
Citation: Sima Fallah Arzpeyma, Parisa Hajir, Pooya Bahari Khorram. The relationship between facet tropism and lumbar disc herniation in patients with low back pain[J]. AIMS Medical Science, 2019, 6(3): 181-190. doi: 10.3934/medsci.2019.3.181
[1] | Hilal Essaouini, Pierre Capodanno . Analysis of small oscillations of a pendulum partially filled with a viscoelastic fluid. Communications in Analysis and Mechanics, 2023, 15(3): 388-409. doi: 10.3934/cam.2023019 |
[2] | Chunyou Sun, Junyan Tan . Attractors for a Navier–Stokes–Allen–Cahn system with unmatched densities. Communications in Analysis and Mechanics, 2025, 17(1): 237-262. doi: 10.3934/cam.2025010 |
[3] | Yuxuan Chen . Global dynamical behavior of solutions for finite degenerate fourth-order parabolic equations with mean curvature nonlinearity. Communications in Analysis and Mechanics, 2023, 15(4): 658-694. doi: 10.3934/cam.2023033 |
[4] | Shu Wang . Global well-posedness and viscosity vanishing limit of a new initial-boundary value problem on two/three-dimensional incompressible Navier-Stokes equations and/or Boussinesq equations. Communications in Analysis and Mechanics, 2025, 17(2): 582-605. doi: 10.3934/cam.2025023 |
[5] | Cheng Yang . On the Hamiltonian and geometric structure of Langmuir circulation. Communications in Analysis and Mechanics, 2023, 15(2): 58-69. doi: 10.3934/cam.2023004 |
[6] | Shuyue Ma, Jiawei Sun, Huimin Yu . Global existence and stability of temporal periodic solution to non-isentropic compressible Euler equations with a source term. Communications in Analysis and Mechanics, 2023, 15(2): 245-266. doi: 10.3934/cam.2023013 |
[7] | Yonghui Zou . Global regularity of solutions to the 2D steady compressible Prandtl equations. Communications in Analysis and Mechanics, 2023, 15(4): 695-715. doi: 10.3934/cam.2023034 |
[8] | Xiao Qing Huang, Jia Feng Liao . Existence and asymptotic behavior for ground state sign-changing solutions of fractional Schrödinger-Poisson system with steep potential well. Communications in Analysis and Mechanics, 2024, 16(2): 307-333. doi: 10.3934/cam.2024015 |
[9] | Xiufang Cui, Xianpeng Hu . Uniform bound of the highest-order energy for three dimensional inhomogeneous incompressible elastodynamics. Communications in Analysis and Mechanics, 2025, 17(2): 429-461. doi: 10.3934/cam.2025018 |
[10] | Shuai Xi . A Kato-type criterion for the inviscid limit of the nonhomogeneous NS equations with no-slip boundary condition. Communications in Analysis and Mechanics, 2024, 16(4): 896-909. doi: 10.3934/cam.2024039 |
Fluid flows in branching tubes are common in many biological and industrial applications such as physiological branching flows and flows through pipe and duct networks (see, for instance, [1,2,3,4,5,6,7,8]). This subject is extensively studied in both theoretical and practical points of views. A mathematical model of fluid flows in a network of thin tubes has been derived in [9] from the asymptotic expansion of Navier–Stokes equations. Consistent asymptotic analysis of Navier–Stokes equations in thin tube structures, by letting the diameter of the tubes tend to zero, has been recently studied in a series of papers, such as [10] and [11]. The Navier–Stokes equations with pressure boundary conditions in the junctions of thin pipes are considered in [12] and [13], where approximations based on Leray and Poiseuille problems are constructed therein.
Let $ h $ be a positive integer. Let $ G_{h} $ be the pre-fractal polygonal curve obtained after $ h $-iterations of the contractive similarities of the Sierpinski gasket $ G $ (see Figure 1). We consider a network of circular cylindrical pipes whose axes are the sides of the polygon $ G_{h} $. We assume that these pipes are narrow axisymmetric tubes of radius $ \varepsilon _{h} $ very small with respect to the length $ 2^{-h} $ of each side of $ G_{h} $. We consider an incompressible fluid flow in the bounded domain $ \Omega ^{h} $ consisting of these pipes connected, after local adjustments near the bifurcation points, through smooth thin regions centered at the vertices of $ G_{h} $ (see Figure 4). We suppose that each pipe is split into two principal regions: junction zones of length $ \varepsilon _{h}\ln \left(1/\varepsilon _{h}\right) \ll $ $ 2^{-h} $ linked to the ends of the pipe and the rest of the pipe. We suppose that the fluid flow in $ \Omega ^{h} $ is driven by some volumic forces and governed by Stokes equations with boundary conditions for the velocity and the pressure on the external boundary of $ \Omega ^{h} $ and inner continuity conditions for the normal velocity on the interfaces between the junction zones and the rest of the pipes (see Section 2 for more details). We assume that the flow in the junction zones is controlled by a typical Reynolds number $ \text{Re}_{{\mathbf{j}}, h} $.
The main focus of this paper is to study the asymptotic behavior of the fluid flowing through the branching pipes as the radius of the tubes tends to zero and the sequence of pre-fractal curves converges in the Hausdorff metric to the Sierpinski gasket $ G $. Using $ \Gamma $-convergence methods (see, for instance, [14] and [15]), we prove that the effective potential energy of the fluid turns out to be of the form
$ F∞(v)={μπm(Θ)Hd(G)∫Gv2dHd+2μπm(Θ)3σ∫G∇v.Z∇vdν if v∈V∞, +∞ otherwise, $ | (1.1) |
where $ v $ is the fluid velocity, $ \mu $ is the fluid viscosity, $ \mathfrak{m} \left(\Theta \right) $ is the average value (see Eq. (6.10)) of the solution $ \Theta $ of boundary value problem (6.5), $ \dfrac{1}{ \mathfrak{m}\left(\Theta \right) \mathcal{H}^{d}\left(G\right) } $ is the permeability of the Sierpinski gasket $ G $, $ \mathcal{H}^{d} $ being the $ d $ -dimensional Hausdorff measure on $ G $ where
$ d=ln3/ln2 $ | (1.2) |
stands for the fractal dimension of $ G $, $ Z $ is a random matrix given in Section 4 (see Eq. (4.15)–(4.18)), $ {\boldsymbol{\nu}} $ is a singular measure with respect to the Hausdorff measure $ \mathcal{H} ^{d} $ on $ G $ called the Kusuoka measure (see Eq. (4.11)), which, according to [16], is a Gibbs measure of special kind, $ V^{\infty } $ is the admissible velocities space (see Definition 2$ _{3} $), and
$ 1σ=limh→∞εhRej,h. $ | (1.3) |
Depending on the values of $ \sigma $, we obtain different asymptotic problems:
1. If $ \sigma \in \left(0, +\infty \right) $, then $ \text{Re}_{{\mathbf{j}}, h} = O\left(\varepsilon _{h}\right) $. In this case, the effective flow is described (see Theorem 3) by the following singular Brinkman equation in the Sierpinski gasket $ G $:
$ −2μπm(Θ)Hd3σHd(G)ΔG(u)+μπHdm(Θ)Hd(G)u+νZ∇p.n=HdHd(G)f.n in G, $ | (1.4) |
where $ u $ is the fluid velocity, $ p $ is the pressure, $ \Delta _{G} $ is the Laplace operator on the Sierpinski gasket (see Lemma 4), $ f $ is the effective source term, $ n = \left(1, 0\right) $ on the horizontal part of $ G $, $ n = \left(1/2, \sqrt{3}/2\right) $ on the part of $ G $ which is perpendicular to the unit vector $ \left(-\sqrt{3}/2, 1/2\right) $, and $ n = \left(1/2, -\sqrt{3}/2\right) $ on the part of $ G $ which is perpendicular to the unit vector $ \left(\sqrt{3}/2, 1/2\right) $. This equation includes the singular Brinkman viscous resistance term $ -\dfrac{2\mu \pi \mathfrak{m} \left(\Theta \right) \mathcal{H}^{d}}{3\sigma \mathcal{H}^{d}\left(G\right) }\Delta _{G}\left(u\right) $, which is due to the viscous behavior of the fluid flow at the junction zones, and the singular Darcy resistance term $ \dfrac{\mu \pi \mathcal{H}^{d}}{\mathfrak{m}\left(\Theta \right) \mathcal{H}^{d}\left(G\right) }u $.
2. If $ \sigma = +\infty $, then $ \text{Re}_{{\mathbf{j}}, h} $ $ = O\left(1\right) $ or $ \text{Re}_{{\mathbf{j}}, h}\longrightarrow \infty $ as $ h\longrightarrow \infty $. In this case, the term $ \dfrac{\mu \pi \mathfrak{m }\left(\Theta \right) }{3\sigma }\int_{G}\nabla v.Z \nabla v d{\boldsymbol{\nu}} $ in (1.1) disappears and the flow is governed by singular Darcy's law in the Sierpinski gasket $ G $.
3. If $ \sigma = 0 $, then $ \text{Re}_{{\mathbf{j}}, h} $ $ = O\left(\varepsilon _{h}^{\alpha }\right) $ with $ \alpha > 1 $. In this case, the energy $ F_{\infty }\left(v\right) $ is finite only if $ \int_{G}\nabla v.Z\nabla v d{\boldsymbol{\nu}} = 0 $, which implies that the velocity of the fluid flow is asymptotically constant in the Sierpinski gasket $ G $.
The study of asymptotic analysis of boundary value problems in domains with fractal boundaries or containing thin inclusions developing a fractal geometry has been recently addressed in a series of papers (see, for instance, [17,18,19,20,21,22,23,24,25,26,27,28,29]). The problems obtained at the limit generally consist of singular forms containing fractal terms. The problem considered in this work is quite different from the previous ones, as we deal here with the determination of the fluid motion through branching tubes having a fractal structure. The overall effect of the pre-fractal branching networks on the fluid flow appears in the singular effective equation (1.4), according to the characteristics of the flow, as the radius of the tubes tends to zero and the sequence of pre-fractal curves converges in the Hausdorff metric to the Sierpinski gasket $ G $. The asymptotic representation of the solution of the original singularly perturbed problem includes local perturbations representing the flow in the boundary layers in the junction zones. These local perturbations are solutions of Leray problems in semi-infinite cylinders representing the rescaled junctions. The main novelty of this paper lies in the construction of these local perturbations as well as the derivation of the effective flow described above by singular Brinkman and Darcy laws on the fractal $ G $ with divergence-free velocity in a fractal sense specified in Definition 2$ _{2} $ in Section 5.
The problem considered in this work has some implications for modeling the behavior of fluid flows in various complex geometrical configurations of branching tubes. An important field to which this model is closely related is the behavior of fluid flows in some physiological structures such as lung airways (see, for instance, [1] and [30]) the cardiovascular system and cerebral arteriovenous (see, for instance, [30], [31], and [32]). It has been shown that physiological branching networks exhibit fractal structures for minimal energy dissipation (see, for instance, [33] and [34]). In particular, blood vessels have self-similar structures with optimal transport property of their fractal networks (see, for instance, [35]). Blood has been treated in [31] as a homogeneous, incompressible, Newtonian viscous fluid, making the assumptions that the flow is steady and axisymmetric with sufficiently small Reynolds number so that the flow is laminar. The authors observed that the overall effect of the non-Newtonian characteristics would be small.
The present investigation on fractal branching flows provides some motivations in the haemodynamics. The blood vessels can be illustrated, under some simplifying assumptions, by the network $ \Omega ^{h} $ of narrow branching tubes with laminar flow far ahead of the bifurcations and boundary layer flow near the bifurcations, where the local Reynolds number is the most effective factor controlling the flow throughout the whole network.
