Obesity is a complex and multifactorial disease marker, which has become a major threat to cardiovascular health. We sought to assess the correlation of obesity and other cardio-metabolic risk factors in patients seen at the outpatient specialist clinic in Ghana.
A prospective cross-sectional study was conducted on 395 patients at Precise Specialist Clinic in Kumasi, Ghana. A standardized questionnaire was used to obtain demographic, anthropometric and clinical data of patients. Fisher's exact test for statistical significance at a 95% confidence interval was used to evaluate associations between categorical variables. The associations between obesity indices and cardiovascular disease risk factors were analyzed by Pearson's correlation.
Of the 395 participants, 187 were males and 208 were females. The mean (± standard deviation) age of study participants was 59.29 (± 13.93); more than half of the participants were between 50 and 69 years. The mean BMI of male participants was significantly lower than the mean BMI of female participants (28.18 kg/m2 vs 31.16 kg/m2, P-value < 0.0001). Gender was significantly associated with the weight categories (P = 0.0144). Obesity was seen more in females (49.0%) than in males (35.8%). The Pearson correlation analysis also showed a significant positive correlation between obesity, increasing systolic blood pressure (r = 0.1568, P-value = 0.0018) and increasing diastolic blood pressure (r = 0.2570, P-value < 0.0001).
Obesity was found to be significantly associated with female gender, increasing age, increasing systolic blood pressure, and increasing diastolic blood pressure. Efforts to step-up preventive measures to reduce the increasing prevalence of obesity in Ghana are highly recommended.
Citation: Isaac Kofi Owusu, Emmanuel Acheamfour-Akowuah, Lois Amoah-Kumi, Yaw Amo Wiafe, Stephen Opoku, Enoch Odame Anto. The correlation between obesity and other cardiovascular disease risk factors among adult patients attending a specialist clinic in Kumasi. Ghana[J]. AIMS Medical Science, 2023, 10(1): 24-36. doi: 10.3934/medsci.2023003
[1] | Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of ψ-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122 |
[2] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[3] | Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704 |
[4] | Muath Awadalla, Manigandan Murugesan, Subramanian Muthaiah, Bundit Unyong, Ria H Egami . Existence results for a system of sequential differential equations with varying fractional orders via Hilfer-Hadamard sense. AIMS Mathematics, 2024, 9(4): 9926-9950. doi: 10.3934/math.2024486 |
[5] | Subramanian Muthaiah, Manigandan Murugesan, Muath Awadalla, Bundit Unyong, Ria H. Egami . Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system. AIMS Mathematics, 2024, 9(6): 16203-16233. doi: 10.3934/math.2024784 |
[6] | M. Latha Maheswari, K. S. Keerthana Shri, Mohammad Sajid . Analysis on existence of system of coupled multifractional nonlinear hybrid differential equations with coupled boundary conditions. AIMS Mathematics, 2024, 9(6): 13642-13658. doi: 10.3934/math.2024666 |
[7] | M. Manigandan, Subramanian Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran . Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. AIMS Mathematics, 2022, 7(1): 723-755. doi: 10.3934/math.2022045 |
[8] | Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177 |
[9] | Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013 |
[10] | Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi . Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018 |
Obesity is a complex and multifactorial disease marker, which has become a major threat to cardiovascular health. We sought to assess the correlation of obesity and other cardio-metabolic risk factors in patients seen at the outpatient specialist clinic in Ghana.
A prospective cross-sectional study was conducted on 395 patients at Precise Specialist Clinic in Kumasi, Ghana. A standardized questionnaire was used to obtain demographic, anthropometric and clinical data of patients. Fisher's exact test for statistical significance at a 95% confidence interval was used to evaluate associations between categorical variables. The associations between obesity indices and cardiovascular disease risk factors were analyzed by Pearson's correlation.
Of the 395 participants, 187 were males and 208 were females. The mean (± standard deviation) age of study participants was 59.29 (± 13.93); more than half of the participants were between 50 and 69 years. The mean BMI of male participants was significantly lower than the mean BMI of female participants (28.18 kg/m2 vs 31.16 kg/m2, P-value < 0.0001). Gender was significantly associated with the weight categories (P = 0.0144). Obesity was seen more in females (49.0%) than in males (35.8%). The Pearson correlation analysis also showed a significant positive correlation between obesity, increasing systolic blood pressure (r = 0.1568, P-value = 0.0018) and increasing diastolic blood pressure (r = 0.2570, P-value < 0.0001).
Obesity was found to be significantly associated with female gender, increasing age, increasing systolic blood pressure, and increasing diastolic blood pressure. Efforts to step-up preventive measures to reduce the increasing prevalence of obesity in Ghana are highly recommended.
Fractional differential equations (FDEs) provide many mathematical models in physics, biology, economics, and chemistry, etc [1,2,3,4]. In fact, it consists of many integrals and derivative operators of non-integer orders, which generalize the theory of ordinary differentiation and integration. Hence, a more general approach is allowed to calculus and one can say that the aim of the FDEs is to consider various phenomena by studying derivatives and integrals of arbitrary orders. For intercalary specifics about the theory of FDEs, the readers are referred to the books of Kilbas et al.[2] and Podlubny [4]. In the literature, several concepts of fractional derivatives have been represented, consisting of Riemann-Liouville, Liouville-Caputo, generalized Caputo, Hadamard, Katugampola, and Hilfer derivatives. The Hilfer fractional derivative [5] extends both Riemann-Liouville and Caputo fractional derivatives. For applications of Hilfer fractional derivatives in mathematics and physics, etc see [6,7,8,9,10,11]. For recent results on boundary value problems for fractional differential equations and inclusions with the Hilfer fractional derivative see the survey paper by Ntouyas [12]. The ψ-Riemann-Liouville fractional integral and derivative operators are discussed in [1], while the ψ-Hilfer fractional derivative is discussed in [13]. Recently, the notion of a generalized proportional fractional derivative was introduced by Jarad et al. [14,15,16]. For some recent results on fractional differential equations with generalized proportional derivatives, see [17,18].
In [19], an existence result was proved via Krasnosel'ski˘i's fixed-point theorem for the following sequential boundary value problem of the form
{HDα,ς,ψ[HDβ,ς,ψp(w)ϕ(w,p(w))−n∑i=1Iνi;ψhi(w,p(w))]=Υ(w,p(w)),w∈[a,b],p(a)=0,HDb,ς,ψp(a)=0,p(b)=τp(ζ), | (1.1) |
where HDω,ς,ψ indicates the ψ-Hilfer fractional derivative of order ω∈{α,β}, with 0<α≤1, 1<β≤2, 0≤ς<1, Iνi;ψ is the ψ-Riemann–Liouville fractional integral of order νi>0, for i=1,2,…,n, hi∈C([0,1]×R,R), for i=1,2,…,n, ϕ∈C([0,1]×R,R∖{0}), Υ∈C([0,1]×R,R), τ∈R and ζ∈(a,b). In [16], the consideration of Hilfer-type generalized proportional fractional derivative operators was initiated.
Coupled systems of fractional order are also significant, as such systems appear in the mathematical models in science and engineering, such as bio-engineering [20], fractional dynamics [21], financial economics [22], etc. Coupled systems of FDEs with diverse boundary conditions have been the focus of many researches. In [23], the authors studied existence and Ulam-Hyers stability results of a coupled system of ψ-Hilfer sequential fractional differential equations. Existence and uniqueness results are derived in [24] for a coupled system of Hilfer-Hadamard fractional differential equations with fractional integral boundary conditions. Recently, in [25] a coupled system of nonlinear fractional differential equations involving the (k,ψ)-Hilfer fractional derivative operators complemented with multi-point nonlocal boundary conditions were discussed. Moreover, Samadi et al. [26] have considered a coupled system of Hilfer-type generalized proportional fractional differential equations.
In this article, motivated by the above works, we study a coupled system of ψ-Hilfer sequential generalized proportional FDEs with boundary conditions generated by the problem (1.1). More precisely, we consider the following coupled system of nonlinear proportional ψ-Hilfer sequential fractional differential equations with multi-point nonlocal boundary conditions of the form
{HDν1,ϑ1;ς;ψ[HDν2,ϑ2;ς;ψp1(w)Φ1(w,p1(w),p2(w))−n∑i=1pIηi,ς,ψHi(w,p1(w),p2(w))]=Υ1(w,p1(w),p2(w)),w∈[t1,t2],HDν3,ϑ3;ς;ψ[HDν4,ϑ4;ς;ψp1(w)Φ2(w,p1(w),p2(w))−m∑j=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))]=Υ2(w,p1(w),p2(w)),w∈[t1,t2],p1(t1)=HDν2,ϑ2;ς;ψp1(t1)=0,p1(t2)=θ1p2(ξ1),p2(t1)=HDν4,ϑ4;ς;ψp2(t1)=0,p2(t2)=θ2p1(ξ2), | (1.2) |
where HDν,ϑ1;ς;ψ denotes the ψ-Hilfer generalized proportional derivatives of order ν∈{ν1,ν2,ν3,ν4}, with parameters ϑl, 0≤ϑl≤1, l∈{1,2,3,4}, ψ is a continuous function on [t1,t2], with ψ′(w)>0, pIη,ς,ψ is the generalized proportional integral of order η>0, η∈{ηi,ηj}, θ1,θ2∈R, ξ1,ξ2∈[t1,t2], Φ1,Φ2∈C([t1,t2]×R×R,R∖{0}) and Hi,Gj,Υ1,Υ2∈C([t1,t2]×R×R,R), for i=1,2,…,n and j=1,2,…,m.
We emphasize that:
● We study a general system involving ψ-Hilfer proportional fractional derivatives.
● Our equations contain fractional derivatives of different orders as well as sums of fractional integrals of different orders.
● Our system contains nonlocal coupled boundary conditions.
