos CL, Ribeiro DD, et al. (2015) Dynamic behavior of Saccharomyces cerevisiae, Pichia kluyveri and Hanseniaspora uvarum during spontaneous and inoculated cocoa fermentations and their effect on sensory characteristics of chocolate. LWT-Food Sci Technol 63: 221-227. doi: 10.1016/j.lwt.2015.03.051
![]() |
[124] |
Mota-Gutierrez J, Botta C, Ferrocino I, et al. (2018) Dynamics and biodiversity of bacterial and yeast communities during fermentation of Cocoa beans. Appl Environ Microbiol 84: e01164-01118. doi: 10.1128/AEM.01164-18
![]() |
[125] |
Ardhana MM, Fleet GH (2003) The microbial ecology of cocoa bean fermentations in Indonesia. Int J Food Microbiol 86: 87-99. doi: 10.1016/S0168-1605(03)00081-3
![]() |
[126] |
Moreira IMdV, Miguel MGdCP, Duarte WF, et al. (2013) Microbial succession and the dynamics of metabolites and sugars during the fermentation of three different cocoa (Theobroma cacao L.) hybrids. Food Res Int 54: 9-17. doi: 10.1016/j.foodres.2013.06.001
![]() |
[127] |
Mota-Gutierrez J, Barbosa-Pereira L, Ferrocino I, et al. (2019) Traceability of functional volatile compounds generated on inoculated Cocoa fermentation and its potential health benefits. Nutrients 11: 884. doi: 10.3390/nu11040884
![]() |
[128] |
Castro-Alayo EM, Idrogo-Vasquez G, Siche R, et al. (2019) Formation of aromatic compounds precursors during fermentation of Criollo and Forastero cocoa. Heliyon 5: e01157. doi: 10.1016/j.heliyon.2019.e01157
![]() |
[129] |
Buamah R, Dzogbefia V, Oldham J (1997) Pure yeast culture fermentation of cocoa (Theobroma cacao L): effect on yield of sweatings and cocoa bean quality. World J Microbiol Biotechnol 13: 457-462. doi: 10.1023/A:1018536519325
![]() |
[130] |
Meersman E, Struyf N, Kyomugasho C, et al. (2017) Characterization and degradation of pectic polysaccharides in cocoa pulp. J Agric Food Chem 65: 9726-9734. doi: 10.1021/acs.jafc.7b03854
![]() |
[131] |
Lefeber T, Papalexandratou Z, Gobert W, et al. (2012) On-farm implementation of a starter culture for improved cocoa bean fermentation and its influence on the flavour of chocolates produced thereof. Food Microbiol 30: 379-392. doi: 10.1016/j.fm.2011.12.021
![]() |
[132] |
Visintin S, Ramos L, Batista N, et al. (2017) Impact of Saccharomyces cerevisiae and Torulaspora delbrueckii starter cultures on cocoa beans fermentation. Int J Food Microbiol 257: 31-40. doi: 10.1016/j.ijfoodmicro.2017.06.004
![]() |
[133] |
Magalhaes da Veiga Moreira I, de Figueiredo Vilela L, da Cruz Pedroso Miguel MG, et al. (2017) Impact of a microbial cocktail used as a starter culture on cocoa fermentation and chocolate flavor. Molecules 22. doi: 10.3390/molecules22050766
![]() |
[134] |
Menezes AGT, Batista NN, Ramos CL, et al. (2016) Investigation of chocolate produced from four different Brazilian varieties of cocoa ( Theobroma cacao L.) inoculated with Saccharomyces cerevisiae. Food Res Int 81: 83-90. doi: 10.1016/j.foodres.2015.12.036
![]() |
[135] |
Assi-Clair BJ, Koné MK, Kouamé K, et al. (2019) Effect of aroma potential of Saccharomyces cerevisiae fermentation on the volatile profile of raw cocoa and sensory attributes of chocolate produced thereof. European Food Res Technol 245: 1459-1471. doi: 10.1007/s00217-018-3181-6
![]() |
[136] |
Songstad D, Lakshmanan P, Chen J, et al. (2009) Historical perspective of biofuels: learning from the past to rediscover the future. In Vitro Cell Dev Biol: Plant 45: 189-192. doi: 10.1007/s11627-009-9218-6
![]() |
[137] |
Guo M, Song W, Buhain J (2015) Bioenergy and biofuels: history, status, and perspective. Renewable Sustainable Energy Rev 42: 712-725. doi: 10.1016/j.rser.2014.10.013
![]() |
[138] |
Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Applied energy 86: 2273-2282. doi: 10.1016/j.apenergy.2009.03.015
![]() |
[139] |
John RP, Anisha GS, Nampoothiri KM, et al. (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102: 186-193. doi: 10.1016/j.biortech.2010.06.139
![]() |
[140] |
Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Progress in energy and combustion science 37: 52-68. doi: 10.1016/j.pecs.2010.01.003
![]() |
[141] | Mohd Azhar SH, Abdulla R, Jambo SA, et al. (2017) Yeasts in sustainable bioethanol production: A review. Biochem Biophys Rep 10: 52-61. |
[142] | Pilgrim C, Vierhout R (2017) Status of the worldwide fuel alcohol industry. The alcohol textbook 1-22. |
[143] |
Walker GM, Walker RS (2018) Enhancing yeast alcoholic fermentations. Adv Appl Microbiol 68: 87-129. doi: 10.1016/bs.aambs.2018.05.003
![]() |
[144] |
Walker GM (2004) Metals in yeast fermentation processes. Adv Appl Microbiol 54: 197-229. doi: 10.1016/S0065-2164(04)54008-X
![]() |
[145] |
Flores JA, Gschaedler A, Amaya-Delgado L, et al. (2013) Simultaneous saccharification and fermentation of Agave tequilana fructans by Kluyveromyces marxianus yeasts for bioethanol and tequila production. Bioresour Technol 146: 267-273. doi: 10.1016/j.biortech.2013.07.078
![]() |
[146] |
Passoth V, Blomqvist J, Schnurer J (2007) Dekkera bruxellensis and Lactobacillus vini form a stable ethanol-producing consortium in a commercial alcohol production process. Appl Environ Microbiol 73: 4354-4356. doi: 10.1128/AEM.00437-07
![]() |
[147] |
Liang M, Damiani A, He QP, et al. (2013) Elucidating xylose metabolism of Scheffersomyces stipitis for lignocellulosic ethanol production. ACS Sustainable Chem Eng 2: 38-48. doi: 10.1021/sc400265g
![]() |
[148] | Obata O, Akunna J, Bockhorn H, et al. (2016) Ethanol production from brown seaweed using non-conventional yeasts. Bioethanology 2: 134-145. |
[149] |
Nandy SK, Srivastava RK (2018) A review on sustainable yeast biotechnological processes and applications. Microbiol Res 207: 83-90. doi: 10.1016/j.micres.2017.11.013
![]() |
[150] | Giudici P, Zambonelli C, Kunkee R (1993) Increased production of n-propanol in wine by yeast strains having an impaired ability to form hydrogen sulfide. Am J Enol Vitic 44: 17-21. |
[151] | Nishimura Y (2016) 1-Propanol production of S. cerevisiae engineering 2-Ketobutyrate biosynthetic pathway. |
[152] |
Buijs NA, Siewers V, Nielsen J (2013) Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr Opin Chem Biol 17: 480-488. doi: 10.1016/j.cbpa.2013.03.036
![]() |
[153] |
Schadeweg V, Boles E (2016) n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. Biotechnol biofuels 9: 44. doi: 10.1186/s13068-016-0456-7
![]() |
[154] | Anthony LC, Huang LL, Rick WY (2014) Production of isobutanol in yeast mitochondria. Google Patents. |
[155] | Festel G, Boles E, Weber C, et al. (2013) Fermentative production of isobutanol with yeast. Google Patents. |
[156] | Urano J, Dundon CA (2012) Cytosolic isobutanol pathway localization for the production of isobutanol. Google Patents. |
[157] |
Walker GM (2014) Fermentation (Industrial): media for industrial fermentations. Encyclopedia of food microbiology, 2Eds Academic Press, 769-777. doi: 10.1016/B978-0-12-384730-0.00107-5
![]() |
[158] |
Alvira P, Tomas-Pejo E, Ballesteros M, et al. (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour Technol 101: 4851-4861. doi: 10.1016/j.biortech.2009.11.093
![]() |
[159] |
Yang B, Dai Z, Ding SY, et al. (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2: 421-449. doi: 10.4155/bfs.11.116
![]() |
[160] | Canilha L, Chandel AK, Suzane dos Santos Milessi T, et al. (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. BioMed Res Int 2012. |
[161] | Chandel AK, Chan E, Rudravaram R, et al. (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2: 14-32. |
[162] |
Hadiyanto H, Ariyanti D, Aini A, et al. (2013) Batch and fed-batch fermentation system on ethanol production from whey using Kluyveromyces marxianus. Int J Renewable Energy Dev 2: 127-131. doi: 10.14710/ijred.2.3.127-131
![]() |
[163] | Cheng NG, Hasan M, Kumoro AC, et al. (2009) Production of ethanol by fed-batch fermentation. Pertanika J Sci Technol 17: 399-408. |