This paper is organized as follows. The statement of the problem is presented in Section 2, with a subsection reserved for the nomenclature and another devoted to the position of the problem. In Section 3, we formulate the main results of this work. In Section 4, we introduce the energy forms, the Kusuoka measures, and gradients on the Sierpinski gasket. Section 5 is devoted to some a priori estimates and compactness results. Section 6 is consecrated to the proof of the main results. A final conclusion is made in Section 7.
$ A_{1}A_{2}A_{3} $ | equilateral triangle of vertices $ A_{1} = \left(0, 0\right) $, $ A_{2} = \left(1, 0\right) $, $ A_{3} = \left(1/2, \sqrt{3}/2\right) $ |
$ G $ | Sierpinski gasket built in the triangle $ A_{1}A_{2}A_{3} $ |
$ G_{h} $ | prefractal polygonal curve obtained after $ h $-iterations of contractive similarities of $ G $ |
$ \mathcal{V}_{h} $ | set of vertices of $ G_{h} $ |
$ E_{h} $ | set of edges of $ G_{h} $ |
$ \mathcal{V}_{\infty } $ | set of all vertices of $ G $ |
$ T_{h}^{k} $ | $ k^{th} $ triangle of $ G_{h} $ |
$ E_{h}^{i, k} = \left[a_{h}^{i, k}, b_{h}^{i, k}\right] $ | $ i^{th} $ edge of $ T_{h}^{k} $ |
$ 2^{-h} $ | length of $ E_{h}^{i, k} $ |
$ y_{h, 1}^{i, k} $, $ y_{h, 2}^{i, k} $ | local variables on $ T_{h}^{k} $ |
$ \varepsilon _{h} $ | small positive number |
$ \Pi _{k}^{h, i} $ | $ i^{th} $ tube of radius $ \varepsilon _{h} $ and of length $ 2^{-h}-2\varepsilon _{h} $ surrounding $ E_{h}^{i, k} $ |
$ B_{k}^{h}\left(a_{h}^{i, k}\right) $ | small smooth branch junction of thickness of order $ 2\varepsilon _{h} $ centered at the vertex $ a_{h}^{i, k} $ |
$ B_{k}^{h}\left(b_{h}^{i, k}\right) $ | small smooth branch junction of thickness of order $ 2\varepsilon _{h} $ centered at the vertex $ b_{h}^{i, k} $ |
$ \Sigma _{k, 1}^{h, i} $ | interface between $ B_{k}^{h}\left(a_{h}^{i, k}\right) $ and $ \Pi _{k}^{h, i} $ |
$ \Sigma _{k, 2}^{h, i} $ | interface between $ B_{k}^{h}\left(b_{h}^{i, k}\right) $ and $ \Pi _{k}^{h, i} $ |
$ \Omega _{k}^{h, i} $ | pipe formed with $ B_{k}^{h}\left(a_{h}^{i, k}\right) $, $ B_{k}^{h}\left(b_{h}^{i, k}\right) $, $ \Pi _{k}^{h, i} $, and the interfaces $ \Sigma _{k, \alpha }^{h, i} $; $ \alpha = 1, 2 $, between them |
$ \Omega ^{h} $ | network of the interconnected pipes $ \Omega _{k}^{h, i} $ |
$ \Gamma ^{h} $ | external boundary of $ \Omega ^{h} $ |
$ \mathcal{J}_{k}^{h, +, i} $ | small junction zone of length $ \varepsilon _{h}\ln \left(1/\varepsilon _{h}\right) $ located in the region $ y_{h, 1}^{i, k} > 0 $ |
$ \mathcal{J}_{k}^{h, -, i} $ | small junction zone of length $ \varepsilon _{h}\ln \left(1/\varepsilon _{h}\right) $ located in the region $ y_{h, 1}^{i, k} < 2^{-h} $ |
$ \mathcal{J}^{h} $ | union of the junction zones $ \mathcal{J}_{k}^{h, \pm, i} $ |
$ \mu $ | fluid viscosity |
$ \text{Re}_{{\mathbf{j}}, h} $ | typical Reynolds number in $ \mathcal{J}^{h} $ |
$ \text{Re}_{h} $ | characteristic Reynolds number in $ \Omega ^{h} $ |
$ \mathrm{Eu}_{h} $ | characteristic Euler number in $ \Omega ^{h} $ |
$ Fr_{h} $ | characteristic Froude number in $ \Omega ^{h} $ |
$ \dfrac{5^{h}}{3^{h+1}} $ | scaling factor associated to the ramification of the network $ \Omega ^{h} $ |
$ d $ | the fractal dimension of $ G $ |
$ \mathcal{H}^{d} $ | $ d $ -dimensional Hausdorff measure on $ G $ |
$ L_{\mathcal{H}^{d}}^{2}\left(G\right) $ | space of square integrable $ L^{2} $-functions with respect to the measure $ \mathcal{H}^{d} $ |
$ \mathcal{E}_{G} $ | Dirichlet form in $ L_{\mathcal{H}^{d}}^{2}\left(G\right) $ |
$ Z $ | random matrix |
$ \text{div }_{Z} $ | divergence operator on $ G $ |
$ {\boldsymbol{\nu}} $ | Kusuoka measure |
$ \mathcal{J}^{+\pm, i} $ | semi infinite cylinders representing the rescaled junctions |
Let us consider the points of the plane $ xOy $: $ A_{1} = \left(0, 0\right) $, $ A_{2} = \left(1, 0\right) $, and $ A_{3} = \left(1/2, \sqrt{3}/2\right) $. Let us denote $ \left\{ \psi _{i}\right\} _{i = 1, 2, 3} $ as the family of contractive similitudes defined on $ \mathbb{R}^{2} $ by
$ ψi(x)=x+Ai2, ∀x=(x1,x2)∈R2. $ | (2.1) |
Let $ \mathcal{V}_{0} = \left\{ A_{1}\text{, }A_{2}\text{, }A_{3}\right\} $ be the set of vertices of the equilateral triangle $ A_{1}A_{2}A_{3} $. We define inductively
$ Vh+1=∪i=1,2,3ψi(Vh), $ | (2.2) |
for every $ h\in \mathbb{N} $, and set
$ V∞=∪h∈NVh. $ | (2.3) |
The Sierpinski gasket, which is denoted here by $ G $, is defined as the closure of the set $ \mathcal{V}_{\infty } $
$ G=¯V∞. $ | (2.4) |
We consider the graph $ G_{h} = \left(\mathcal{V}_{h}, E_{h}\right) $, where $ E_{h} $ is the set of edges $ \left[a_{h}, b_{h}\right] $; $ a_{h}, b_{h}\in \mathcal{V}_{h} $, such that $ \left\vert a_{h}-b_{h}\right\vert = 2^{-h} $; $ \left\vert a_{h}-b_{h}\right\vert $ being the Euclidean distance between $ a_{h} $ and $ b_{h} $ (see Figure 2). The graph $ G_{h} $ is then the standard approximation of the Sierpinski gasket, which means that the sequence $ \left(G_{h}\right) _{h} $ converges, as $ h $ tends to $ \infty $, in the Hausdorff metric, to the Sierpinski gasket $ G $.
We denote $ Card\left(\mathcal{V}_{h}\right) $ as the number of vertices of $ \mathcal{V}_{h} $. We can easily check that
$ Card(Vh)=3h+1+32, ∀h∈N. $ | (2.5) |
Let $ k\in \left\{ 1, 2, ..., 3^{h}\right\} $. We denote $ T_{h}^{k} $ as the $ k^{th} $ triangle of the graph $ G_{h} $ obtained at the step $ h $. Let $ n^{k} $ be the unit normal to $ T_{h}^{k} $. Then, $ n^{k} = \left(-\sqrt{3}/2, 1/2\right) $, $ n^{k} = \left(\sqrt{3}/2, 1/2\right) $, or $ n^{k} = \left(0, 1\right) $. We denote $ E_{h}^{1, k} = \left[a_{h}^{1, k}, b_{h}^{1, k}\right] $ as the edge of $ T_{h}^{k} $, which is normal to $ n^{k} = \left(0, 1\right) $, $ E_{h}^{2, k} = \left[a_{h}^{2, k}, b_{h}^{2, k}\right] $ as the edge of $ T_{h}^{k} $, which is normal to $ n^{k} = \left(-\sqrt{3}/2, 1/2\right) $, and $ E_{h}^{3, k} = \left[a_{h}^{3, k}, b_{h}^{3, k}\right] $ as the edge of $ T_{h}^{k} $ which is normal to $ n^{k} = \left(\sqrt{3}/2, 1/2\right) $ (see Figure 3).
Let us consider the following rotation matrices:
$ {R1=IdR3, R2=(1/2√3/20−√3/21/20001), R3=Rt2, $ | (2.6) |
$ Id_{\mathbb{R}^{3}} $ being the $ 3\times 3 $ identity matrix. We also define the change of variables $ y_{h, 1}^{i, k} $, $ y_{h, 2}^{i, k} $, $ x_{3} $; $ i = 1, 2, 3 $, for every $ h\in \mathbb{N} $, every $ k\in \left\{ 1, 2, ..., 3^{h}\right\} $, and every $ x = \left(x_{1}, x_{2}, x_{3}\right) \in \left[a_{h}^{i, k}, b_{h}^{i, k}\right] \times \mathbb{R} $, by
$ (yi,kh,1(x)yi,kh,2(x)x3)=Ri(x1−ai,kh,1x2−ai,kh,2x3). $ | (2.7) |
Let $ S $ be the unit disk of $ \mathbb{R}^{2} $ centred at the origin. Let $ \left(\varepsilon _{h}\right) _{h\in \mathbb{N}} $ be a decreasing sequence of positive numbers, such that
$ limh→∞εh=limh→∞2hεhln(1/εh)=0. $ | (2.8) |
We define, for $ h\in \mathbb{N} $, $ k\in \left\{ 1, 2, ..., 3^{h}\right\} $, and $ i = 1, 2, 3 $, the tube $ \Pi _{k}^{h, i} $ by
$ Πh,ik={(x1,x2,x3)∈R3; εh<yi,kh,1(x)<2−h−εh, (yi,kh,2(x),x3)∈εhS}. $ | (2.9) |
We define the interfaces
$ {Σh,ik,1={(x1,x2,x3)∈R3; (yi,kh,2(x),x3)∈εhS, yi,kh,1(x)=εh }, Σh,ik,2={(x1,x2,x3)∈R3; (yi,kh,2(x),x3)∈εhS, yi,kh,1(x)=2−h−εh}, Σh,ik=Σh,ik,1∪Σh,ik,2. $ | (2.10) |
We then set
$ {Πh=3h∪k=1i=1,2,3Πh,ik, Σhα=3h∪k=1i=1,2,3Σh,ik,α; α=1,2, Σh=Σh1∪Σh2. $ | (2.11) |
We now define thin, smooth regions which ensure the junctions between the tubes $ \Pi _{k}^{h, i} $. Let $ B_{k}^{h}\left(a_{h}^{i, k}\right) $ and $ B_{k}^{h}\left(b_{h}^{i, k}\right) $ be bounded open sets of thickness of order $ 2\varepsilon _{h} $ and centered at the points $ \left(a_{h, 1}^{i, k}, a_{h, 2}^{i, k}, 0\right) $ and $ \left(b_{h, 1}^{i, k}, b_{h, 2}^{i, k}, 0\right) $, respectively, such that $ \partial B_{k}^{h}\left(a_{h}^{i, k}\right) $ and $ \partial B_{k}^{h}\left(b_{h}^{i, k}\right) $ are $ C^{2} $-surfaces with
$ {∂Bhk(ai,kh)∩∂Πh=εhS, ∂Bhk(bi,kh)∩∂Πh=εhS, $ | (2.12) |
(see Figure 4).