● Our system covers many special cases by fixing the parameters involved in the problem. For example, taking ψ(w)=w, it will reduce to a coupled system of Hilfer sequential generalized proportional FDEs with boundary conditions, while if ς=1, it reduces to a coupled system of ψ-Hilfer sequential FDEs. Besides, by taking Φ1,Φ2=1 in the problem (1.2), then we obtain the following new coupled system of the form:
{HDν1,ϑ1;ς;ψ[HDν2,ϑ2;ς;ψp1(w)−n∑i=1pIηi,ς,ψHi(w,p1(w),p2(w))]=Υ1(w,p1(w),p2(w)),w∈[t1,t2],HDν3,ϑ3;ς;ψ[HDν4,ϑ4;ς;ψp1(w)−m∑j=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))]=Υ2(w,p1(w),p2(w)),w∈[t1,t2],p1(t1)=HDν2,ϑ2;ς;ψp1(t1)=0,p1(t2)=θ1p2(ξ1),p2(t1)=HDν4,ϑ4;ς;ψp2(t1)=0,p2(t2)=θ2p1(ξ2). |
In obtaining the existence result of the problem (1.2), first the problem (1.2) is converted into a fixed-point problem and then a generalization of Krasnosel'ski˘i's fixed-point theorem due to Burton is applied.
The structure of this article has been organized as follows: In Section 2, some necessary concepts and basic results concerning our problem are presented. The main result for the problem (1.2) is proved in Section 3, while Section 4 contains an example illustrating the obtained result.
In this section, we summarize some known definitions and lemmas needed in our results.
Definition 2.1. [17,18] Let ς∈(0,1] and ν>0. The fractional proportional integral of order ν of the continuous function F is defined by
pIν,ς,ψF(w)=1ςνΓ(ν)∫wt1eς−1ς(ψ(w)−ψ(s))(ψ(w)−ψ(s))ν−1F(s)ψ′(s)ds,t1>w. |
Definition 2.2. [17,18] Let ς∈(0,1], ν>0, and ψ(w) is a continuous function on [t1,t2], ψ′(w)>0. The generalized proportional fractional derivative of order ν of the continuous function F is defined by
(pDν,ς,ψF)(w)=(pDn,ς,ψ)ςn−νΓ(n−ν)∫wt1eς−1ς(ψ(w)−ψ(s))(ψ(w)−ψ(s))n−ν−1F(s)ψ′(s)ds, |
where n=[ρ]+1 and [ν] denotes the integer part of the real number ν, where Dn,ς,ψ=Dς,ψ⋯Dς,ψ⏟n−times.
Now the generalized Hilfer proportional fractional derivative of order ν of function F with respect to another function ψ is introduced.
Definition 2.3. [27] Let ς∈(0,1], F,ψ∈Cm([t1,t2],R) in which ψ is positive and strictly increasing with ψ′(w)≠0 for all w∈[t1,t2]. The ψ-Hilfer generalized proportional fractional derivative of order ν and type ϑ for F with respect to another function ψ is defined by
(HDν,ϑ,ς,ψF)(w)=pIϑ(n−ν),ς,ψ[pDn,ς,ψ(pI(1−ϑ)(n−ν),ς,ψF)](w), |
where n−1<ν<n and 0≤ϑ≤1.
Lemma 2.4. [27] Let m−1<ν<m,n∈N, 0<ς≤1, 0≤ϑ≤1 and m−1<γ<m such that γ=ν+mϑ−νϑ. If F∈C([t1,t2],R) and pI(m−γ,ς,ψ)F∈Cm([t1,t2],R), then
(pIν,ς,ψHDν,ϑ,ς,ψF)(w)=F(w)−n∑j=1eς−1ς(ψ(w)−ψ(t1))(ψ(w)−ψ(t1))γ−jςγ−jΓ(γ−j+1)(pIj−γ,ς,ψF)(t1). |
To prove the main result we need the following lemma, which concerns a linear variant of the ψ-Hilfer sequential proportional coupled system (1.2). This lemma plays a pivotal role in converting the nonlinear problem in system (1.2) into a fixed-point problem.
Lemma 2.5. Let 0<ν1,ν3≤1, 1<ν2,ν4≤2, 0≤ϑi≤1, γi=νi+ϑi(1−νi), i=1,3 and γj=νj+ϑj(2−νj), j=2,4, Θ=M1N2−M2N1≠0, ψ is a continuous function on [t1,t2], with ψ′(w)>0, and Q1,Q2∈C([t1,t2],R), Φ1,Φ2∈C([t1,t2]×R×R,R∖{0}) and Hi,Gj,Q1,Q2∈C([t1,t2]×R×R,R), for i=1,2,…,n and j=1,2,…,m, and pI(1−γi,ς,ψ)Qj∈Cm([t1,t2],R),i=1,2,3,4,j=1,2. Then the pair (p1,p2) is a solution of the system
{HDν1,ϑ1;ς;ψ[HDν2,ϑ2;ς;ψp1(w)Φ1(w,p1(w),p2(w))−n∑i=1pIηi,ς,ψHi(w,p1(w),p2(w))]=Q1(w),w∈[t1,t2],HDν3,ϑ3;ς;ψ[HDν4,ϑ4;ς;ψp1(w)Φ2(w,p1(w),p2(w))−m∑j=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))]=Q2(w),w∈[t1,t2],p1(t1)=HDν2,ϑ2;ς;ψp1(t1)=0,p1(t2)=θ1p2(ξ1),p2(t1)=HDν4,ϑ4;ς;ψp2(t1)=0,p2(t2)=θ2p1(ξ2), |
if and only if
p1(w)=pIν2,ς,ψΦ1(w,p1(w),p2(w))(n∑i=1pIηi,ς,ψHi(w,p1(w),p2(w))+pIν1,ς,ψQ1(w))+eς−1ς(ψ(w)−ψ(t1))(ψ(w)−ψ(t1))γ2−1Θςγ2−1Γ(γ2){N2[θ1pIν4,ς,ψΦ2(ξ1,p1(ξ1),p2(ξ1)) |
×(m∑j=1pI¯ηj,ς,ψGj(ξ1,p1(ξ1),p2(ξ1))+pIν3,ς,ψQ2(ξ1)))−pIν2,ς,ψΦ1(t2,p1(t2),p2(t2))×(n∑i=1pIηi,ς,ψHi(t2,p1(t2),p2(t2))+pIν1,ς,ψQ1(t2))]+M2[θ2pIν2,ς,ψΦ1(ξ2,p1(ξ2),p2(ξ2))×(n∑i=1pIηi,ς,ψHi(ξ2,p1(ξ2),p2(ξ2))+pIν1,ς,ψQ1(ξ2)))−pIν4,ς,ψΦ2(t2,p1(t2),p2(t2))×(m∑j=1pI¯ηj,ς,ψGj(t2,p1(t2),p2(t2))+pIν3,ς,ψQ2(t2))]} | (2.1) |
and
p2(w)=pIν4,ς,ψΦ2(w,p1(w),p2(w))(m∑j=1pIˉηj,ς,ψGj(w,p1(w),p2(w))+pIν3,ς,ψQ2(w)) |
+eς−1ς(ψ(w)−ψ(t1))(ψ(w)−ψ(t1))γ4−1Θςγ4−1Γ(γ4){N1[θ1pIν4,ς,ψΦ2(ξ1,p1(ξ1),p2(ξ1))×(m∑j=1pI¯ηj,ς,ψGj(ξ1,p1(ξ1),p2(ξ1))+pIν3,ς,ψQ2(ξ1)))−pIν2,ς,ψΦ2(t2,p1(t2),p2(t2))×(n∑i=1pIηi,ς,ψHi(t2,p1(t2),p2(t2))+pIν1,ς,ψQ1(t2))]+M1[θ2pIν2,ς,ψΦ1(ξ2,p1(ξ2),p2(ξ2))×(n∑i=1pIηi,ς,ψHi(ξ2,p1(ξ2),p2(ξ2))+pIν1,ς,ψQ1(ξ2)))−pIν4,ς,ψΦ2(t2,p1(t2),p2(t2))×(m∑j=1pI¯ηj,ς,ψGj(t2,p1(t2),p2(t2))+pIν3,ς,ψQ2(t2))]}, | (2.2) |
where
M1=eς−1ς(ψ(t2)−ψ(t1))(ψ(t2)−ψ(t1))γ2−1ςγ2−1Γ(γ2),M2=θ1eς−1ς(ψ(ξ1)−ψ(t1))(ψ(ξ1)−ψ(t1))γ4−1ςγ4−1Γ(γ4),N1=θ2eς−1ς(ψ(ξ2)−ψ(t1))(ψ(ξ2)−ψ(t1))γ2−1ςγ2−1Γ(γ2),N2=eς−1ς(ψ(t2)−ψ(t1))(ψ(t2)−ψ(t1))γ4−1ςγ4−1Γ(γ4). | (2.3) |