[164] | Ivanova V, Petrova P, Hristov J (2011) Application in the ethanol fermentation of immobilized yeast cells in matrix of alginate/magnetic nanoparticles, on chitosan-magnetite microparticles and cellulose-coated magnetic nanoparticles. arXiv preprint arXiv 11050619. |
[165] | Jain A, Chaurasia SP (2014) Bioethanol production in membrane bioreactor (MBR) system: a review. Int J Environ Res Dev 4: 387-394. |
[166] | Kang Q, Appels L, Tan T, et al. (2014) Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci World J 2014: 298153. |
[167] |
Caspeta L, Chen Y, Ghiaci P, et al. (2014) Biofuels. Altered sterol composition renders yeast thermotolerant. Science 346: 75-78. doi: 10.1126/science.1258137
![]() |
[168] |
Phisalaphong M, Srirattana N, Tanthapanichakoon W (2006) Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation. Biochem Eng J 28: 36-43. doi: 10.1016/j.bej.2005.08.039
![]() |
[169] |
Lam FH, Ghaderi A, Fink GR, et al. (2014) Biofuels. Engineering alcohol tolerance in yeast. Science 346: 71-75. doi: 10.1126/science.1257859
![]() |
[170] |
Trofimova Y, Walker G, Rapoport A (2010) Anhydrobiosis in yeast: influence of calcium and magnesium ions on yeast resistance to dehydration–rehydration. FEMS Microbiol Lett 308: 55-61. doi: 10.1111/j.1574-6968.2010.01989.x
![]() |
[171] |
Medina VG, Almering MJ, van Maris AJ, et al. (2010) Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol 76: 190-195. doi: 10.1128/AEM.01772-09
![]() |
[172] |
Lopes ML, de Lima Paulillo SC, Godoy A, et al. (2016) Ethanol production in Brazil: a bridge between science and industry. Braz J Microbiol 47: 64-76. doi: 10.1016/j.bjm.2016.10.003
![]() |
[173] |
Carvalho-Netto OV, Carazzolle MF, Mofatto LS, et al. (2015) Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production. Microb Cell Fact 14: 13. doi: 10.1186/s12934-015-0196-6
![]() |
[174] |
Steensels J, Snoek T, Meersman E, et al. (2014) Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev 38: 947-995. doi: 10.1111/1574-6976.12073
![]() |
[175] |
Basso LC, de Amorim HV, de Oliveira AJ, et al. (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8: 1155-1163. doi: 10.1111/j.1567-1364.2008.00428.x
![]() |
[176] |
Kim JH, Ryu J, Huh IY, et al. (2014) Ethanol production from galactose by a newly isolated Saccharomyces cerevisiae KL17. Bioprocess Biosyst Eng 37: 1871-1878. doi: 10.1007/s00449-014-1161-1
![]() |
[177] |
Deparis Q, Claes A, Foulquie-Moreno MR, et al. (2017) Engineering tolerance to industrially relevant stress factors in yeast cell factories. FEMS Yeast Res 17. doi: 10.1093/femsyr/fox036
![]() |
[178] |
Demeke MM, Foulquie-Moreno MR, Dumortier F, et al. (2015) Rapid evolution of recombinant Saccharomyces cerevisiae for xylose fermentation through formation of extra-chromosomal circular DNA. PLoS Genet 11: e1005010. doi: 10.1371/journal.pgen.1005010
![]() |
[179] | Wright SA (2017) Worldwide distilled spirits production. The alcohol textbook, 6 Eds 23-39. |
[180] |
Kumari R, Pramanik K (2013) Bioethanol production from Ipomoea carnea biomass using a potential hybrid yeast strain. Appl Biochem Biotechnol 171: 771-785. doi: 10.1007/s12010-013-0398-5
![]() |
[181] |
Ariyajaroenwong P, Laopaiboon P, Jaisil P, et al. (2012) Repeated-batch ethanol production from sweet sorghum juice by Saccharomyces cerevisiae immobilized on sweet sorghum stalks. Energies 5: 1215-1228. doi: 10.3390/en5041215
![]() |
[182] | Argyros DA, Stonehouse EA (2017) Yeast train improvement for alcohol production. The alcohol textbook 287-297. |
[183] | Ingledew WM (2017) Very high gravity (VHG) and associated new technologies for fuel alcohol production. The alcohol textbook 363-376. |
[184] |
Matsushika A, Inoue H, Kodaki T, et al. (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84: 37-53. doi: 10.1007/s00253-009-2101-x
![]() |
1. | Halyna V. Tkachuk, Pavlo V. Merzlykin, Ivan I. Donchev, STEM project design in computer microelectronics education, 2025, 2833-5473, 10.55056/cte.929 |