We set
$ Bh=3h∪k=1i=1,2,3Bhk(ai,kh)∪Bhk(bi,kh). $ | (2.13) |
Let us define the pipe $ \Omega _{k}^{h, i} $; $ h\in \mathbb{N} $, $ k\in \left\{ 1, 2, ..., 3^{h}\right\} $, and $ i = 1, 2, 3 $, by
$ Ωh,ik=Πh,ik∪Σh,ik∪Bhk(ai,kh)∪Bhk(bi,kh). $ | (2.14) |
We consider the network $ \Omega ^{h} $ of interconnected pipes and its external boundary $ \Gamma ^{h} $ defined by
$ Ωh=Σh∪3h∪k=1i=1,2,3Ωh,ik, Γh=∂Ωh. $ | (2.15) |
We consider a viscous incompressible fluid flow in $ \Omega ^{h} $. We suppose that this flow is essentially laminar except in the set $ \mathcal{ J}^{h} $ of the junction zones, where the main characteristics of the flow and their influence on the fluid motion will be analyzed. On the basis of works [12] and [13], we define the set $ \mathcal{J}^{h} $ as
$ Jh=3h∪k=1i=1,2,3Jh,+,ik∪Jh,−,ik, $ | (2.16) |
where, for every $ k\in \left\{ 1, 2, ..., 3^{h}\right\} $ and $ i = 1, 2, 3 $,
$ Jh,+,ik={x=(x1,x2,x3)∈Ωh; 0<yi,kh,1(x)<εhln(1/εh)}, Jh,−,ik={x=(x1,x2,x3)∈Ωh; 2−h−εhln(1/εh)<yi,kh,1(x)<2−h}. $ | (2.17) |
Taking into account the typical scales in $ \Omega ^{h}\backslash \mathcal{J} ^{h} $, we suppose that the characteristic Reynolds number in these regions is of order $ \dfrac{2^{-h}}{\mu } $. The characteristic Reynolds number in $ \Omega ^{h} $ can be then defined as
$ Reh={Rej,hin Jh, 2−hμin Ωh∖Jh, $ | (2.18) |
where $ \text{Re}_{{\mathbf{j}}, h} $ is assumed to be a typical Reynolds number of the flow in the region $ \mathcal{J}^{h} $. According to [36], the product $ \mathrm{Eu}_{h}\text{Re}_{h} $ of the characteristic Euler number $ \mathrm{Eu}_{h} $ and the characteristic Reynolds number $ \text{Re}_{h} $ is the ratio between the caracteristic pressure and viscosity. Then, assuming that the characteristic pressure is the ratio between a constant normal force and the surface of the disk $ \varepsilon _{h}S $, we may write
$ RehEuh=1μπε2h. $ | (2.19) |
According to the above equality, we suppose that the characteristic Euler number $ \mathrm{Eu}_{h} $ in the network $ \Omega ^{h} $ takes the form
$ Euh=2hπε2h. $ | (2.20) |
On the other hand, as the diameter of any tube of the network $ \Omega ^{h} $ is $ 2\varepsilon _{h} $, we deduce, according to [37, page 98], that the ratio of the characteristic Froude number $ Fr_{h} $ to the characteristic Reynolds number $ \text{Re}_{h} $ is of order $ \varepsilon _{h}^{2} $. Accordingly, we suppose that the characteristic Froude number in $ \Omega ^{h} $ has the following scaling:
$ Frh=2−hπε2h. $ | (2.21) |
Since the characteristic Reynolds number is small in $ \Omega ^{h}\backslash \mathcal{J}^{h} $, we suppose that the inertia effects are negligible in the whole $ \Omega ^{h} $ and the flow is governed by the following Stokes equations:
$ { −1Reh5h3h+1Δuh+Euh 5h3h+1∇ph=1Frh5h3h+1fhin Ωh, div uh=0in Ωh, $ | (2.22) |
where $ \dfrac{5^{h}}{3^{h+1}} $ is a scaling factor, which is associated to the ramification of the pre-fractal network $ \Omega ^{h} $ and determined by the decimation principle (see [38] for more details on scaling exponents governing some physical phenomena in fractal media), the source term $ f_{h} $ is the solution of the following problem posed in each tube $ \Omega _{k}^{h, i} $; $ k\in \left\{ 1, 2, ..., 3^{h}\right\} $ and $ i = 1, 2, 3 $,
$ {div fh=ghin Ωh,ik, fh.n=0on ∂Ωh,ik, $ | (2.23) |
where $ n $ is the outward unit normal on $ \partial \Omega _{k}^{h, i} $ and $ g_{h} $ is a $ L^{2}\left(\Omega ^{h}\right) $ function such that
$ { ∫Ωh,ikghdx=0, suph 5h|Ωh|∫Ωhg2hdx<+∞, $ | (2.24) |
$ \left\vert A\right\vert $ being the Lebesgue measure of the measurable and bounded subset $ A $ of $ \mathbb{R}^{3} $. The boundary conditions (2.25) are given, for every $ i = 1, 2, 3 $, by
$ { uh=0on Γh, uh∣Σh1.Rie1=uh∣Σh2.Rie1on Σh, ∂ph∂n=0on Γh, $ | (2.25) |
where, in accordance with the divergence free of the velocity, the condition (2.25)$ _{2} $ ensures that the outward normal velocities are the same on the two interfaces $ \Sigma _{k, 1}^{h, i} $ and $ \Sigma _{k, 2}^{h, i} $, $ e_{1} = \left(1, 0, 0\right) $, and $ \dfrac{\partial p_{h}}{\partial n} $ is the normal derivative of the pressure on $ \Gamma ^{h} $; $ n $ being the outward unit normal on $ \Gamma ^{h} $.
Remark 1. The homogeneous Neumann boundary condition (2.25)$ _{3} $ on $ \Gamma ^{h} $ is justified as follows. According to [39, Chapter II], thin boundary layers are concentrated in the immediate neighborhood of the wall $ \Gamma ^{h} $ due to the homogeneous Dirichlet boundary condition for the velocity on $ \Gamma ^{h} $. The characteristic Reynolds number in these boundary layers, denoted here by $ \text{Re}_{w, h} $, is sufficiently large so that the viscous term $ \dfrac{1}{\text{Re}_{w, h}}\Delta u^{h} $ is negligible when one gets too close to the wall $ \Gamma ^{h} $. We deduce, according to [40, Remarks page 1119], that the boundary condition
$ Euh∂ph∂n=1Rew,hΔuh.n onΓh, $ |
obtained by taking into account equation (2.22)$ _{1} $ and the fact that $ f_{h}.n = 0 $ on $ \Gamma ^{h} $, can ostensibly be approximated by $ \mathrm{Eu} _{h}\dfrac{\partial p_{h}}{\partial n} = 0 $ on $ \Gamma ^{h} $, which implies that $ \dfrac{\partial p_{h}}{\partial n} = 0 $ on $ \Gamma ^{h} $.
Let us introduce the space $ V^{h} $ defined by
$ Vh={v∈H1(Ωh,R3); v∣Σh1.Rie1=v∣Σh2.Rie1; i=1,2,3, div v=0 in Ωh, v=0 on Γh}. $ | (2.26) |
We state here a result of existence and uniqueness of a solution for problem (2.22) with boundary conditions (2.25).
Lemma 1. Problem (2.22)–(2.25) has a unique velocity solution $ u^{h}\in V^{h} $ and pressure solution $ p_{h}\in H^{1}\left(\Omega ^{h}\right) $, which is unique up to an additive constant.
Proof. Applying the divergence operator to the first equation of problem (2.22), using (2.23)–(2.24)$ _{1} $ and the boundary condition (2.25)$ _{3} $, we deduce that the pressure verifies the Neumann boundary value problem
$ { Δph=gh in Ωh, ∂ph∂n=0 on Γh. $ | (2.27) |
This problem has a solution $ p_{h}\in H^{1}\left(\Omega ^{h}\right) $, which is unique up to an additive constant. On the other hand, as
$ Euh 5h3h+1∫Ωhv.∇ph=0, $ | (2.28) |
for every $ v\in V^{h} $, the weak formulation of problem (2.22) can be written as, for every $ v\in V^{h} $,
$ 5h3h+1Reh∫Ωh∇uh.∇vdx=1Frh5h3h+1∫Ωhfh.vdx. $ | (2.29) |
Using the Poincaré inequality, we have
$ |∫Ωhfh.vdx|≤Ch{∫Ωh|∇v|2dx}1/2 , $ |
where $ C_{h} $ is a positive constant. Then, according to the Lax–Milgram theorem, we infer that problem (2.29) has a unique solution $ u^{h}\in V^{h} $.
Let us consider the functional $ F_{h} $ defined by
$ Fh(v)={5h3h+1Reh∫Ωh|∇v|2dxif v∈Vh, +∞otherwise. $ | (2.30) |
The velocity $ u^{h} $, solution of problem (2.29), is then the solution of the minimization problem
$ minv∈Vh{Fh(v)−21Frh5h3h+1∫Ωhfh.vdx}. $ | (2.31) |
One of the main purposes of this paper is to prove the $ \Gamma $-convergence of the sequence of functionals $ \left(F_{h}\right) _{h} $ to the functional $ F_{\infty } $ defined in (1.1).
In this section we state our main results in this work. Let $ \mathcal{M}\left(\mathbb{R}^{3}\right) $ be the space of Borel regular measures on $ \mathbb{R}^{3} $. According to Proposition 8 in Section 5, we introduce the following topology $ \tau $:
Definition 1. We say that a sequence $ \left(v^{h}\right) _{h} $; $ v^{h}\in V^{h} $, $ \tau $-converges to $ \left(v, v^{\ast }, v^{\ast \ast }\right) $ if
$ √5hvhπ1Ωh(x)3|Ωh|dx∗⇀h→∞(v,v∗,v∗∗)dHd(s)⊗δ0(x3)Hd(G)inM(R3), $ |
where the symbol $ \overset{\ast }{\rightharpoonup } $ stands for the weak*-convergence of measures.
We formulate our result on the $ \Gamma $-convergence of the sequence of functionals $ \left(F_{h}\right) _{h} $ in the following
Theorem 2. We suppose that $ \sigma \in \left(0, +\infty \right) $. Then
1. ($ \lim \sup $ inequality) For every $ v\in V^{\infty } $, there exists a sequence $ \left(v^{h}\right) _{h} $, with $ v^{h}\in V^{h} $ and $ \left(v^{h}\right) _{h} $ $ \tau $-converges to $ \left(v, v^{\ast }, v^{\ast \ast }\right) $, where $ v^{\ast \ast } = 0 $, $ v^{\ast } = 0 $ on the part of $ G $ which is perpendicular to $ \left(0, 1\right) $, $ v^{\ast } = v\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(-\sqrt{3}/2, 1/2\right) $, and $ v^{\ast } = -v\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(\sqrt{3}/2, 1/2\right) $, such that
$ limsuph→∞Fh(vh)≤F∞(v), $ |
where $ V^{\infty } $ is defined in Definition 2$ _{3} $ of Section 5 and $ F_{\infty } $ is the functional energy defined in (1.1),
2. ($ \lim \inf $ inequality) For every sequence $ \left(v^{h}\right) _{h} $, such that $ v^{h}\in V^{h} $ and $ \left(v^{h}\right) _{h} $ $ \tau $ -converges to $ \left(v, v^{\ast }, v^{\ast \ast }\right) $, we have $ v\in V^{\infty } $, $ v^{\ast \ast } = 0 $ on $ G $, $ v^{\ast } = 0 $ on the part of $ G $ which is perpendicular to $ \left(0, 1\right) $, $ v^{\ast } = v\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(-\sqrt{3}/2, 1/2\right) $, $ v^{\ast } = -v\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(\sqrt{3}/2, 1/2\right) $, and
$ liminfh→∞Fh(vh)≥F∞(v). $ |
We are now in a position to formulate the asymptotic problem.