Proof. Due to Lemma 2.4 with m=1, we get
HDν2,ϑ2;ς;ψp1(w)Φ1(w,p1(w),p2(w))−n∑i=1pIηi,ς,ψHi(w,p1(w),p2(w))=pIν1;ς;ψQ1(w)+c0eς−1ς(ψ(w)−ψ(t1))(ψ(w)−ψ(t1))γ1−1ςγ1−1Γ(γ1),HDν4,ϑ4;ς;ψp2(w)Φ2(w,p1(w),p2(w))−m∑j=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))=pIν3;ς;ψQ2(w)+d0eς−1ς(ψ(w)−ψ(t1))(ψ(w)−ψ(t1))γ3−1ςγ3−1Γ(γ3), | (2.4) |
where c0,d0∈R. Now applying the boundary conditions
HDν2,ϑ2;ς;ψp1(t1)=HDν4,ϑ4;ς;ψp1(t1)=0, |
we get c0=d0=0. Hence
HDν2,ϑ2;ς;ψp1(w)=Φ1(w,p1(w),p2(w))(n∑i=1pIηi,ς,ψHi(w,p1(w),p2(w))+pIν1;ς;ψQ1(w)),HDν4,ϑ4;ς;ψp2(w)=Φ2(w,p1(w),p2(w))(m∑j=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))+pIν3;ς;ψQ2(w)). | (2.5) |
Now, by taking the operators pIν2,ς,ψ and pIν4,ς,ψ into both sides of (2.5) and using Lemma 2.4, we get
p1(w)=pIν2;ς;ψΦ1(w,p1(w),p2(w))(n∑i=1pIηi,ς,ψHi(w,p1(w),p2(w))+pIν1;ς;ψQ1(w))+c1eς−1ς(ψ(w)−ψ(t1))(ψ(w)−ψ(t1))γ2−1ςγ2−1Γ(γ2)+c2eς−1ς(ψ(w)−ψ(t1))(ψ(w)−ψ(t1))γ2−2ςγ2−2Γ(γ2−1),p2(w)=pIν4;ς;ψΦ2(w,p1(w),p2(w))(m∑j=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))+pIν3;ς;ψQ2(w))+d1eς−1ς(ψ(w)−ψ(t1))(ψ(w)−ψ(t1))γ4−1ςγ4−1Γ(γ4)+d2eς−1ς(ψ(w)−ψ(t1))(ψ(w)−ψ(t1))γ4−2ςγ4−2Γ(γ4−1). | (2.6) |
Applying the conditions p1(t1)=p2(t1)=0 in (2.6), we get c2=d2=0 since γ2∈[ν2,2] and γ4∈[ν4,2]. Thus we have
p1(w)=pIν2;ς;ψ(Φ1(w,p1(w),p2(w))(n∑i=1pIηi,ς,ψHi(w,p1(w),p2(w))+pIν1;ς;ψQ1(w)))+c1eς−1ς(ψ(w)−ψ(t1))(ψ(w)−ψ(t1))γ2−1ςγ2−1Γ(γ2),p2(w)=pIν4;ς;ψ(Φ2(w,p1(w),p2(w))(m∑j=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))+pIν3;ς;ψQ2(w)))+d1eς−1ς(ψ(w)−ψ(t1))(ψ(w)−ψ(t1))γ4−1ςγ4−1Γ(γ4). | (2.7) |
In view of (2.7) and the conditions p1(t2)=θ1p2(ξ1) and p2(t2)=θ2p1(ξ2), we get
pIν2,ς,ψΦ1(t2,p1(t2),p2(t2))(n∑i=1pIηi,ς,ψHi(t2,p1(t2),p2(t2))+pIν1,ς,ψQ1(t2))+c1eς−1ς(ψ(t2)−ψ(t1))(ψ(t2)−ψ(t1))γ2−1ςγ2−1Γ(γ2)=θ1pIν4,ς,ψΦ2(ξ1,p1(ξ1),p2(ξ1))(m∑j=1pI¯ηj,ς,ψGj(ξ1,p1(ξ1),p2(ξ1))+pIν3,ς,ψQ2(ξ1)))+d1θ1eς−1ς(ψ(ξ1)−ψ(t1))(ψ(ξ1)−ψ(t1))γ4−1ςγ4−1Γ(γ4), | (2.8) |
and
pIν4,ς,ψΦ2(t2,p1(t2),p2(t2))(m∑j=1pI¯ηj,ς,ψGj(t2,p1(t2),p2(t2))+Iν3,ς,ψQ2(t2))+d1eς−1ς(ψ(t2)−ψ(t1))(ψ(t2)−ψ(t1))γ4−1ςγ2−1Γ(γ2)=θ2pIν2,ς,ψΦ1(ξ2,p1(ξ2),p2(ξ2))(n∑i=1pIηi,ς,ψHi(ξ2,p1(ξ2),p2(ξ2))+pIν1,ς,ψQ1(ξ2)))+c1θ2eς−1ς(ψ(ξ2)−ψ(t1))(ψ(ξ2)−ψ(t1))γ2−1ςγ2−1Γ(γ2). | (2.9) |
Due to (2.3), (2.8), and (2.9), we have
c1M1−d1M2=M,−c1N1+d1N2=N, | (2.10) |
where
M=θ1pIν4,ς,ψΦ2(ξ1,p1(ξ1),p2(ξ1))(m∑j=1pI¯ηj,ς,ψGj(ξ1,p1(ξ1),p2(ξ1))+pIν3,ς,ψQ2(ξ1)))−pIν2,ς,ψΦ1(t2,p1(t2),p2(t2))(n∑i=1pIηi,ς,ψHi(t2,p1(t2),p2(t2))+pIν1,ς,ψQ1(t2)),N=θ2pIν2,ς,ψΦ1(ξ2,p1(ξ2),p2(ξ2))(n∑i=1pIηi,ς,ψHi(ξ2,p1(ξ2),p2(ξ2))+pIν1,ς,ψQ1(ξ2)))−pIν4,ς,ψΦ2(t2,p1(t2),p2(t2))(m∑j=1pI¯ηj,ς,ψGj(t2,p1(t2),p2(t2))+pIν3,ς,ψQ2(t2)). |
By solving the above system, we conclude that
c1=1Θ[N2M+M2N],d1=1Θ[M1N+N1M]. |
Replacing the values c1 and d1 in Eq (2.7), we obtain the solutions (2.1) and (2.2). The converse is obtained by direct computation. The proof is complete.
Let Y=C([t1,t2],R)={p:[t1,t2]⟶Ris continuous}. The space Y is a Banach space with the norm ‖p‖=supw∈[t1,t2]|p(w)|. Obviously, the space (Y×Y,‖(p1,p2)‖) is also a Banach space with the norm ‖(p1,p2)‖=‖p1‖+‖p2‖.
Due to Lemma 2.5, we define an operator V:Y×Y→Y×Y by
V(p1,p2)(w)=(V1(p1,p2)(w)V2(p1,p2)(w)), | (3.1) |
where
V1(p1,p2)(w)=pIν2,ς,ψΦ1(w,p1(w),p2(w))(n∑i=1pIηi,ς,ψHi(w,p1(w),p2(w))+pIν1,ς,ψΥ1(w,p1(w),p2(w)))+eς−1ς(ψ(w)−ψ(t1))(ψ(w)−ψ(t1))γ2−1Θςγ2−1Γ(γ2){N2[θ1pIν4,ς,ψΦ2(ξ1,p1(ξ1),p2(ξ1))×(m∑j=1pI¯ηj,ς,ψGj(ξ1,p1(ξ1),p2(ξ1))+pIν3,ς,ψΥ2(ξ1,p1(ξ1),p2(ξ1)))−pIν2,ς,ψΦ1(t2,p1(t2),p2(t2))(n∑i=1pIηi,ς,ψHi(t2,p1(t2),p2(t2))+pIν1,ς,ψΥ1(t2,p1(t2),p2(t2)))]+M2[θ2pIν2,ς,ψΦ1(ξ2,p1(ξ2),p2(ξ2))×(n∑i=1pIηi,ς,ψHi(ξ2,p1(ξ2),p2(ξ2))+pIν1,ς,ψΥ1(ξ2,p1(ξ1),p2(ξ2)))−pIν4,ς,ψΦ2(t2,p1(t2),p2(t2))(m∑j=1pI¯ηj,ς,ψGj(t2,p1(t2),p2(t2))+pIν3,ς,ψΥ2(t2,p1(t2),p2(t2)))]},w∈[t1,t2], |
and
V2(p1,p2)(w)=pIν4,ς,ψΦ2(w,p1(w),p2(w))(m∑j=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))+pIν3,ς,ψΥ2(w,p1(w),p2(w)))+eς−1ς(ψ(w)−ψ(t1))(ψ(w)−ψ(t1))γ4−1Θςγ4−1Γ(γ4){N1[θ1pIν4,ς,ψΦ2(ξ1,p1(ξ1),p2(ξ1))×(m∑j=1pI¯ηj,ς,ψGj(ξ1,p1(ξ1),p2(ξ1))+pIν3,ς,ψΥ2(ξ1,p1(ξ1),p2(ξ1))))−pIν2,ς,ψΦ1(t2,p1(t2),p2(t2))(n∑i=1pIηi,ς,ψHi(t2,p1(t2),p2(t2))+pIν1,ς,ψΥ1(t2,p1(t2),p2(t2)))]+M1[θ2pIν2,ς,ψΦ1(ξ2,p1(ξ2),p2(ξ2))×(n∑i=1pIηi,ς,ψHi(ξ2,p1(ξ2),p2(ξ2))+pIν1,ς,ψΥ1(ξ2,p1(ξ2),p2(ξ2))))−pIν4,ς,ψΦ2(t2,p1(t2),p2(t2))(m∑j=1pI¯ηj,ς,ψGj(t2,p1(t2),p2(t2))+pIν3,ς,ψΥ2(t2,p1(t2),p2(t2)))]},w∈[t1,t2]. |
To prove our main result we will use the following Burton's version of Krasnosel'ski˘i's fixed-point theorem.
Lemma 3.1. [28] Let S be a nonempty, convex, closed, and bounded set of a Banach space (X,‖⋅‖) and let A:X→X and B:S→X be two operators which satisfy the following:
(i) A is a contraction,
(ii) B is completely continuous, and
(iii) x=Ax+By,∀y∈S⇒x∈S.
Then there exists a solution of the operator equation x=Ax+Bx.
Theorem 3.2. Assume that:
(H1) The functions Φk:[t1,t2]×R2→R∖{0}, Υk:[t1,t2]×R2→R for k=1,2 and hi,gj:[t1,t2]×R2→R for i=1,2,…,n,j=1,2,…,m, are continuous and there exist positive continuous functions ϕk, ωk:[t1,t2]→R, k=1,2, hi:[t1,t2]→R, gj:[t1,t2]→R i=1,2,…,nj=1,2,…,m, with bounds ‖ϕk‖, ‖ωk‖, k=1,2, and ‖hi‖, i=1,2,…,m, ‖gj‖,j=1,2,…,m, respectively, such that
|Φ1(w,u1,u2)−Φ1(w,¯u1,¯u2)|≤ϕ1(w)(|u1−¯u1|+|u2−¯u2|),|Φ2(w,u1,u2)−Φ2(w,¯u1,¯u2)|≤ϕ2(w)(|u1−¯u1|+|u2−¯u2|),|Υ1(w,u1,u2)−Υ1(w,¯u1,¯u2|≤ω1(w)(|u1−¯u1|+|u2−¯u2|),|Υ2(w,u1,u2)−Υ2(w,¯u1,¯u2|≤ω2(w)(|u1−¯u1|+|u2−¯u2|),|Hi(w,u1,u2)−Hi(w,¯u1,¯u2)|≤hi(w)(|u1−¯u1|+|u2−¯u2|),|Gj(w,u1,u2)−Gj(w,¯u1,¯u2)|≤gj(w)(|u1−¯u1|+|u2−¯u2|), | (3.2) |
for all w∈[t1,t2] and ui,¯ui∈R, i=1,2.
(H2) There exist continuous functions Fk,Lk,k=1,2, λi,μj,i=1,2,…,n,j=1,2,…,m such that
|Φ1(w,u1,u2)|≤F1(w),|Φ2(w,u1,u2)|≤F2(w),|Hi(w,u1,u2)|≤λi(w),|Gj(w,u1,u2)|≤μj(w),|Υ1(w,u1,u2)|≤L1(w),|Υ2(w,u1,u2)|≤L2(w), | (3.3) |
for all w∈[t1,t2] and u1,u2∈R.
(H3) Assume that
K:={(ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)[1+(N2+M2|θ2|)(ψ(t2)−ψ(t1))γ2−1Θςγ2−1Γ(γ2)]+(N1+M1|θ2|)(ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)(ψ(t2)−ψ(t1))γ4−1Θςγ4−1Γ(γ4)}×[‖F1‖n∑i=1‖hi‖(ψ(t2)−ψ(t1))ηiςηiΓ(ηi+1)+n∑i=1‖λi‖(ψ(t2)−ψ(t1))ηiςηiΓ(ηi+1)‖ϕ1‖]+{(N2|θ1|+M2)(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)(ψ(t2)−ψ(t1))γ2−1Θςγ2−1Γ(γ2)+(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)[1+(N1|θ1|+M1)(ψ(t2)−ψ(t1))γ4−1Θςγ4−1Γ(γ4)]}×[‖F2‖m∑j=1‖gj‖(ψ(t2)−ψ(t1))¯ηjς¯ηjΓ(¯ηj+1)+m∑j=1‖μj‖(ψ(t2)−ψ(t1))¯ηjς¯ηjΓ(¯ηj+1)‖ϕ2‖]<1, |
where ‖Fk‖=supt∈[t1,t2]|Fk(t)|, ‖Lk‖=supt∈[t1,t2],k=1,2, ‖λi‖=supt∈[t1,t2], i=1,2,…,n, and ‖μj‖=supt∈[t1,t2], j=1,2,…,m.
Then the ψ-Hilfer sequential proportional coupled system (1.2) has at least one solution on [t1,t2].
Proof. First, we consider a subset S of Y×Y defined by S={(p1,p2)∈Y×Y:‖(p1,p2)‖≤r}, where r is given by
r=R1+R2 | (3.4) |
where
R1=[1+(ψ(t2)−ψ(t1))γ2−1Θςγ2−1Γ(γ2)(N2+M2|θ2|)]‖F1‖(ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)×(n∑i=1‖λi‖(ψ(t2)−ψ(t1))ηiςηiΓ(ηi+1)+n∑i=1‖L1‖(ψ(t2)−ψ(t1))ν1ςν1Γ(ν1+1))+[N2|θ1|+M2](ψ(t2)−ψ(t1))γ2−1Θςγ2−1Γ(γ2)‖F2‖(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)×(m∑j=1‖μj‖(ψ(t2)−ψ(t1))¯ηjς¯ηΓ(¯η+1)+m∑j=1‖L2‖(ψ(t2)−ψ(t1))ν3ςν3Γ(ν3+1)) |
and
R2=[1+(ψ(t2)−ψ(t1))γ4−1Θςγ4−1Γ(γ4)(N1|θ1|+M1)]‖F2‖(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)×(m∑j=1‖μj‖(ψ(t2)−ψ(t1))¯ηjς¯ηΓ(¯η+1)+m∑j=1‖L2‖(ψ(t2)−ψ(t1))ν3ςν3Γ(ν3+1))+[N1+M1|θ2|](ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)‖F1‖(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)×(n∑i=1‖λi‖(ψ(t2)−ψ(t1))ηiςηiΓ(ηi+1)+n∑i=1‖L1‖(ψ(t2)−ψ(t1))ν1ςν1Γ(ν1+1)). |
Let us define the operators:
Hi(p1,p2)(w)=n∑i=1pIηi,ς,ψHi(w,p1(w),p2(w)),w∈[t1,t2], |
Gj(p1,p2)(w)=m∑j=1pI¯ηj,ς,ψGj(w,p1(w),p2(w)),w∈[t1,t2], |
Y1(p1,p2)(w)=pIν1,ς,ψΥ1(w,p1(w),p2(w)),w∈[t1,t2], |
Y2(p1,p2)(w)=pIν3,ς,ψΥ2(w,p1(w),p2(w)),w∈[t1,t2], |
and
F1(p1,p2)(w)=Φ1(w,p1(w),p2(w)),w∈[t1,t2], |
F2(p1,p2)(w)=Φ2(w,p1(w),p2(w)),w∈[t1,t2]. |
Then we have
|Hi(¯p1,¯p2)(w)−Hi(p1,p2)(w)|≤n∑i=1pIηi,ς,ψ|Hi(w,¯p1(w),¯p2(w))−Hi(w,p1(w),p2(w))|≤n∑i=1‖hi‖(ψ(t2)−ψ(t1))ηiςηiΓ(ηi+1)(‖¯p1−p1‖+‖¯p2−p2‖) |
and
|Hi(p1,p2)(w)|≤n∑i=1pIηi,ς,ψ|Hi(w,p1(w),p2(w))|≤n∑i=1‖λi‖(ψ(t2)−ψ(t1))ηiςηiΓ(ηi+1). |
Also, we obtain
|Gj(¯p1,¯p2)(w)−Gj(p1,p2)(w)|≤m∑j=1pI¯ηj,ς,ψ|Gj(w,¯p1(w),¯p2(w))−Gj(w,p1(w),p2(w))|≤m∑j=1‖gj‖(ψ(t2)−ψ(t1))¯ηjςηiΓ(¯ηj+1)(‖¯p1−p1‖+‖¯p2−p2‖) |
and
|Gj(p1,p2)(w)|≤m∑j=1pI¯ηi,ς,ψ|Hi(w,p1(w),p2(w))|≤m∑j=1‖μj‖(ψ(t2)−ψ(t1))¯ηiς¯ηiΓ(¯ηi+1). |
Moreover, we have
|Y1(¯p1,¯p2)(w)−Y1(p1,p2)(w)|≤pIν1,ς,ψ|Υ1(w,¯p1(w),¯p2(w))−Υ1(w,p1(w),p2(w))|≤‖ω1‖(ψ(t2)−ψ(t1))ν1ςν1Γ(ν1+1)(‖¯p1−p1‖+‖¯p2−p2‖), |
|Y1(p1,p2)(w)|≤pIν1,ς,ψ|Υ1(w,p1(w),p2(w))|≤‖L1‖(ψ(t2)−ψ(t1))ν1ςν1Γ(ν1+1), |
and
|Y2(¯p1,¯p2)(w)−Y2(p1,p2)(w)|≤pIν3,ς,ψ|Υ2(w,¯p1(w),¯p2(w))−Υ2(w,p1(w),p2(w))|≤‖ω2‖(ψ(t2)−ψ(t1))ν3ςν3Γ(ν3+1)(‖¯p1−p1‖+‖¯p2−p2‖), |
|Y2(p1,p2)(w)|≤pIν1,ς,ψ|Υ2(w,p1(w),p2(w))|≤‖L2‖(ψ(t2)−ψ(t1))ν3ςν3Γ(ν3+1). |
Finally, we get
|F1(¯p1,¯p2)(w)−F1(p1,p2)(w)|≤|Φ1(w,¯p1(w),¯p2(w))−Φ1(w,p1(w),p2(w))|≤‖ϕ1‖(‖¯p1−p1‖+‖¯p2−p2‖), |
|F1(p1,p2)(w)|≤|Φ1(w,p1(w),p2(w))|≤‖F1‖, |
and
|F2(¯p1,¯p2)(w)−F2(p1,p2)(w)|≤|Φ2(w,¯p1(w),¯p2(w))−Φ2(w,p1(w),p2(w))|≤‖ϕ2‖(‖¯p1−p1‖+‖¯p2−p2‖), |
|F2(p1,p2)(w)|≤|Φ2(w,p1(w),p2(w))|≤‖F2‖. |
Now we split the operator V as
V1(p1,p2)(w)=V1,1(p1,p2)(w)+V1,2(p1,p2)(w),V2(p1,p2)(w)=V2,1(p1,p2)(w)+V2,2(p1,p2)(w), |
with