Theorem 3. Let $ \left(u^{h}, p_{h}\right) $ be the solution of problem (2.22) with boundary conditions (2.25). Under the hypothesis of Theorem 2, we have
1. The sequence $ \left(u^{h}\right) _{h} $ $ \tau $-converges to $ \left(u, u^{\ast }, 0\right) $, with $ u\in V^{\infty } $, $ u^{\ast } = 0 $ on the part of $ G $ which is perpendicular to $ \left(0, 1\right) $, $ u^{\ast } = u\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(-\sqrt{3}/2, 1/2\right) $, and $ u^{\ast } = -u\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(\sqrt{3}/2, 1/2\right) $. There exists $ p\in H_{Z}\left(G\right) $; $ H_{Z}\left(G\right) $ being the space defined in Definition 2 $ _{1} $ of Section 5, and $ f = \left(f_{1}, f_{2}, 0\right) \in L_{ \mathcal{H}^{d}}^{2}\left(G, \mathbb{R}^{3}\right) $, such that
$ {√5hˆphπ1Ωh(x)3|Ωh|dx∗⇀h→∞pdHd⊗δ0(x3)Hd(G)inM(R3), √5hfhπ1Ωh(x)3|Ωh|dx∗⇀h→∞fdHd⊗δ0(x3)Hd(G)inM(R3), limh→∞5h|Ωh|∫Ωhuh.∇ph=∫GuZ∇p.ndν=0, $ |
where $ n = \left(1, 0\right) $ on the horizontal part $ G_{1} $ of $ G $, $ n = \left(1/2, \sqrt{3}/2\right) $ on the part $ G_{2} $ of $ G $ which is perpendicular to $ \left(-\sqrt{3}/2, 1/2\right) $, and $ n = \left(1/2, -\sqrt{3 }/2\right) $ on the part $ G_{3} $ of $ G $ which is perpendicular to $ \left(\sqrt{3}/2, 1/2\right) $,
2. The couple $ \left(u, p\right) $ is the solution of equation (1.4) stated in the Introduction.
In this subsection we introduce the notion of Dirichlet forms on the Sierpinski gasket. For the definition and properties of Dirichlet forms, we refer to [41] and [42].
For any function $ w:\mathcal{V}_{\infty }\longrightarrow \mathbb{R} $, we define
$ EhG(w)=(53)h∑r,s∈Vh|r−s|=2−h(w(r)−w(s))2. $ | (4.1) |
We then define the energy $ \mathcal{E}_{G} $ on $ G $ by
$ EG(w)=limh→∞EhG(w), $ | (4.2) |
with domain $ \mathcal{D}_{\infty } = \left\{ w:\mathcal{V}_{\infty }\longrightarrow \mathbb{R}:\mathcal{E}_{G}\left(w\right) < \infty \right\} $. According to [42, Theorem 2.2.6], every function $ w\in \mathcal{D} _{\infty } $ can be uniquely extended to be an element of $ C\left(G\right) $ still denoted by $ w $. Let us set
$ D={w∈C(G):EG(w)<∞}, $ | (4.3) |
where $ \mathcal{E}_{G}\left(w\right) = \mathcal{E}_{G}\left(w\mid _{ \mathcal{V}_{\infty }}\right) $. Then, $ \mathcal{D\subset }C\left(G\right) \subset L_{\mathcal{H}^{d}}^{2}\left(G\right) $. We define the space $ \mathcal{D}_{\mathcal{E}} $ as
$ DE=¯D‖ $ | (4.4) |
where $ \left\Vert.\right\Vert _{\mathcal{D}_{\mathcal{E}}} $ is the intrinsic norm
$ \begin{equation} \left\Vert w\right\Vert _{\mathcal{D}_{\mathcal{E}}} = \left\{ \mathcal{E} _{G}\left( w\right) +\left\Vert w\right\Vert _{L_{\mathcal{H}^{d}}^{2}\left( G\right) }^{2}\right\} ^{1/2}\text{.} \end{equation} $ | (4.5) |
We denote $ \mathcal{E}_{G}\left(., .\right) $ as the bilinear form defined on $ \mathcal{D}_{\mathcal{E}}\times \mathcal{D}_{\mathcal{E}} $ by
$ \begin{equation} \mathcal{E}_{G}\left( w, z\right) = \frac{1}{2}\left( \mathcal{E}_{G}\left( w+z\right) -\mathcal{E}_{G}\left( w\right) -\mathcal{E}_{G}\left( z\right) \right) \text{, }\forall w, z\in \mathcal{D}_{\mathcal{E}}\text{, } \end{equation} $ | (4.6) |
from which we deduce, according to (4.2), that
$ \begin{equation} \mathcal{E}_{G}\left( w, z\right) = \underset{h\rightarrow \infty }{\lim } \mathcal{E}_{G}^{h}\left( w, z\right) \text{, } \end{equation} $ | (4.7) |
where
$ \begin{align} \mathcal{E}_{G}^{h}\left( w, z\right) = \left( \frac{5}{3}\right) ^{h}\underset {\underset{\left\vert r-s\right\vert = 2^{-h}}{r, s\in \mathcal{V}_{h}}}{\sum }\left( w\left( r\right) -w\left( s\right) \right) \left( z\left( r\right) -z\left( s\right) \right) . \end{align} $ | (4.8) |
The form $ \mathcal{E}_{G}\left(., .\right) $ is a closed Dirichlet form in the Hilbert space $ L_{\mathcal{H}^{d}}^{2}\left(G\right) $ and, according to [43, Theorem 4.1], $ \mathcal{E}_{G}\left(., .\right) $ is a local regular Dirichlet form in $ L_{\mathcal{H}^{d}}^{2}\left(G\right) $. This means that
1. (local property) $ w, z\in \mathcal{D}_{\mathcal{E}} $ with supp$ \left[ w\right] $ and supp$ \left[z\right] $ are disjoint compact sets $ \Longrightarrow $ $ \mathcal{E}_{G}\left(w, z\right) = 0 $,
2. (regularity) $ \mathcal{D}_{\mathcal{E}}\cap C_{0}\left(G\right) $ is dense both in $ C_{0}\left(G\right) $ (the space of functions of $ C\left(G\right) $ with compact support) with respect to the uniform norm and in $ \mathcal{D}_{\mathcal{E}} $ with respect to the intrinsic norm (4.5).
We deduce that $ \mathcal{D}_{\mathcal{E}} $ is injected in $ L_{\mathcal{H} ^{d}}^{2}\left(G\right) $ and is a Hilbert space with the scalar product associated to the norm (4.5). The second property implies that $ \mathcal{D}_{\mathcal{E}} $ is not trivial (that is, $ \mathcal{D}_{\mathcal{E} } $ is not made by only the constant functions). Moreover every function of $ \mathcal{D}_{\mathcal{E}} $ possesses a continuous representative. Indeed, according to [44, Theorem 6.3. and example 7$ _{1} $], the space $ \mathcal{D}_{\mathcal{E}} $ is continuously embedded in the space $ C^{\beta }\left(G\right) $ of Hölder continuous functions with $ \beta = \ln \dfrac{5}{3}/\ln 4 $.
Now, applying [45, Chap. 6], we have the following result:
Lemma 4. There exists a unique self-adjoint nonpositive operator $ \Delta _{G} $ on $ L_{\mathcal{H}^{d}}^{2}\left(G\right) $ with domain
$ \begin{equation*} \mathcal{D}_{\Delta _{G}} = \left\{ w\in L_{\mathcal{H}^{d}}^{2}\left( G\right) \text{; }\Delta _{G}w\in L_{\mathcal{H}^{d}}^{2}\left( G\right) \right\} \subset \mathcal{D}_{\mathcal{E}} \end{equation*} $ |
dense in $ L_{\mathcal{H}^{d}}^{2}\left(G\right) $, such that, for every $ w\in \mathcal{D}_{\Delta _{G}} $ and $ z\in \mathcal{D}_{\mathcal{E}} $,
$ \begin{equation*} \mathcal{E}_{G}\left( w, z\right) = -\int_{G}\left( \Delta _{G}w\right) z \frac{d\mathcal{H}^{d}}{\mathcal{H}^{d}\left( G\right) }\text{.} \end{equation*} $ |
In this subsection we define the Kusuoka measure and the gradient on the Sierpinski gasket $ G $. For the definitions and properties of Kusuoka measures and gradients on fractals, we refer to [46,47,48,49].
Let $ \varrho :\mathcal{V}_{\infty }\longrightarrow \mathbb{R} $. Then, according to [42, Proposition 3.2.1], there exists a unique $ \mathfrak{h}\in \mathcal{D}_{\infty } $ such that $ \mathfrak{h}|_{\mathcal{V} _{0}} = \varrho $ and
$ \begin{equation*} \mathcal{E}_{G}\left( \mathfrak{h}\right) = \inf \left\{ \mathcal{E} _{G}\left( v\right) \text{; }v\in \mathcal{D}_{\infty }\text{, }v|_{\mathcal{ V}_{0}} = \varrho \right\} \text{, } \end{equation*} $ |
where $ \mathfrak{h} $ is called the harmonic function in $ G $ with boundary value $ \mathfrak{h}|_{\mathcal{V}_{0}} = \varrho $. On each $ \mathcal{V}_{h} $, $ h $ $ \in $ $ \mathbb{N}^{\ast } $, a harmonic function $ \mathfrak{h} $ verifies
$ \begin{equation} \left( \mathfrak{h\circ \psi }_{i_{1}...i_{h}}\right) |_{\mathcal{V} _{0}} = T_{i_{1}...i_{h}}\left( \mathfrak{h}|_{\mathcal{V}_{0}}\right) \text{; }i_{1}, ..., i_{h}\in \left\{ 1, 2, 3\right\} \text{, } \end{equation} $ | (4.9) |
(see [42, Proposition 3.2.1]), where $ \mathfrak{\psi } _{i_{1}...i_{h}} = \mathfrak{\psi }_{i_{_{1}}}\circ \cdots \circ \mathfrak{ \psi }_{i_{h}} $ and $ T_{i_{1}...i_{h}} = T_{i_{1}}...T_{i_{h}} $ with
$ \begin{equation*} T_{1} = \frac{1}{5}\left[ \begin{array}{lll} 5 & 0 & 0 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{array} \right] \text{, }T_{2} = \frac{1}{5}\left[ \begin{array}{lll} 2 & 2 & 1 \\ 0 & 5 & 0 \\ 1 & 2 & 2 \end{array} \right] \text{, }T_{3} = \frac{1}{5}\left[ \begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 2 \\ 0 & 0 & 5 \end{array} \right] \text{.} \end{equation*} $ |
Let $ M_{0} = \left\{ (x_{1}, x_{2}, x_{3})\in \mathbb{R}^{3}\text{; } x_{1}+x_{2}+x_{3} = 0\right\} $. Kigami [46] introduced the map $ \Phi :G\longrightarrow M_{0} $ defined by
$ \begin{equation*} \Phi \left( x\right) = \frac{1}{\sqrt{2}}\left( \left( \begin{array}{c} \mathfrak{h}_{1}\left( x\right) \\ \mathfrak{h}_{2}\left( x\right) \\ \mathfrak{h}_{3}\left( x\right) \end{array} \right) -\frac{1}{3}\left( \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) \right) \text{, } \end{equation*} $ |
with $ \mathfrak{h}_{i}\left(A_{j}\right) = \delta _{ij} $ for $ A_{j}\in \mathcal{V}_{0} $, where $ \delta _{ij} $ is, for $ i, j = 1, 2, 3 $, the Kronecker delta symbol. We have the following.