V1,1(p1,p2)(w)=pIν2,ς,ψF1(p1,p2)(w)Hi(p1,p2)(w)+eς−1ς(ψ(w)−ψ(t1))(ψ(w)−ψ(t1))γ2−1Θςγ2−1Γ(γ2)×{N2[θ1pIν4,ς,ψF2(p1,p2)(w)Gj(p1,p2)(w)−pIν2,ς,ψF1(p1,p2)(w)Hi(p1,p2)(w)]+M2[θ2pIν2,ς,ψF1(p1,p2)(w)Hi(p1,p2)(w)−pIν4,ς,ψF2(p1,p2)(w)Gj(p1,p2)(w)]},V1,2(p1,p2)(w)=pIν2,ς,ψF1(p1,p2)(w)Y1(p1,p2)(w)+eς−1ς(ψ(w)−ψ(t1))(ψ(w)−ψ(t1))γ2−1Θςγ2−1Γ(γ2)×{N2[θ1pIν4,ς,ψF2(p1,p2)(w)Y2(p1,p2)(w)−pIν2,ς,ψF1(p1,p2)(w)Y1(p1,p2)(w)]+M2[θ2pIν2,ς,ψF1(p1,p2)(w)Y1(p1,p2)(w)−pIν4,ς,ψF2(p1,p2)(w)Y2(p1,p2)(w)]},V2,1(p1,p2)(w)=pIν4,ς,ψF2(p1,p2)(w)Gj(p1,p2)(w)+eς−1ς(ψ(w)−ψ(t1))(ψ(w)−ψ(t1))γ4−1Θςγ4−1Γ(γ4)×{N1[θ1pIν4,ς,ψF2(p1,p2)(w)Gj(p1,p2)(w)−pIν2,ς,ψF1(p1,p2)(w)Hi(p1,p2)(w)]+M1[θ2pIν2,ς,ψF1(p1,p2)(w)Hi(p1,p2)(w)−pIν4,ς,ψF2(p1,p2)(w)Gj(p1,p2)(w)]}, |
and
V2,2(p1,p2)(w)=pIν4,ς,ψF2(p1,p2)(w)Y2(p1,p2)(w)+eς−1ς(ψ(w)−ψ(t1))(ψ(w)−ψ(t1))γ4−1Θςγ4−1Γ(γ4)×{N1[θ1pIν4,ς,ψF2(p1,p2)(w)Y2(p1,p2)(w)−pIν2,ς,ψF1(p1,p2)(w)Y1(p1,p2)(w)]+M1[θ2pIν2,ς,ψF1(p1,p2)(w)Y1(p1,p2)(w)−pIν4,ς,ψF2(p1,p2)(w)Y2(p1,p2)(w)]}. |
In the following, we will show that the operators V1 and V2 fulfill the assumptions of Lemma 3.1. We divide the proof into three steps:
Step 1. The operators V1,1 and V2,1 are contraction mappings. For all (p1,p2),(¯p1,¯p2)∈Y×Y we have
|V1,1(¯p1,¯p2)(w)−V1,1(p1,p2)(w)|≤(ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)|F1(¯p1,¯p2)(w)Hi(¯p1,¯p2)(w)−F1(p1,p2)(w)Hi(p1,p2)(w)| |
+(ψ(t2)−ψ(t1))γ2−1Θςγ2−1Γ(γ2){N1|θ1|(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)|F2(¯p1,¯p2)(w)Gj(¯p1,¯p2)(w) |
−F2(p1,p2)(w)Gj(p1,p2)(w)|+(N2+M2|θ2|)(ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)|F1(¯p1,¯p2)(w)Hi(¯p1,¯p2)(w)−F1(p1,p2)(w)Hi(p1,p2)(w)| |
+M2(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)|F2(¯p1,¯p2)(w)Gj(¯p1,¯p2)(w)−F2(p1,p2)(w)Gj(p1,p2)(w)|}≤(ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)[1+(N2+M2|θ2|)(ψ(t2)−ψ(t1))γ2−1Θςγ2−1Γ(γ2)] |
×|F1(¯p1,¯p2)(w)Hi(¯p1,¯p2)(w)−F1(p1,p2)(w)Hi(p1,p2)(w)|+(N2|θ1|+M2)(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)(ψ(t2)−ψ(t1))γ2−1Θςγ2−1×|F2(¯p1,¯p2)(w)Gj(¯p1,¯p2)(w)−F2(p1,p2)(w)Gj(p1,p2)(w)| |
≤(ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)[1+(N2+M2|θ2|)(ψ(t2)−ψ(t1))γ2−1Θςγ2−1Γ(γ2)]×[|F1(¯p1,¯p2)(w)||Hi(¯p1,¯p2)(w)−Hi(p1,p2)(w)|+|Hi(p1,p2)(w)||F1(¯p1,¯p2)(w)−F1(p1,p2)(w)]+(N2|θ1|+M2)(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)(ψ(t2)−ψ(t1))γ2−1Θςγ2−1×[|F2(¯p1,¯p2)(w)||Gj(¯p1,¯p2)(w)−Gj(p1,p2)(w)| |
+|Gj(p1,p2)(w)||F2(¯p1,¯p2)(w)−F2(p1,p2)(w)|]≤(ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)[1+(N2+M2|θ2|)(ψ(t2)−ψ(t1))γ2−1Θςγ2−1Γ(γ2)]×[‖F1‖n∑i=1‖hi‖(ψ(t2)−ψ(t1))ηiςηiΓ(ηi+1)(‖¯p1−p1‖+‖¯p2−p2‖)+n∑i=1‖λi‖(ψ(t2)−ψ(t1))ηiςηiΓ(ηi+1)‖ϕ1‖(‖¯p1−p1‖+‖¯p2−p2‖)] |
+(N2|θ1|+M2)(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)(ψ(t2)−ψ(t1))γ2−1Θςγ2−1×[‖F2‖m∑j=1‖gj‖(ψ(t2)−ψ(t1))¯ηjςηiΓ(¯ηj+1)(‖¯p1−p1‖+‖¯p2−p2‖)+m∑j=1‖μj‖(ψ(t2)−ψ(t1))¯ηjς¯ηjΓ(¯ηj+1)‖ϕ2‖(‖¯p1−p1‖+‖¯p2−p2‖)] |
={(ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)[1+(N2+M2|θ2|)(ψ(t2)−ψ(t1))γ2−1Θςγ2−1Γ(γ2)]×[‖F1‖n∑i=1‖hi‖(ψ(t2)−ψ(t1))ηiςηiΓ(ηi+1)+n∑i=1‖λi‖(ψ(t2)−ψ(t1))ηiςηiΓ(ηi+1)‖ϕ1‖]+(N2|θ1|+M2)(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)(ψ(t2)−ψ(t1))γ2−1Θςγ2−1Γ(γ2)×[‖F2‖m∑j=1‖gj‖(ψ(t2)−ψ(t1))¯ηjς¯ηiΓ(¯ηj+1)+m∑j=1‖μj‖(ψ(t2)−ψ(t1))¯ηjς¯ηjΓ(¯ηj+1)‖ϕ2‖]}×(‖¯p1−p1‖+‖¯p2−p2‖). |
Similarly we can find
|V2,1(¯p1,¯p2)(w)−V2,1(p1,p2)(w)|≤{(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)[1+(N1|θ1|+M1)(ψ(t2)−ψ(t1))γ4−1Θςγ4−1Γ(γ4)]×[‖F2‖m∑j=1‖gj‖(ψ(t2)−ψ(t1))¯ηjςηiΓ(¯ηj+1)+n∑j=1‖μj‖(ψ(t2)−ψ(t1))¯ηjς¯ηjΓ(¯ηj+1)‖ϕ2‖]+(N1+M1|θ2|)(ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)(ψ(t2)−ψ(t1))γ4−1Θςγ4−1Γ(γ4)×[‖F1‖n∑i=1‖hi‖(ψ(t2)−ψ(t1))ηiςηiΓ(ηi+1)+n∑i=1‖λi‖(ψ(t2)−ψ(t1))ηiςηiΓ(ηi+1)‖ϕ1‖]}×(‖¯p1−p1‖+‖¯p2−p2‖). |
Consequently, we get
‖(V1,1,V2,1)(¯p1,¯p2)−(V1,1,V2,1)(p1,p2)‖≤K(‖¯p1−p1‖+‖¯p2−p2‖), |
which means that (V1,1,V2,1) is a contraction.
Step 2. The operator V2=(V1,2,V2,2) is completely continuous on S. For continuity of V1,2, take any sequence of points (pn,qn) in S converging to a point (p,q)∈S. Then, by the Lebesgue dominated convergence theorem, we have
limn→∞V1,2(pn,qn)(w)=pIν2,ς,ψlimn→∞F1(pn,qn)(w)limn→∞Y1(pn,qn)(w)+eς−1ς(ψ(w)−ψ(t1))(ψ(w)−ψ(t1))γ2−1Θςγ2−1Γ(γ2)×{N2[θ1pIν4,ς,ψlimn→∞F2(pn,qn)(w)limn→∞Y2(pn,qn)(w)−pIν2,ς,ψlimn→∞F1(pn,qn)(w)limn→∞Y1(pn,qn)(w)]+M2[θ2pIν2,ς,ψlimn→∞F1(pn,qn)(w)limn→∞Y1(pn,qn)(w)−pIν4,ς,ψlimn→∞F2(pn,qn)(w)limn→∞Y2(pn,qn)(w)]}=pIν2,ς,ψF1(p,q)(w)Y1(p,q)(w)+eς−1ς(ψ(w)−ψ(t1))(ψ(w)−ψ(t1))γ2−1Θςγ2−1Γ(γ2)×{N2[θ1pIν4,ς,ψF2(p,q)(w)Y2(p,q)(w)−pIν2,ς,ψF1(p,q)(w)Y1(p,q)(w)]+M2[θ2pIν2,ς,ψF1(p,q)(w)Y1(p,q)(w)−pIν4,ς,ψF2(p,q)(w)Y2(p,q)(w)]}=V1,2(p,q)(w), |
for all w∈[t1,t2]. Similarly, we prove limn→∞V2,2(pn,qn)(w)=V2,2(p,q)(w) for all w∈[t1,t2]. Thus V2(pn,qn)=(V1,2(pn,qn),V2,2(pn,qn)) converges to V2(p,q) on [t1,t2], which shows that V2 is continuous.
Next, we show that the operator (V1,2,V2,2) is uniformly bounded on S. For any (p1,p2)∈S we have
|V1,2(p1,p2)(w)|≤pIν2,ς,ψ|F1(p1,p2)(w)Y1(p1,p2)(w)|+(ψ(w)−ψ(t1))γ2−1Θςγ2−1Γ(γ2){N2[|θ1|pIν4,ς,ψ|F2(p1,p2)(w)Y2(p1,p2)(w)|+pIν2,ς,ψ|F1(p1,p2)(w)Y1(p1,p2)(w)|]+M2[|θ2|pIν2,ς,ψ|F1(p1,p2)(w)Y1(p1,p2)(w)|+pIν4,ς,ψ|F2(p1,p2)(w)Y2(p1,p2)(w)|]}≤(ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)‖F1‖‖L1‖(ψ(t2)−ψ(t1))ν1ςν1Γ(ν1+1)+(ψ(t2)−ψ(t1))γ2−1Θςγ2−1Γ(γ2)×{N2|θ1|(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)‖F2‖‖L2‖(ψ(t2)−ψ(t1))ν3ςν3Γ(ν3+1)+N2(ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)‖F1‖‖L1‖(ψ(t2)−ψ(t1))ν1ςν1Γ(ν1+1)+M2|θ2|‖F1‖‖L1‖(ψ(t2)−ψ(t1))ν1ςν1Γ(ν1+1)+M2(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)‖F2‖‖L2‖(ψ(t2)−ψ(t1))ν3ςν3Γ(ν3+1)}:=Λ1. |
Similarly we can prove that
|V2,2(p1,p2)(w)|≤(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)‖F2‖‖L2‖(ψ(t2)−ψ(t1))ν3ςν3Γ(ν3+1)+(ψ(t2)−ψ(t1))γ4−1Θςγ2−1Γ(γ2)×{N1|θ1|(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)‖F2‖‖L2‖(ψ(t2)−ψ(t1))ν3ςν3Γ(ν3+1)+N1(ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)‖F1‖‖L1‖(ψ(t2)−ψ(t1))ν1ςν1Γ(ν1+1)+M1|θ2|‖F1‖n∑i=1‖L1‖(ψ(t2)−ψ(t1))ν1ςν1Γ(ν1+1)+M1(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)‖F2‖‖L2‖(ψ(t2)−ψ(t1))ν3ςν3Γ(ν3+1)}:=Λ2. |
Therefore ‖V1,2‖+‖V2,2‖≤Λ1+Λ2,(p1,p2)∈S, which shows that the operator (V1,2,V2,2) is uniformly bounded on S. Finally we show that the operator (V1,2,V2,2) is equicontinuous. Let τ1<τ2 and (p1,p2)∈S. Then, we have
|V1,2(p1,p2)(τ2)−V1,2(p1,p2)(τ1)|≤|1ςν2Γ(ν2)∫τ1t1ψ′(s)[(ψ(τ2)−ψ(s))ν2−1−(ψ(τ1)−ψ(s))ν2−1]×|F1(p1,p2)(s)Y1(p1,p2)(s)|ds+1ςν2Γ(ν2)∫τ2τ1ψ′(s)(ψ(τ2)−ψ(s))ν2−1|F1(p1,p2)(s)Y1(p1,p2)(s)|ds|+|(ψ(τ2)−ψ(t1))γ2−1−(ψ(τ1)−ψ(t1))γ2−1|Θςγ2−1Γ(γ2)W≤1ςν2Γ(ν2+1)n∑i=1‖λi‖(ψ(t2)−ψ(t1))ηiςηiΓ(ηi+1)[|(ψ(τ2)−ψ(t1))ν2−(ψ(τ1)−ψ(t1))ν2|+2(ψ(τ2)−ψ(τ1))ν2]+|(ψ(τ2)−ψ(t1))γ2−1−(ψ(τ1)−ψ(t1))γ2−1|Θςγ2−1Γ(γ2)W, |
where
W=N2|θ1|(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)‖F2‖‖L2‖(ψ(t2)−ψ(t1))ν3ςν3Γ(ν3+1)+N2(ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)‖F1‖‖L1‖(ψ(t2)−ψ(t1))ν1ςν1Γ(ν1+1)+M2|θ2|‖F1‖‖L1‖(ψ(t2)−ψ(t1))ν1ςν1Γ(ν1+1)+M2(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)‖F2‖‖L2‖(ψ(t2)−ψ(t1))ν3ςν3Γ(ν3+1). |
As τ2−τ1→0, the right-hand side of the above inequality tends to zero, independently of (p1,p2). Similarly we have |V2,2(p1,p2)(τ2)−V2,2(p1,p2)(τ1)|→0 as τ2−τ1→0. Thus (V1,2,V2,2) is equicontinuous. Therefore, it follows by the Arzelá-Ascoli theorem that (V1,2,V2,2) is a completely continuous operator on S.
Step 3. We show that the third condition (iii) of Lemma 3.1 is fulfilled. Let (p1,p2)∈Y×Y be such that, for all (¯p1,¯p2)∈S
(p1,p2)=(V1,1(p1,p2),V2,1(p1,p2))+(V1,2(¯p1,¯p2,V2,2(¯p1,¯p2)). |
Then, we have
|p1(w)|≤|V1,1(p1,p2)(w)|+|V1,2(¯p1,¯p2)(w)|≤pIν2,ς,ψ|F1(p1,p2)(w)Hi(p1,p2)(w)|+(ψ(t2)−ψ(t1))γ2−1Θςγ2−1Γ(γ2){N2[|θ1|pIν4,ς,ψ|F2(p1,p2)(w)Gj(p1,p2)(w)|+pIν2,ς,ψ|F1(p1,p2)(w)Hi(p1,p2)(w)|]+M2[|θ2|pIν2,ς,ψ|F1(p1,p2)(w)Hi(p1,p2)(w)|+pIν4,ς,ψ|F2(p1,p2)(w)Gj(p1,p2)(w)|]}+pIν2,ς,ψ|F1(¯p1,¯p2)(w)Y1(¯p1,¯p2)(w)|+(ψ(t2)−ψ(t1))γ2−1Θςγ2−1Γ(γ2){N2[|θ1|pIν4,ς,ψ|F2(¯p1,¯p2)(w)Y2(¯p1,¯p2)(w)|+pIν2,ς,ψ|F1(¯p1,¯p2)(w)Y1(¯p1,¯p2)(w)|]+M2[|θ2|pIν2,ς,ψ|F1(¯p1,¯p2)(w)Y1(¯p1,¯p2)(w)|+pIν4,ς,ψ|F2(¯p1,¯p2)(w)Y2(¯p1,¯p2)(w)|]}≤(ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)‖F1‖n∑i=1‖λi‖(ψ(t2)−ψ(t1))ηiςηiΓ(ηi+1)+(ψ(t2)−ψ(t1))γ2−1Θςγ2−1Γ(γ2)×{N2|θ1|(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)m∑j=1‖μj‖(ψ(t2)−ψ(t1))¯ηjς¯ηΓ(¯η+1)‖F2‖+N2(ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)‖F1‖n∑i=1‖λi‖(ψ(t2)−ψ(t1))ηiςηiΓ(ηi+1)+M2|θ2|‖F1‖n∑i=1‖λi‖(ψ(t2)−ψ(t1))ηiςηiΓ(ηi+1)+M2(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)‖F2‖m∑j=1‖μj‖(ψ(t2)−ψ(t1))¯ηjς¯ηΓ(¯η+1)}+(ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)‖F1‖n∑i=1‖L1‖(ψ(t2)−ψ(t1))ν1ςν1Γ(ν1+1)+(ψ(t2)−ψ(t1))γ2−1Θςγ2−1Γ(γ2)×{N2|θ1|(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)‖F2‖m∑j=1‖L2‖(ψ(t2)−ψ(t1))ν3ςν3Γ(ν3+1)+N2(ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)‖F1‖n∑i=1‖L1‖(ψ(t2)−ψ(t1))ν1ςν1Γ(ν1+1)+M2|θ2|‖F1‖n∑i=1‖L1‖(ψ(t2)−ψ(t1))ν1ςν1Γ(ν1+1)+M2(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)‖F2‖m∑j=1‖L2‖(ψ(t2)−ψ(t1))ν3ςν3Γ(ν3+1)}=[1+(ψ(t2)−ψ(t1))γ2−1Θςγ2−1Γ(γ2)(N2+M2|θ2|)]‖F1‖(ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)×(n∑i=1‖λi‖(ψ(t2)−ψ(t1))ηiςηiΓ(ηi+1)+n∑i=1‖L1‖(ψ(t2)−ψ(t1))ν1ςν1Γ(ν1+1))+[N2|θ1|+M2](ψ(t2)−ψ(t1))γ2−1Θςγ2−1Γ(γ2)‖F2‖(ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)×(m∑j=1‖μj‖(ψ(t2)−ψ(t1))¯ηjς¯ηΓ(¯η+1)+m∑j=1‖L2‖(ψ(t2)−ψ(t1))ν3ςν3Γ(ν3+1))=R1. |
In a similar way, we find
|p2(w)|≤|V2,1(p1,p2)(w)|+|V2,2(¯p1,¯p2)(w)|≤[1+(ψ(t2)−ψ(t1))γ4−1Θςγ4−1Γ(γ4)(N1|θ1|+M1)](ψ(t2)−ψ(t1))ν4ςν4Γ(ν4+1)‖F2‖×(m∑j=1‖μj‖(ψ(t2)−ψ(t1))¯ηjς¯ηΓ(¯η+1)+m∑j=1‖L2‖(ψ(t2)−ψ(t1))ν3ςν3Γ(ν3+1))+[N1+M1|θ2|](ψ(t2)−ψ(t1))ν2ςν2Γ(ν2+1)‖F1‖(ψ(t2)−ψ(t1))γ4−1ςγ4−1Γ(γ4)×(n∑i=1‖λi‖(ψ(t2)−ψ(t1))ηiςηiΓ(ηi+1)+n∑i=1‖L1‖(ψ(t2)−ψ(t1))ν1ςν1Γ(ν1+1))=R2. |
Adding the previous inequalities, we obtain
‖p1‖+‖p2‖≤R1+R2=r. |
As ‖(p1,p2)‖=‖p1‖+‖p2‖, we have that ‖(p1,p2)‖≤r and so condition (iii) of Lemma 3.1 holds.