Proposition 5. [47, Proposition 4.4] If $ G_{H} = \Phi \left(G\right) $, then $ \Phi $ is a homeomorphism between $ G $ and $ G_{H} $. Moreover, define $ H_{i}:M_{0}\longrightarrow M_{0} $; $ i = 1, 2, 3 $, by
$ \begin{equation*} H_{i}\left( x\right) = T_{i}^{t}\left( x-\Phi \left( A_{i}\right) \right) +\Phi \left( A_{i}\right) \text{, } \end{equation*} $ |
then $ G_{H} = \underset{i = 1, 2, 3}{\mathop{\cup }}H_{i}\left(G_{H}\right) $ and $ \Phi \circ \psi _{i} = H_{i}\circ \Phi $ for any $ i = 1, 2, 3 $.
$ G_{H} $ is called the harmonic Sierpinski gasket, which is the self-similar set associated with the collection of contractions $ \left\{ H_{1}, H_{2}, H_{3}\right\} $ on $ M_{0} $. Let $ P $ be the projection from $ \mathbb{R}^{3} $ into $ M_{0} $ defined, for every $ x = (x_{1}, x_{2}, x_{3})\in \mathbb{R}^{3} $, by
$ \begin{equation} Px = \left( \begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \end{array} \right) -\frac{(x_{1}+x_{2}+x_{3})}{3}\left( \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) \text{.} \end{equation} $ | (4.10) |
According to [48], the Kusuoka measure $ {\boldsymbol{\nu}} $ on $ G $ is the unique Borel probability measure defined by
$ \begin{equation} {\boldsymbol{\nu}} \left( G_{i_{1}...i_{h}}\right) = \frac{1}{2}\left( \frac{5}{3}\right) ^{h}tr\left( T_{i_{1}...i_{h}}^{t}PT_{i_{1}...i_{h}}\right) \text{, } \end{equation} $ | (4.11) |
where $ G_{i_{1}...i_{h}} = \mathfrak{\psi }_{i_{1}...i_{h}}\left(G\right) $. Let us define
$ \begin{equation} I = \left\{ \omega = i_{1}i_{2}...\text{/ }i_{n}\in \left\{ 1, 2, 3\right\} \text{ for any }n\in \mathbb{N}^{\ast }\right\} \text{, } \end{equation} $ | (4.12) |
and $ \pi :I\longrightarrow G $ such that $ \mathfrak{\psi }_{j}\circ \pi \left(\omega \right) = \pi \left(j\omega \right) $, for $ j = 1, 2, 3 $. For any $ \omega \in I $, there exists a unique $ x\in G $ such that
$ \begin{equation} \left\{ x\right\} = \underset{h\in \mathbb{N}^{\ast }}{\mathop{\cap }}G_{i_{1}...i_{h}}\text{ and } \pi \left( \omega \right) = x\text{.} \end{equation} $ | (4.13) |
We now define, by abuse of notation, the Kusuoka measure $ {\boldsymbol{\nu}} $ on $ I $ (see, for instance, [49]) as the pullback of the Kusuoka measure $ {\boldsymbol{\nu}} $ on $ G $ under the projection map $ \pi $, that is
$ \begin{equation} {\boldsymbol{\nu}} \left( \pi ^{-1}\left( .\right) \right) = {\boldsymbol{\nu}} \left( .\right) \text{.} \end{equation} $ | (4.14) |
Let us set
$ \begin{equation} Z\left( i_{1}...i_{h}\right) = \frac{T_{i_{1}...i_{h}}^{t}PT_{i_{1}...i_{h}}}{ tr\left( T_{i_{1}...i_{h}}^{t}PT_{i_{1}...i_{h}}\right) }\text{.} \end{equation} $ | (4.15) |
Then, according to [48], for $ {\boldsymbol{\nu}} $-almost all $ \omega $, there exists a limit
$ \begin{equation} Z\left( \omega \right) = \underset{h\rightarrow \infty }{\lim }Z\left( i_{1}...i_{h}\right) \text{.} \end{equation} $ | (4.16) |
Let $ Z\left(x\right) \equiv Z\left(\pi ^{-1}\left(x\right) \right) $. Then, $ Z\left(x\right) $ is well defined on $ \mathcal{V}_{\infty } $ (see for instance [47]). Indeed, according to [49, Theorem 3.6], for $ {\boldsymbol{\nu}}- $almost all $ x\in G $,
$ \begin{equation} \begin{array}{lll} Z\left( \pi ^{-1}\left( x\right) \right) & = & Z\left( \omega \right) \\ & = & \underset{h\rightarrow \infty }{\lim }Z_{h}\left( i_{1}...i_{h}\right) \text{, } \end{array} \end{equation} $ | (4.17) |
where
$ \begin{equation} Z_{h}\left( i_{1}...i_{h}\right) = \frac{1}{2}\left( \frac{5}{3}\right) ^{h} \frac{T_{i_{1}...i_{h}}^{t}PT_{i_{1}...i_{h}}}{ {\boldsymbol{\nu}} \left( G_{i_{1}...i_{h}}\right) }\text{.} \end{equation} $ | (4.18) |
Let $ U $ be an open subset of $ M_{0} $ containing $ G_{H} $. Let us define
$ \begin{equation} C^{1}\left( G\right) = \left\{ u;u = \left( v\mid _{G_{H}}\right) \circ \Phi \text{, }v\text{ }\in C^{1}\left( U\right) \text{ }\right\} . \end{equation} $ | (4.19) |
According to [47], if we fix an orthonormal basis of $ M_{0} $ and regard $ M_{0} $ as $ \mathbb{R}^{2} $, then, for any $ u\in C^{1}\left(G\right) $,
$ \begin{equation} \nabla u = \left( \begin{array}{c} \dfrac{\partial u}{\partial x_{1}} \\ \dfrac{\partial u}{\partial x_{2}} \end{array} \right) \text{.} \end{equation} $ | (4.20) |
We have the following.
Theorem 6. [47, Theorem 4.8] $ C^{1}\left(G\right) $ is a dense subset of $ \mathcal{D}_{\mathcal{E}} $ under the norm
$ \begin{equation*} \left\Vert u\right\Vert = \sqrt{\mathcal{E}_{G}\left( u, u\right) }+\left\Vert u\right\Vert _{\infty }\text{, } \end{equation*} $ |
and, for any $ u, v\in C^{1}\left(G\right) $,
$ \begin{equation*} \mathcal{E}_{G}\left( u, v\right) = \int_{G}\nabla u.Z\nabla vd{\boldsymbol{\nu}} \text{.} \end{equation*} $ |
In this section, we establish some a priori estimates and compactness results which will be useful for the proof of the main results.
Lemma 7. Let $ v^{h}\in V^{h} $, such that $ \sup_{h}F_{h}\left(v^{h}\right) < \infty $. If $ \sigma \in \left(0, +\infty \right) $ then
$ \begin{equation*} \sup\limits_{h}\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int\nolimits_{ \Omega ^{h}}\left\vert v^{h}\right\vert ^{2}dx < +\infty \text{.} \end{equation*} $ |
Proof. The proof follows from the Poincaré inequality in a bounded domain with the Dirichlet boundary condition on a part of the boundary and a scaling argument. Let us define, for every $ k\in \left\{ 1, 2, ..., 3^{h}\right\} $ and $ i = 1, 2, 3 $,
$ \begin{equation*} U_{k}^{h, i} = \left\{ \begin{array}{l} \left( y_{h, 1}^{i, k}, y, z\right) \in \mathbb{R}^{3}\text{; }y_{h, 1}^{i, k}\in \left( \varepsilon _{h}\ln \left( 1/\varepsilon _{h}\right) , 2^{-h}-\varepsilon _{h}\ln \left( 1/\varepsilon _{h}\right) \right) \\ \left( y, z\right) \in S \end{array} \right\} \text{.} \end{equation*} $ |
Let $ \varphi \in C^{1}\left(U_{k}^{h, i}\right) $, such that $ \varphi = 0 $ on $ \partial U_{k}^{h, i}\cap \partial S $. Using the Poincaré inequality, we infer that, for every $ y_{h, 1}^{i, k}\in \left(\varepsilon _{h}\ln \left(1/\varepsilon _{h}\right), 2^{-h}-\varepsilon _{h}\ln \left(1/\varepsilon _{h}\right) \right) $,
$ \begin{equation*} \int_{S}\varphi ^{2}\left( y_{h, 1}^{i, k}, y, z\right) dydz\leq C\int_{S}\left\vert \nabla _{y, z}\varphi \left( y_{h, 1}^{i, k}, y, z\right) \right\vert ^{2}dydz\text{, } \end{equation*} $ |
where $ C $ is a positive constant independent of $ h $ and
$ \begin{equation*} \nabla _{y, z}\varphi \left( y_{h, 1}^{i, k}, y, z\right) = \left( \begin{array}{c} \dfrac{\partial \varphi }{\partial y}\left( y_{h, 1}^{i, k}, y, z\right) \\ \\ \dfrac{\partial \varphi }{\partial z}\left( y_{h, 1}^{i, k}, y, z\right) \end{array} \right) \text{.} \end{equation*} $ |
Now, introducing the scaling $ y_{h, 2}^{i, k} = \varepsilon _{h}y $, $ x_{3} = \varepsilon _{h}z $, and integrating with respect to $ y_{h, 1}^{i, k} $ between $ \varepsilon _{h}\ln \left(1/\varepsilon _{h}\right) $ and $ 2^{-h}-\varepsilon _{h}\ln \left(1/\varepsilon _{h}\right) $, we get
$ \begin{equation*} \left. \begin{array}{l} \int_{\varepsilon _{h}\ln \left( 1/\varepsilon _{h}\right) }^{2^{-h}-\varepsilon _{h}\ln \left( 1/\varepsilon _{h}\right) }\int_{\varepsilon _{h}S}\varphi ^{2}dy_{h, 1}^{i, k}dy_{h, 2}^{i, k}dx_{3} \\ \leq C\varepsilon _{h}^{2}\int_{\varepsilon _{h}\ln \left( 1/\varepsilon _{h}\right) }^{2^{-h}-\varepsilon _{h}\ln \left( 1/\varepsilon _{h}\right) }\int_{\varepsilon _{h}S}\left\vert \nabla \varphi \right\vert ^{2}dy_{h, 1}^{i, k}dy_{h, 2}^{i, k}dx_{3}\text{, } \end{array} \right. \end{equation*} $ |
from which we deduce, using the change of variables (2.7), that, for every $ v^{h}\in V^{h} $,
$ \begin{equation} \int_{\Omega _{k}^{h, i}\backslash \mathcal{J}_{k}^{h, +, i}\cup \mathcal{J} _{k}^{h, -, i}}\left\vert v^{h}\right\vert ^{2}dx\leq C\varepsilon _{h}^{2}\int_{\Omega _{k}^{h, i}\backslash \mathcal{J}_{k}^{h, +, i}\cup \mathcal{J}_{k}^{h, -, i}}\left\vert \nabla v^{h}\right\vert ^{2}dx\text{.} \end{equation} $ | (5.1) |
We can use the same method in $ \mathcal{J}_{k}^{h, +, i}\cup \mathcal{J} _{k}^{h, -, i} $ to obtain
$ \begin{equation} \int_{\mathcal{J}_{k}^{h, +, i}\cup \mathcal{J}_{k}^{h, -, i}}\left\vert v^{h}\right\vert ^{2}dx\leq C\varepsilon _{h}^{2}\int_{\mathcal{J} _{k}^{h, +, i}\cup \mathcal{J}_{k}^{h, -, i}}\left\vert \nabla v^{h}\right\vert ^{2}dx\text{.} \end{equation} $ | (5.2) |
The combination of (5.1) and (5.2) implies that
$ \begin{equation} \int_{\Omega _{k}^{h, i}}\left\vert v^{h}\right\vert ^{2}dx\leq C\varepsilon _{h}^{2}\int_{\Omega _{k}^{h, i}}\left\vert \nabla v^{h}\right\vert ^{2}dx \text{.} \end{equation} $ | (5.3) |
Then, summing over $ i $ and $ k $ in (5.3), we obtain that
$ \begin{equation} \dfrac{5^{h}}{3^{h+1}\varepsilon _{h}^{2}\text{Re}_{h}}\int\nolimits_{ \Omega ^{h}}\left\vert v^{h}\right\vert ^{2}dx\leq C\dfrac{5^{h}}{3^{h+1} \text{Re}_{h}}\int\nolimits_{\Omega ^{h}}\left\vert \nabla v^{h}\right\vert ^{2}dx\text{.} \end{equation} $ | (5.4) |
As $ \sigma \in \left(0, +\infty \right) $, we have that
$ \begin{equation*} \text{Re}_{{\mathbf{j}}, h}\leq C\varepsilon _{h}\leq C2^{-h}\text{, } \end{equation*} $ |
from which we deduce that $ 2^{h}\leq C $ $ \dfrac{1}{\text{Re}_{{\mathbf{j}}, h}} $ in $ \mathcal{J}^{h} $. Thus, using (5.4),
$ \begin{equation} \begin{array}{lll} \dfrac{5^{h}}{3^{h+1}\varepsilon _{h}^{2}2^{-h}}\int\nolimits_{\Omega ^{h}}\left\vert v^{h}\right\vert ^{2}dx & \leq & \dfrac{5^{h}}{ 3^{h+1}\varepsilon _{h}^{2}\text{Re}_{h}}\int\nolimits_{\Omega ^{h}}\left\vert v^{h}\right\vert ^{2}dx \\ & \leq & CF_{h}\left( v^{h}\right) \text{.} \end{array} \end{equation} $ | (5.5) |
Observing that $ 3^{h}\varepsilon _{h}^{2}2^{-h}\approx \dfrac{\left\vert \Omega ^{h}\right\vert }{\pi } $, we conclude that
$ \begin{equation} \sup\limits_{h}\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int\nolimits_{ \Omega ^{h}}\left\vert v^{h}\right\vert ^{2}dx\leq C\sup\limits_{h}F_{h}\left( v^{h}\right) < +\infty \text{.} \end{equation} $ | (5.6) |
We have the following result:
Proposition 8. Let $ \boldsymbol{1}_{\Omega ^{h}} $ be the characteristic function of the set $ \Omega ^{h} $. Let $ v^{h}\in V^{h} $, such that $ \sup_{h}F_{h}\left(v^{h}\right) < +\infty $. If $ \sigma \in \left(0, +\infty \right) $, then there exists a subsequence of $ \left(v^{h}\right) _{h} $, still denoted as $ \left(v^{h}\right) _{h} $, such that
$ \begin{equation*} \sqrt{5^{h}}v^{h}\dfrac{\pi \boldsymbol{1}_{\Omega ^{h}}\left( x\right) }{ 3\left\vert \Omega ^{h}\right\vert }dx\overset{\ast }{\underset{h\rightarrow \infty }{\rightharpoonup }}v\dfrac{d\mathcal{H}^{d}\left( s\right) \otimes \delta _{0}\left( x_{3}\right) }{\mathcal{H}^{d}\left( G\right) }\text{ in } \mathcal{M}\left( \mathbb{R}^{3}\right) \text{, } \end{equation*} $ |
where $ v = \left(v_{1}, v_{2}, v_{3}\right) \in L_{\mathcal{H}^{d}}^{2}\left(G, \mathbb{R}^{3}\right) $ with $ v_{3} = 0 $ on $ G $, $ v_{2} = 0 $ on the part of $ G $ which is perpendicular to $ \left(0, 1\right) $, $ v_{2} = v_{1}\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(-\sqrt{3}/2, 1/2\right) $, and $ v_{2} = -v_{1}\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(\sqrt{3}/2, 1/2\right) $.
Proof. Let us consider the sequence of measures $ \left(\vartheta _{h}\right) _{h} $ on $ \mathbb{R}^{3} $ defined by
$ \begin{equation*} \vartheta _{h} = \frac{\pi \boldsymbol{1}_{\Omega ^{h}}\left( x\right) }{ 3\left\vert \Omega ^{h}\right\vert }dx\text{.} \end{equation*} $ |
Using an ergodicity argument (see, for instance, [50, Theorem 6.1]), we deduce that, for every $ \varphi \in C_{0}\left(\mathbb{R}^{3}\right) $,
$ \begin{align*} \begin{array}{lll} \underset{h\rightarrow \infty }{\lim }\int_{\mathbb{R}^{3}}\varphi \left( x\right) d\vartheta _{h} & = & \underset{h\rightarrow \infty }{\lim } \mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \dfrac{1}{3^{h+1}} \varphi \left( \dfrac{a_{h}^{i, k}+b_{h}^{i, k}}{2}, 0\right) \\ & = & \dfrac{1}{\mathcal{H}^{d}\left( G\right) }\int_{G}\varphi \left( s, 0\right) d\mathcal{H}^{d}\left( s\right) \text{, } \end{array} \end{align*} $ |
from which we deduce that
$ \begin{equation*} \vartheta _{h}\overset{\ast }{\underset{h\rightarrow \infty }{ \rightharpoonup }}\vartheta = \boldsymbol{1}_{G}\left( s\right) \dfrac{d \mathcal{H}^{d}\left( s\right) \otimes \delta _{0}\left( x_{3}\right) }{ \mathcal{H}^{d}\left( G\right) }. \end{equation*} $ |
Let $ v^{h}\in L^{2}\left(\Omega ^{h}, \mathbb{R}^{3}\right) $, such that $ \sup_{h}F_{h}\left(v^{h}\right) < +\infty $. If $ \sigma \in \left(0, +\infty \right) $ then, according to Lemma 7,
$ \begin{equation} \sup\limits_{h}\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int\nolimits_{ \Omega ^{h}}\left\vert v^{h}\right\vert ^{2}dx < +\infty \text{.} \end{equation} $ | (5.7) |
Observing that, for some positive constant $ C $ independent of $ h $,
$ \begin{equation*} \begin{array}{lll} \left\vert \int_{\mathbb{R}^{3}}\sqrt{5^{h}}v^{h}d\vartheta _{h}\right\vert ^{2} & \leq & C5^{h}\int_{\mathbb{R}^{3}}\left\vert v^{h}\right\vert ^{2}d\vartheta _{h} \\ & & \\ & \leq & \dfrac{C5^{h}}{\left\vert \Omega ^{h}\right\vert } \int\nolimits_{\Omega ^{h}}\left\vert v^{h}\right\vert ^{2}dx\text{, } \end{array} \end{equation*} $ |
and, by taking into account (5.7), we deduce that the sequence $ \left(\sqrt{ 5^{h}}v^{h}\vartheta _{h}\right) _{h} $ is uniformly bounded in variation, hence $ \ast $-weakly relatively compact. Possibly passing to a subsequence, we can suppose that the sequence $ \left(\sqrt{5^{h}}v^{h}\vartheta _{h}\right) _{h} $ $ \ast $-weakly converges to some $ \chi $. Let $ \varphi \in C_{0}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right) $. By using Fenchel's inequality, we have
$ \begin{equation*} \left. \begin{array}{l} \underset{h\rightarrow \infty }{\lim \inf }\dfrac{1}{2}\int_{\mathbb{R} ^{3}}\left\vert \sqrt{5^{h}}v^{h}\right\vert ^{2}d\vartheta _{h} \\ \geq \underset{h\rightarrow \infty }{\lim \inf }\left( \int_{\mathbb{R}^{3}} \sqrt{5^{h}}v^{h}.\varphi d\vartheta _{h}-\dfrac{1}{2}\int_{\mathbb{R} ^{3}}\left\vert \varphi \right\vert ^{2}d\vartheta _{h}\right) \\ \geq \langle \chi , \varphi \rangle -\dfrac{1}{2}\int_{\mathbb{R} ^{3}}\left\vert \varphi \right\vert ^{2}d\vartheta \text{.} \end{array} \right. \end{equation*} $ |
As the left-hand side of this inequality is bounded, we deduce that
$ \begin{equation*} \sup \left\{ \langle \chi , \varphi \rangle \text{; }\varphi \in C_{0}\left( \mathbb{R}^{3}, \mathbb{R}^{3}\right) \text{, } \int_{G}\left\vert \varphi \right\vert ^{2}\left( s, 0\right) d\mathcal{H} ^{d}\left( s\right) \leq 1\right\} < +\infty \text{, } \end{equation*} $ |
from which we deduce, according to Riesz' representation Theorem, that there exists $ v $ such that $ v\left(s, 0\right) \in L_{\mathcal{H}^{d}}^{2}\left(G, \mathbb{R}^{3}\right) $ and $ \chi = v\left(s, x_{3}\right) \vartheta $.