By Lemma 3.1, the ψ-Hilfer sequential proportional coupled system (1.2) has at least one solution on [t1,t2]. The proof is finished.
Let us consider the following coupled system of nonlinear sequential proportional Hilfer fractional differential equations with multi-point boundary conditions:
{HD13,15;37;logw[HD54,25;37;logwp1(w)Φ1(w,p1(w),p2(w))−2∑i=1pIηi,ς,ψHi(w,p1(w),p2(w))]=Υ1(w,p1(w),p2(w)),w∈[12,72],HD23,35;37;logw[HD74,45;37;logwp1(w)Φ2(w,p1(w),p2(w))−2∑j=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))]=Υ2(w,p1(w),p2(w)),w∈[12,72],p1(12)=HD54,25;37;logwp1(12)=0,p1(72)=25p2(32),p2(12)=HD74,45;37;logwp2(12)=0,p2(72)=23p1(52), | (4.1) |
where
2∑i=1pIηi,ς,ψHi(w,p1,p2)=2∑i=1pI2(i+1)5,37,logw(|p1|(w+i2)(i+|p1|)+|p2|(w+i3)(i+|p2|)),2∑j=1pI¯ηj,ς,ψGj(w,p1,p2)=2∑j=1pI2(j+1)7,37,logw(|p1|(w2+j2)(j+|p1|)+|p2|(w2+j3)(j+|p2|)),Φ1(w,p1,p2)=1100(10w+255)(|p1|1+|p1|+|p2|1+|p2|+12),Φ2(w,p1,p2)=25(2w+99)2(|p1|1+|p1|+|p2|1+|p2|+14),Υ1(w,p1,p2)=1√w+2(|p1|3+|p1|)+12(√w+1)sin|p2|+13,Υ2(w,p1,p2)=1w2+4(12tan−1|p1|+|p2|2+|p2|)+15. |
Next, we can choose ν1=1/3, ν2=5/4, ν3=2/3, ν4=7/4, ϑ1=1/5, ϑ2=2/5, ϑ3=3/5, ϑ4=4/5, ς=3/7, ψ(w):=logw=logew, t1=1/2, t2=7/2, θ1=2/5, and θ2=2/3. Then, we have γ1=7/15, γ2=31/20, γ3=13/15, γ4=39/20, M1≈0.1930945138, M2≈0.2307306625, N1≈0.1816223751, N2≈0.3208292984, and Θ≈0.02004452646. Now, we analyse the nonlinear functions in the fractional integral terms. We have
|Hi(w,p1,p2)−Hi(w,¯p1,¯p2)|≤1i(w+i2)(|p1−¯p1|+|p2−¯p2|) |
and
|Gj(w,p1,p2)−Gj(w,¯p1,¯p2)|≤1j(w2+j2)(|p1−¯p1|+|p2−¯p2|), |
from which hi(w)=1/(i(w+i2)) and gj(w)=1/(j(w2+j2)), respectively. Both of them are bounded as
|Hi(w,p1,p2)|≤2w+i2and|Gj(w,p1,p2)|≤2w2+j2. |
Therefore λi(w)=2/(w+i2) and μj=2/(w2+j2). Moreover, we have
n∑i=1‖hi‖(ψ(t2)−ψ(t1))ηiςηiΓ(ηi+1)≈3.021061781, |
n∑i=1‖λi‖(ψ(t2)−ψ(t1))ηiςηiΓ(ηi+1)≈7.281499952, |
m∑j=1‖gj‖(ψ(t2)−ψ(t1))¯ηjς¯ηjΓ(¯ηi+1)≈2.776491121 |
and
m∑j=1‖μj‖(ψ(t2)−ψ(t1))¯ηjς¯ηjΓ(¯ηi+1)≈7.220966978. |
For the two non-zero functions Φ1 and Φ2 we have
|Φ1(w,p1,p2)−Φ1(w,¯p1,¯p2)|≤1100(10w+255)(|p1−¯p1|+|p2−¯p2|),|Φ2(w,p1,p2)−Φ2(w,¯p1,¯p2)|≤25(2w+99)2(|p1−¯p1|+|p2−¯p2|), |
|Φ1(w,p1,p2)|≤140(10w+255),and|Φ2(w,p1,p2)|≤910(2w+99)2, |
from which we get ‖ϕ1‖=1/26000, ‖ϕ2‖=1/25000, ‖F1‖=1/10400, ‖F2‖=9/100000, by setting ϕ1(w)=1/(100(10w+255)), ϕ2(w)=2/(5(2w+99)2), F1(w)=1/(40(10w+255)), and F2(w)=9/(10(2w+99)2), respectively.
Finally, for the nonlinear functions of the right sides in problem (4.1) we have
|Υ1(w,p1,p2)−Υ1(w,¯p1,¯p2)|≤12(√w+1)(|p1−¯p1|+|p2−¯p2|),|Υ2(w,p1,p2)−Υ2(w,¯p1,¯p2)|≤12(w2+4)(|p1−¯p1|+|p2−¯p2|), |
which give ω1(w)=1/(2(√w+1)), ω2(w)=1/(2(w2+4)) and
|Υ1(w,p1,p2)|≤1√w+2+12(√w+1)+13:=L1(w), |
and
|Υ2(w,p1,p2)|≤1w2+4(π4+1)+15:=L2(w). |
Therefore, using all of the information to compute a constant K in assumption (H3) of Theorem 3.2, we obtain
K≈0.9229566975<1. |
Hence, the given coupled system of nonlinear proportional Hilfer-type fractional differential equations with multi-point boundary conditions (4.1), satisfies all assumptions in Theorem 3.2. Then, by its conclusion, there exists at least one solution (p1,p2)(w) to the problem (4.1) where w∈[1/2,7/2].
In this paper, we have presented the existence result for a new class of coupled systems of ψ-Hilfer proportional sequential fractional differential equations with multi-point boundary conditions. The proof of the existence result was based on a generalization of Krasnosel'ski˘i's fixed-point theorem due to Burton. An example was presented to illustrate our main result. Some special cases were also discussed. In future work, we can implement these techniques on different boundary value problems equipped with complicated integral multi-point boundary conditions.
The authors declare that they have not used artificial intelligence (AI) tools in the creation of this article.
This research was funded by the National Science, Research and Innovation Fund (NSRF) and King Mongkut's University of Technology North Bangkok with contract no. KMUTNB-FF-66-11.
Professor Sotiris K. Ntouyas is an editorial board member for AIMS Mathematics and was not involved in the editorial review or the decision to publish this article. The authors declare no conflicts of interest.