Let us introduce the function $ v^{h, i} $; $ i = 1, 2, 3 $, related to $ v^{h} $ by
$ \begin{equation} v^{h, i}\left( y_{h, 1}^{i, k}, y_{h, 2}^{i, k}, x_{3}\right) = \mathcal{R} _{i}v^{h}\circ \mathcal{R}_{i}^{t}\left( \left( \begin{array}{c} y_{h, 1}^{i, k} \\ y_{h, 2}^{i, k} \\ x_{3} \end{array} \right) +\mathcal{R}_{i}\left( \begin{array}{c} a_{h, 1}^{i, k} \\ a_{h, 2}^{i, k} \\ 0 \end{array} \right) \right) \text{, } \end{equation} $ | (5.8) |
where $ y_{h, 1}^{i, k}, y_{h, 2}^{i, k}, x_{3} $ are the variables defined in (2.7). We can easily prove, after some computations that for every $ i = 1, 2, 3 $,
$ \begin{equation} \text{div }_{y}v^{h, i} = \text{div }v^{h}\text{, } \end{equation} $ | (5.9) |
where $ \text{div }_{y} $ is the divergence operator in the variables $ y_{h, 1}^{i, k}, y_{h, 2}^{i, k}, x_{3} $. On the other hand, as $ \Pi _{k}^{h, i} $ is a cylinder of revolution, we can introduce the cylindrical coordinates $ y_{h, 1}^{i, k}\equiv y_{h, 1}^{i, k} $, $ y_{h, 2}^{i, k} = r\cos \theta $, $ x_{3} = r\sin \theta $, and the polar components of $ v^{h, i} $ defined by
$ \begin{equation} \left\{ \begin{array}{lll} v_{1}^{h, i}\left( y_{h, 1}^{i, k}, r, \theta \right) & = & v_{1}^{h, i}\left( y_{h, 1}^{i, k}, r\cos \theta , r\sin \theta \right) \text{, } \\ v_{r}^{h, i}\left( y_{h, 1}^{i, k}, r, \theta \right) & = & \left( v_{2}^{h, i}\cos \theta +v_{3}^{h, i}\sin \theta \right) \left( y_{h, 1}^{i, k}, r\cos \theta , r\sin \theta \right) \text{, } \\ v_{\theta }^{h, i}\left( y_{h, 1}^{i, k}, r, \theta \right) & = & \left( -v_{2}^{h, i}\sin \theta +v_{3}^{h, i}\cos \theta \right) \left( y_{h, 1}^{i, k}, r\cos \theta , r\sin \theta \right) \text{.} \end{array} \right. \end{equation} $ | (5.10) |
Let $ \widetilde{v}^{h, i} = \left(v_{1}^{h, i}, v_{r}^{h, i}, v_{\theta }^{h, i}\right) $. The divergence of $ \widetilde{v}^{h, i} $ in cylindrical coordinates is given by
$ \begin{equation} \text{div }_{r}\left( \widetilde{v}^{h, i}\right) = \frac{\partial v_{1}^{h, i}}{ \partial y_{h, 1}^{i, k}}+\frac{v_{r}^{h, i}}{r}+\frac{\partial v_{r}^{h, i}}{ \partial r}+\frac{1}{r}\frac{\partial v_{\theta }^{h, i}}{\partial \theta } \text{.} \end{equation} $ | (5.11) |
Since $ \text{div }v^{h} = 0 $, we deduce from (5.9) and (5.11) that
$ \begin{equation} \text{div }_{y}v^{h, i} = \text{div }_{r}\left( \widetilde{v}^{h, i}\right) = 0. \end{equation} $ | (5.12) |
Using the boundary condition (2.25)$ _{2} $, we have, for every $ h\in \mathbb{N} $,
$ \begin{equation} v_{1}^{h, i}\left( \varepsilon _{h}, r, \theta \right) -v_{1}^{h, i}\left( 2^{-h}-\varepsilon _{h}, r, \theta \right) = 0\text{, } \end{equation} $ | (5.13) |
from which we deduce, using Green's formula, that, for $ \psi \in C_{c}^{\infty }\left(0, 2\pi \right) $ and $ \varphi \left(\theta \right) = \int_{0}^{\theta }\psi \left(\xi \right) d\xi $ with $ \varphi \left(2\pi \right) = 0 $,
$ \begin{equation} \left. \begin{array}{l} \mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\varepsilon _{h}}^{2^{-h}-\varepsilon _{h}}\int_{0}^{\varepsilon _{h}}\int_{0}^{2\pi }\dfrac{\partial v_{1}^{h, i}}{\partial y_{h, 1}^{i, k}} \varphi \left( \theta \right) rdy_{h, 1}^{i, k}drd\theta \\ = -\int_{0}^{\varepsilon _{h}}\int_{0}^{2\pi }\underset{i = 1, 2, 3}{\underset{ k = 1}{\overset{3^{h}}{\mathop{\sum }}}}\left( v_{1}^{h, i}\left( \varepsilon _{h}, r, \theta \right) -v_{1}^{h, i}\left( 2^{-h}-\varepsilon _{h}, r, \theta \right) \right) \varphi \left( \theta \right) rdrd\theta \\ = 0\text{.} \end{array} \right. \end{equation} $ | (5.14) |
Since $ \text{div }_{r}\left(\widetilde{v}^{h, i}\right) = 0 $, we deduce from formula (5.11), according to (5.14), that
$ \begin{equation} \left. \begin{array}{l} \dfrac{2^{h}\sqrt{5^{h}}}{3^{h+1}\varepsilon _{h}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\varepsilon _{h}}^{2^{-h}-\varepsilon _{h}}\int_{0}^{\varepsilon _{h}}\int_{0}^{2\pi }v_{r}^{h, i}\varphi \left( \theta \right) dy_{h, 1}^{i, k}drd\theta \\ +\dfrac{2^{h}\sqrt{5^{h}}}{3^{h+1}\varepsilon _{h}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\varepsilon _{h}}^{2^{-h}-\varepsilon _{h}}\int_{0}^{\varepsilon _{h}}\int_{0}^{2\pi } \dfrac{\partial v_{r}^{h, i}}{\partial r}\varphi \left( \theta \right) rdy_{h, 1}^{i, k}drd\theta \\ +\dfrac{2^{h}\sqrt{5^{h}}}{3^{h+1}\varepsilon _{h}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\varepsilon _{h}}^{2^{-h}-\varepsilon _{h}}\int_{0}^{\varepsilon _{h}}\int_{0}^{2\pi } \dfrac{\partial v_{\theta }^{h, i}}{\partial \theta }\varphi \left( \theta \right) dy_{h, 1}^{i, k}drd\theta \\ = 0\text{.} \end{array} \right. \end{equation} $ | (5.15) |
Using Green's formula, we deduce that
$ \begin{equation} \left. \begin{array}{l} \int_{\varepsilon _{h}}^{2^{-h}-\varepsilon _{h}}\int_{0}^{\varepsilon _{h}}\int_{0}^{2\pi }\dfrac{\partial v_{r}^{h, i}}{\partial r}\varphi \left( \theta \right) rdy_{h, 1}^{i, k}drd\theta \\ = -\int_{\varepsilon _{h}}^{2^{-h}-\varepsilon _{h}}\int_{0}^{\varepsilon _{h}}\int_{0}^{2\pi }v_{r}^{h, i}\varphi \left( \theta \right) dy_{h, 1}^{i, k}drd\theta \text{, } \end{array} \right. \end{equation} $ | (5.16) |
and
$ \begin{equation} \left. \begin{array}{l} \int_{\varepsilon _{h}}^{2^{-h}-\varepsilon _{h}}\int_{0}^{\varepsilon _{h}}\int_{0}^{2\pi }\dfrac{\partial v_{\theta }^{h, i}}{\partial \theta } \varphi \left( \theta \right) dy_{h, 1}^{i, k}drd\theta \\ = -\int_{\varepsilon _{h}}^{2^{-h}-\varepsilon _{h}}\int_{0}^{\varepsilon _{h}}\int_{0}^{2\pi }v_{\theta }^{h, i}\psi \left( \theta \right) dy_{h, 1}^{i, k}drd\theta \text{.} \end{array} \right. \end{equation} $ | (5.17) |
Combining with (5.15), we deduce that
$ \begin{equation} \dfrac{2^{h}\sqrt{5^{h}}}{3^{h+1}\varepsilon _{h}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\varepsilon _{h}}^{2^{-h}-\varepsilon _{h}}\int_{0}^{\varepsilon _{h}}\int_{0}^{2\pi }v_{\theta }^{h, i}\psi \left( \theta \right) dy_{h, 1}^{i, k}drd\theta = 0\text{ .} \end{equation} $ | (5.18) |
Recalling that $ v_{\theta }^{h, i} = -v_{2}^{h, i}\sin \theta +v_{3}^{h, i}\cos \theta $ and $ v_{3}^{h, i} = v_{3}^{h} $, and using the first part of this Lemma, we obtain that
$ \begin{equation} \left. \begin{array}{l} \underset{h\rightarrow \infty }{\lim }\dfrac{2^{h}\sqrt{5^{h}}}{ 3^{h+1}\varepsilon _{h}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\varepsilon _{h}}^{2^{-h}-\varepsilon _{h}}\int_{0}^{\varepsilon _{h}}\int_{0}^{2\pi }v_{\theta }^{h, i}\psi \left( \theta \right) dy_{h, 1}^{i, k}drd\theta \\ = \dfrac{1}{\mathcal{H}^{d}\left( G\right) }\int_{G}\int_{0}^{2\pi }\left( -w\left( s\right) \sin \theta +v_{3}\left( s\right) \cos \theta \right) \psi \left( \theta \right) dsd\theta = 0\text{, } \end{array} \right. \end{equation} $ | (5.19) |
where
$ \begin{equation} w\left( s\right) = \left\{ \begin{array}{ll} v_{2}\left( s\right) & \text{on }G_{1}\text{, } \\ -v_{1}\left( s\right) \sqrt{3}+v_{2}\left( s\right) & \text{on }G_{2}\text{, } \\ v_{1}\left( s\right) \sqrt{3}+v_{2}\left( s\right) & \text{on }G_{3}\text{, } \end{array} \right. \end{equation} $ | (5.20) |
where $ G_{1} $ is the part of $ G $ which is perpendicular to $ \left(0, 1\right) $, $ G_{2} $ is the part of $ G $ which is perpendicular to $ \left(- \sqrt{3}/2, 1/2\right) $, and $ G_{3} $ is the part of $ G $ which is perpendicular to $ \left(\sqrt{3}/2, 1/2\right) $. We deduce from (5.19) that $ -w\left(s\right) \sin \theta +v_{3}\left(s\right) \cos \theta = 0 $ for every $ \theta \in \left(0, 2\pi \right) $, thus $ w = v_{3} = 0 $ on $ G $. Therefore, combining with (5.20), $ v_{2} = 0 $ on $ G_{1} $, $ v_{2} = v_{1} \sqrt{3} $ on $ G_{2} $, and $ v_{2} = -v_{1}\sqrt{3} $ on $ G_{3} $.
Proposition 9. We suppose that $ \sigma \in \left(0, +\infty \right) $. Let $ v^{h}\in V^{h}\cap H^{2}\left(\Omega ^{h}, \mathbb{R}^{3}\right) $, such that $ \sup_{h}F_{h}\left(v^{h}\right) < +\infty $. Then, for every sequence $ \left(\varphi _{h}\right) _{h} $, such that $ \varphi _{h}\in H^{1}\left(\Omega ^{h}\right) $ and
$ \begin{equation} \left. \begin{array}{l} \sup\limits_{h}\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int_{\Omega ^{h}}\left\vert \nabla \varphi _{h}\right\vert ^{2}dx < +\infty \text{ , } \\ \sqrt{5^{h}}\varphi _{h}\dfrac{\pi \boldsymbol{1}_{\Omega ^{h}}\left( x\right) }{3\left\vert \Omega ^{h}\right\vert }dx\overset{\ast }{\underset{ h\rightarrow \infty }{\rightharpoonup }}\varphi \dfrac{d\mathcal{H} ^{d}\left( s\right) \otimes \delta _{0}\left( x_{3}\right) }{\mathcal{H} ^{d}\left( G\right) }\;{ in }\;\mathcal{M}\left( \mathbb{R}^{3}\right) \text{, } \end{array} \right. \end{equation} $ | (5.21) |
we have
1. $ \varphi \left(s, 0\right) \in \mathcal{D}_{\mathcal{E}} $ and $ \int_{G}\nabla \varphi.Z\nabla \varphi d{\boldsymbol{\nu}} < +\infty $,
2. there exists a subsequence of $ \left(v^{h}\right) _{h} $, still denoted as $ \left(v^{h}\right) _{h} $, and $ v\in L_{\mathcal{H}^{d}}^{2}\left(G\right) $, such that
$ \begin{equation*} \underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int_{\Omega ^{h}}v^{h}.\nabla \varphi _{h}dx = \int_{G}vn.Z\nabla \varphi d{\boldsymbol{\nu}} = 0\text{, } \end{equation*} $ |
where $ n = \left(1, 0\right) $ on the horizontal part of $ G $, $ n = \left(1/2, \sqrt{3}/2\right) $ on the part of $ G $ which is perpendicular to $ \left(- \sqrt{3}/2, 1/2\right) $, and $ n = \left(1/2, -\sqrt{3}/2\right) $ on the part of $ G $ which is perpendicular to $ \left(\sqrt{3}/2, 1/2\right) $.