[1] |
Gordon-Larsen P, Heymsfield SB (2018) Obesity as a disease, not a behavior. Circulation 137: 1543-1545. https://doi.org/10.1161/CIRCULATIONAHA.118.032780 ![]() |
[2] |
Jastreboff AM, Kotz CM, Kahan S, et al. (2019) Obesity as a disease: The obesity society 2018 position statement. Obesity 27: 7-9. https://doi.org/10.1002/oby.22378 ![]() |
[3] | World Health OrganizationObesity and overweight. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight |
[4] |
Valavanis IK, Mougiakakou SG, Grimaldi KA, et al. (2010) A multifactorial analysis of obesity as CVD risk factor: use of neural network based methods in a nutrigenetics context. BMC Bioinformatics 11: 453. https://doi.org/10.1186/1471-2105-11-453 ![]() |
[5] |
van der Sande MAB, Ceesay SM, Milligan PJM, et al. (2001) Obesity and undernutrition and cardiovascular risk factors in rural and urban Gambian communities. Am J Public Health 91: 1641-1644. https://doi.org/10.2105/ajph.91.10.1641 ![]() |
[6] | Popkin BM (2003) Dynamics of the nutrition transition and its implications for the developing world. Forum Nutr 56: 262-264. |
[7] |
Hall ME, do Carmo JM, da Silva AA, et al. (2014) Obesity, hypertension, and chronic kidney disease. Int J Nephrol Renov Dis 7: 75-88. https://doi.org/10.2147/IJNRD.S39739 ![]() |
[8] |
Eckel RH, Kahn SE, Ferrannini E, et al. (2011) Obesity and type 2 diabetes: what can be unified and what needs to be individualized?. J Clin Endocrinol Metab 96: 1654-1663. https://doi.org/10.1210/jc.2011-0585 ![]() |
[9] |
Farzadfar F, Finucane MM, Danaei G, et al. (2011) National, regional, and global trends in serum total cholesterol since 1980: systematic analysis of health examination surveys and epidemiological studies with 321 country-years and 3·0 million participants. Lancet 377: 578-586. https://doi.org/10.1016/S0140-6736(10)62038-7 ![]() |
[10] |
Lyall DM, Celis-Morales C, Ward J, et al. (2017) Association of body mass index with cardiometabolic disease in the UK Biobank: A mendelian randomization study. JAMA Cardiol 2: 882-889. https://doi.org/10.1001/jamacardio.2016.5804 ![]() |
[11] |
Ofori-Asenso R, Agyeman AA, Laar A, et al. (2016) Overweight and obesity epidemic in Ghana—a systematic review and meta-analysis. BMC Public Health 16: 1239. https://doi.org/10.1186/s12889-016-3901-4 ![]() |
[12] |
Unger T, Borghi C, Charchar F, et al. (2020) 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 75: 1334-1357. https://doi.org/10.1161/HYPERTENSIONAHA.120.15026 ![]() |
[13] |
Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15: 539-553. https://doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S ![]() |
[14] |
Grundy SM, Stone NJ, Bailey AL, et al. (2019) 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol 73: e285-e350. https://doi.org/10.1016/j.jacc.2018.11.003 ![]() |
[15] |
Ritchie SA, Connell JMC (2007) The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis 17: 319-326. https://doi.org/10.1016/j.numecd.2006.07.005 ![]() |
[16] |
Kales SN, Polyhronopoulos GN, Aldrich JM, et al. (1999) Correlates of body mass index in hazardous materials firefighters. J Occup Environ Med 41: 589-595. ![]() |
[17] | Donkor N, Farrell K, Ocho O, et al. (2020) Correlates of obesity indices and cardiovascular disease risk factors among Trinidadian nurses. Int J Africa Nurs Sci 12: 100194. https://doi.org/10.1016/j.ijans.2020.100194 |
[18] |
Cil H, Bulur S, Türker Y, et al. (2012) Impact of body mass index on left ventricular diastolic dysfunction. Echocardiography 29: 647-651. https://doi.org/10.1111/j.1540-8175.2012.01688.x ![]() |
[19] | Kossaify A, Nicolas N (2013) Impact of overweight and obesity on left ventricular diastolic function and value of tissue Doppler echocardiography. Clin Med Insights Cardiol 7: 43-50. https://doi.org/10.4137/CMC.S11156 |
[20] |
Reynolds K, Gu D, Whelton PK, et al. (2007) Prevalence and risk factors of overweight and obesity in China. Obesity 15: 10-18. https://doi.org/10.1038/oby.2007.527 ![]() |
[21] |
Gu D, Reynolds K, Wu X, et al. (2005) Prevalence of the metabolic syndrome and overweight among adults in China. Lancet 365: 1398-1405. https://doi.org/10.1016/S0140-6736(05)66375-1 ![]() |
[22] |
An R, Xiang X (2016) Age–period–cohort analyses of obesity prevalence in US adults. Public Health 141: 163-169. https://doi.org/10.1016/j.puhe.2016.09.021 ![]() |
[23] |
Yusuf S, Hawken S, Ounpuu S, et al. (2005) Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: A case-control study. Lancet 366: 1640-1649. https://doi.org/10.1016/S0140-6736(05)67663-5 ![]() |
[24] |
Liang X, Chen X, Li J, et al. (2018) Study on body composition and its correlation with obesity: A cohort study in 5121 Chinese Han participants. Medicine 97: e10722. https://doi.org/10.1097/MD.0000000000010722 ![]() |
[25] |
Moghaddam AA, Woodward M, Huxley R (2007) Obesity and risk of colorectal cancer: A meta-analysis of 31 studies with 70,000 events. Cancer Epidemiol Biomarkers Prev 16: 2533-2547. https://doi.org/10.1158/1055-9965.EPI-07-0708 ![]() |
[26] |
Valdes AM, Andrew T, Gardner JP, et al. (2005) Obesity, cigarette smoking, and telomere length in women. Lancet 366: 662-664. https://doi.org/10.1016/S0140-6736(05)66630-5 ![]() |
[27] | Maltais ML, Desroches J, Dionne IJ (2009) Changes in muscle mass and strength after menopause. J Musculoskelet Neuronal Interact 9: 186-197. |
[28] |
Crawford SL, Casey VA, Avis NE, et al. (2000) A longitudinal study of weight and the meno-pause transition: results from the Massachusetts Women's Health Study. Menopause 7: 96-104. https://doi.org/10.1097/00042192-200007020-00005 ![]() |
[29] |
Sun J, Zhou W, Gu T, et al. (2018) A retrospective study on association between obesity and cardiovascular risk diseases with aging in Chinese adults. Sci Rep 8: 5806. https://doi.org/10.1038/s41598-018-24161-0 ![]() |
[30] |
Abubakari AR, Lauder W, Agyemang C, et al. (2008) Prevalence and time trends in obesity among adult West African populations: A meta-analysis. Obes Rev 9: 297-311. https://doi.org/10.1111/j.1467-789X.2007.00462.x ![]() |
[31] | Benkeser RM, Biritwum R, Hill AG (2012) Prevalence of overweight and obesity and perception of healthy and desirable body size in Urban, Ghanaian women. Ghana Med J 46: 66-75. |
[32] | Aryeetey RNO (2016) Perceptions and experiences of overweight among women in the Ga East District, Ghana. Front Nutr 3: 13. https://doi.org/10.3389/fnut.2016.00013 |
[33] | Appiah CA, Steiner-Asiedu M, Otoo GE (2014) Predictors of overweight/obesity in Urban Ghanaian women. Int J Clin Nutr 2: 60-68. https://doi.org/10.12691/ijcn-2-3-3 |
[34] | Donkor N, Farrell K, Constable A, et al. (2015) Cardiovascular and type 2 diabetes risk factors in Liberian nurses. Int J Africa Nurs Sci 4: 1-6. https://doi.org/10.1016/j.ijans.2015.11.001 |
[35] |
Akpa OM, Made F, Ojo A, et al. (2020) Regional patterns and association between obesity and hypertension in Africa. Evidence from the H3Africa CHAIR study. Hypertension 75: 1167-1178. https://doi.org/10.1161/HYPERTENSIONAHA.119.14147 ![]() |
[36] |
Akil L, Ahmad HA (2011) Relationships between obesity and cardiovascular diseases in four Southern states and Colorado. J Health Care Poor Underserved 22: 61-72. https://doi.org/10.1353/hpu.2011.0166 ![]() |
[37] |
Poston WSC, Haddock CK, Jahnke SA, et al. (2011) The prevalence of overweight, obesity, and substandard fitness in a population-based firefighter cohort. J Occup Environ Med 53: 266-273. https://doi.org/10.1097/JOM.0b013e31820af362 ![]() |
[38] |
Sekokotla MA, Goswami N, Sewani-Rusike CR, et al. (2017) Prevalence of metabolic syndrome in adolescents living in Mthatha, South Africa. Ther Clin Risk Manag 13: 131-137. https://doi.org/10.2147/TCRM.S124291 ![]() |
[39] |
Choi B, Steiss D, Garcia-Rivas J, et al. (2016) Comparison of body mass index with waist circumference and skinfold-based percent body fat in firefighters: adiposity classification and associations with cardiovascular disease risk factors. Int Arch Occup Environ Health 89: 435-448. https://doi.org/10.1007/s00420-015-1082-6 ![]() |
[40] |
Soteriades ES, Hauser R, Kawachi I, et al. (2005) Obesity and cardiovascular disease risk factors in firefighters: A prospective cohort study. Obes Res 13: 1756-1763. https://doi.org/10.1038/oby.2005.214 ![]() |
[41] |
Clark S, Rene A, Theurer WM, et al. (2002) Association of body mass index and health status in firefighters. J Occup Environ Med 44: 940-946. https://doi.org/10.1097/00043764-200210000-00013 ![]() |
[42] |
Owusu IK, Acheamfour-Akowuah E (2018) Pattern of cardiovascular diseases as seen in an out-patient cardiac clinic in Ghana. World J Cardiovasc Dis 8: 70-84. https://doi.org/10.4236/wjcd.2018.81008 ![]() |
[43] | Acheamfour-Akowuah E, Owusu IK (2016) Prevalence and correlates of Electrocardiographic left ventricular hypertrophy in hypertensive patients at a specialist clinic in Techiman, Ghana. IOSR J Dent Med Sci 15: 100-109. https://doi.org/10.9790/0853-151103100109 |
[44] | Owusu IK, Boakye YA (2013) Prevalence and aetiology of heart failure in patients seen at a teaching hospital in Ghana. J Cardiovasc Dis Diagn 1: 131. https://doi.org/10.4172/2329-9517.1000131 |
[45] |
da Silva AA, do Carmo J, Dubinion J, et al. (2009) The role of the sympathetic nervous system in obesity-related hypertension. Curr Hypertens Rep 11: 206-211. https://doi.org/10.1007/s11906-009-0036-3 ![]() |
[46] |
Lambert GW, Straznicky NE, Lambert EA, et al. (2010) Sympathetic nervous activation in obesity and the metabolic syndrome—causes, consequences and therapeutic implications. Pharma-col Ther 126: 159-172. https://doi.org/10.1016/j.pharmthera.2010.02.002 ![]() |
[47] |
Aghamohammadzadeh R, Heagerty AM (2012) Obesity-related hypertension: epidemiology, pathophysiology, treatments, and the contribution of perivascular adipose tissue. Ann Med 44: S74-84. https://doi.org/10.3109/07853890.2012.663928 ![]() |
[48] |
Hall JE, da Silva AA, do Carmo JM, et al. (2010) Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem 285: 17271-17276. https://doi.org/10.1074/jbc.R110.113175 ![]() |
[49] |
Byczek L, Walton SM, Conrad KM, et al. (2004) Cardiovascular risks in firefighters: implications for occupational health nurse practice. AAOHN J 52: 66-76. ![]() |
[50] |
Tokgozoglu L, Orringer C, Ginsberg HN, et al. (2022) The year in cardiovascular medicine 2021: dyslipidaemia. Eur Heart J 43: 807-817. https://doi.org/10.1093/eurheartj/ehab875 ![]() |
[51] |
McAloon CJ, Osman F, Glennon P, et al. (2016) Chapter 4—Global Epidemiology and Incidence of Cardiovascular Disease. Cardiovascular Diseases . Boston: Academic Press 57-96. https://doi.org/10.1016/B978-0-12-803312-8.00004-5 ![]() |
1. | Saleh S Redhwan, Mohammed A Almalahi, Ali Hasan Ali, Maryam Ahmed Alyami, Mona Alsulami, Najla Alghamdi, Nonlinear dynamics of the complex periodic coupled system via a proportional generalized fractional derivative, 2024, 99, 0031-8949, 125270, 10.1088/1402-4896/ad9088 |