Proof. 1. Let us define, for every $ k\in \left\{ 1, 2, ..., 3^{h}\right\} $ and $ i = 1, 2, 3 $,
$ \begin{equation} \varphi _{h}^{i}\left( y_{h, 1}^{i, k}, y_{h, 2}^{i, k}, x_{3}\right) = \varphi _{h}\circ \mathcal{R}_{i}^{t}\left( \left( \begin{array}{c} y_{h, 1}^{i, k} \\ y_{h, 2}^{i, k} \\ x_{3} \end{array} \right) +\mathcal{R}_{i}\left( \begin{array}{c} a_{h, 1}^{i, k} \\ a_{h, 2}^{i, k} \\ 0 \end{array} \right) \right) \text{, } \end{equation} $ | (5.22) |
and
$ \begin{equation} \left. \begin{array}{l} {\ }\widetilde{\varphi }_{h}^{i}\left( y_{h, 1}^{i, k}\right) = \dfrac{1}{ \pi \varepsilon _{h}^{2}}\int_{\varepsilon _{h}S}\varphi _{h}^{i}\left( y_{h, 1}^{i, k}, y_{h, 2}^{i, k}, x_{3}\right) dy_{h, 2}^{i, k}dx_{3} \\ = \dfrac{1}{\pi \varepsilon _{h}^{2}}\int_{\varepsilon _{h}S}\varphi _{h}\left( \mathcal{R}_{i}^{t}\left( \begin{array}{c} y_{h, 1}^{i, k} \\ y_{h, 2}^{i, k} \\ x_{3} \end{array} \right) +\left( \begin{array}{c} a_{h, 1}^{i, k} \\ a_{h, 2}^{i, k} \\ 0 \end{array} \right) \right) dy_{h, 2}^{i, k}dx_{3}\text{, } \end{array} \right. \end{equation} $ | (5.23) |
where $ y_{h, 1}^{i, k}, y_{h, 2}^{i, k}, x_{3} $ are the change of variables defined in (2.7). Then
$ \begin{equation} \left. \begin{array}{l} \dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int_{\Omega ^{h}}\left\vert \nabla \varphi _{h}\right\vert ^{2}dx = \dfrac{5^{h}}{ \left\vert \Omega ^{h}\right\vert }\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\Omega _{k}^{h, i}}\left\vert \nabla \varphi _{h}\right\vert ^{2}dx \\ \geq \dfrac{5^{h}}{3^{h+1}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{0}^{2^{-h}}\dfrac{2^{h}}{\pi \varepsilon _{h}^{2}} \int_{\varepsilon _{h}S}\left( \dfrac{\partial \varphi _{h}^{i}}{\partial y_{h, 1}^{i, k}}\right) ^{2}dy_{h, 1}^{i, k}dy_{h, 2}^{i, k}dx_{3}{ \ } \\ \geq \dfrac{5^{h}}{3^{h+1}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \dfrac{1}{\pi \varepsilon _{h}^{2}}\int_{\varepsilon _{h}S}\left( \int_{0}^{2^{-h}}\dfrac{\partial \varphi _{h}^{i}}{\partial y_{h, 1}^{i, k}} dy_{h, 1}^{i, k}\right) ^{2}dy_{h, 2}^{i, k}dx_{3} \\ = \dfrac{5^{h}}{3^{h+1}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \dfrac{1}{\pi \varepsilon _{h}^{2}}\int_{\varepsilon _{h}S}\left( \varphi _{h}^{i}\left( 2^{-h}, y_{h, 2}^{i, k}, x_{3}\right) -\varphi _{h}^{i}\left( 0, y_{h, 2}^{i, k}, x_{3}\right) \right) ^{2}dy_{h, 2}^{i, k}dx_{3} \\ \geq \dfrac{5^{h}}{3^{h+1}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \left( \dfrac{1}{\pi \varepsilon _{h}^{2}}\int_{\varepsilon _{h}S}\left( \varphi _{h}^{i}\left( 2^{-h}, y_{h, 2}^{i, k}, x_{3}\right) -\varphi _{h}^{i}\left( 0, y_{h, 2}^{i, k}, x_{3}\right) \right) dy_{h, 2}^{i, k}dx_{3}\right) ^{2} \\ = \dfrac{5^{h}}{3^{h+1}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \left( \widetilde{\varphi }_{h}^{i}\left( 2^{-h}\right) -\widetilde{ \varphi }_{h}^{i}\left( 0\right) \right) ^{2} \\ = \dfrac{5^{h}}{3^{h+1}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \left( \widetilde{\varphi }_{h}\left( a_{h}^{i, k}\right) - \widetilde{\varphi }_{h}\left( b_{h}^{i, k}\right) \right) ^{2} \\ = \mathcal{E}_{G}\left( \widetilde{\varphi }_{h}\right) \text{, } \end{array} \right. \end{equation} $ | (5.24) |
where $ \widetilde{\varphi }_{h}\left(x_{1}, x_{2}\right) = $ $ \widetilde{ \varphi }_{h}^{i}\left(y_{h, 1}^{i, k}\right) $ for $ \left(x_{1}, x_{2}\right) \in \left[a_{h}^{i, k}, b_{h}^{i, k}\right] $. We now introduce the harmonic extension of $ \widetilde{\varphi }_{h}\mid _{\mathcal{ V}_{h}} $ obtained by the so-called decimation procedure (see, for instance, [51, Corollary1]). We define the function $ H_{h+1} \widetilde{\varphi }_{h}:\mathcal{V}_{h+1}\longrightarrow \mathbb{R} $ as the unique minimizer of the problem
$ \begin{equation} \min \left\{ \mathcal{E}_{G}^{h+1}\left( w\right) \text{; }w:\mathcal{V} _{h+1}\longrightarrow \mathbb{R}\text{, }w = \widetilde{\varphi }_{h}\text{ on }\mathcal{V}_{h}\right\} \text{.} \end{equation} $ | (5.25) |
Then $ \mathcal{E}_{G}^{h+1}\left(H_{h+1}\widetilde{\varphi }_{h}\right) = \mathcal{E}_{G}^{h}\left(\widetilde{\varphi }_{h}\right) $. For $ m > h $, we define the function $ H_{m}\widetilde{\varphi }_{h} $ from $ \mathcal{V}_{m} $ into $ \mathbb{R}^{2} $ by
$ \begin{equation*} H_{m}\widetilde{\varphi }_{h} = H_{m}\left( H_{m-1}\left( ...\left( H_{h+1} \widetilde{\varphi }_{h}\right) \right) \right) \text{.} \end{equation*} $ |
We have, for every $ m > h $, $ H_{m}\widetilde{\varphi }_{h}\mid _{\mathcal{V} _{h}} = \widetilde{\varphi }_{h}\mid _{\mathcal{V}_{h}} $ and
$ \begin{equation} \mathcal{E}_{G}^{m}\left( H_{m}\widetilde{\varphi }_{h}\right) = \mathcal{E} _{G}^{h}\left( \widetilde{\varphi }_{h}\right) \text{.} \end{equation} $ | (5.26) |
We define now, for fixed $ h\in \mathbb{N} $, the function $ H\widetilde{ \varphi }_{h} $ on $ \mathcal{V}_{\infty } $ as follows. For $ a\in \mathcal{V} _{\infty } $, we choose $ m\geq h $ such that $ a\in \mathcal{V}_{m} $ and set
$ \begin{equation} H\widetilde{\varphi }_{h}\left( a\right) = H_{m}\widetilde{\varphi } _{h}\left( a\right) \text{.} \end{equation} $ | (5.27) |
As $ \sup_{h}\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int_{\Omega ^{h}}\left\vert \nabla \varphi _{h}\right\vert ^{2}dx < +\infty $, we have, according to (5.24), (5.26), and (5.27),
$ \begin{equation} \sup\limits_{h}\mathcal{E}_{G}\left( H\widetilde{\varphi }_{h}\right) = \sup\limits_{h} \mathcal{E}_{G}^{h}\left( \widetilde{\varphi }_{h}\right) < +\infty \text{, } \end{equation} $ | (5.28) |
from which we deduce, using Section $ 4 $, that $ H\widetilde{\varphi }_{h} $ has a unique continuous extension on $ G $, still denoted as $ H\widetilde{ \varphi }_{h} $, and that the sequence $ \left(H\widetilde{\varphi } _{h}\right) _{h} $ is bounded in $ \mathcal{D}_{\mathcal{E}} $. Therefore, there exists a subsequence, still denoted as $ \left(H\widetilde{\varphi } _{h}\right) _{h} $, weakly converging in the Hilbert space $ \mathcal{D}_{ \mathcal{E}} $ to some $ \varphi ^{\ast }\in \mathcal{D}_{\mathcal{E}} $, such that
$ \begin{equation} \mathcal{E}_{G}\left( \varphi ^{\ast }\right) \leq \underset{h\rightarrow \infty }{\text{ }\lim \inf }\mathcal{E}_{G}\left( H\widetilde{\varphi } _{h}\right) \leq \text{ }\underset{h\rightarrow \infty }{\lim \inf }\mathcal{ E}_{G}^{h}\left( \widetilde{\varphi }_{h}\right) \text{.} \end{equation} $ | (5.29) |
On the other hand, using the hypothesis (5.21)$ _{2} $, we have that
$ \begin{equation} \widetilde{\varphi }_{h}\sqrt{5^{h}}\dfrac{2^{h}\boldsymbol{1}_{T^{h}}\left( x\right) }{3^{h+1}}dx\overset{\ast }{\underset{h\rightarrow \infty }{ \rightharpoonup }}\varphi \left( s, 0\right) \dfrac{d\mathcal{H}^{d}\left( s\right) }{\mathcal{H}^{d}\left( G\right) }\text{ in }\mathcal{M}\left( \mathbb{R}^{2}\right) \text{, } \end{equation} $ | (5.30) |
where $ T^{h} = \overset{3^{h}}{\underset{k = 1}{\mathop{\cup }}}T_{h}^{k} $; $ T_{h}^{k} $ being the $ k^{th} $ triangle obtained at the step $ k $ in the construction of the fractal $ G $. We deduce from this that, for every $ \psi \in C_{0}\left(G\right) $,
$ \begin{equation} \begin{array}{lll} \underset{h\rightarrow \infty }{\lim }\dfrac{1}{\mathcal{H}^{d}\left( G\right) }\int_{G}H\widetilde{\varphi }_{h}\psi d\mathcal{H}^{d}\left( s\right) & = & \underset{h\rightarrow \infty }{\lim }\int_{\mathbb{R}^{3}} \widetilde{\varphi }_{h}\psi d\upsilon _{h} \\ & = & \dfrac{1}{\mathcal{H}^{d}\left( G\right) }\int_{G}\varphi \left( s, 0\right) \psi d\mathcal{H}^{d}\left( s\right) \text{, } \end{array} \end{equation} $ | (5.31) |
where $ \left(\upsilon _{h}\right) _{h} $ is the sequence of measures defined by
$ \begin{equation} \upsilon _{h} = \frac{1}{Card\left( \mathcal{V}_{h}\right) }\mathop \sum \limits_{a \in {\mathcal{V}_h}}\delta _{a}\text{, } \end{equation} $ | (5.32) |
$ \delta _{a} $ being the Dirac measure at the point $ a $. Thus, $ \varphi ^{\ast }\left(s\right) = \varphi \left(s, 0\right) $, $ \varphi \left(s, 0\right) \in \mathcal{D}_{\mathcal{E}} $, and, according to (5.24) and (5.29),
$ \begin{equation} \left. \begin{array}{l} \mathcal{E}_{G}\left( \varphi \right) \leq \underset{h\rightarrow \infty }{ \lim \inf }\text{ }\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert } \int_{\Omega ^{h}}\left\vert \nabla \varphi _{h}\right\vert ^{2}dx \\ \leq \sup\limits_{h}\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int_{\Omega ^{h}}\left\vert \nabla \varphi _{h}\right\vert ^{2}dx < +\infty \text{, } \end{array} \right. \end{equation} $ | (5.33) |
from which we deduce, using Theorem 6, that
$ \begin{equation} \mathcal{E}_{G}\left( \varphi \right) = \int_{G}\nabla \varphi .Z\nabla \varphi d{\boldsymbol{\nu}} < +\infty \text{.} \end{equation} $ | (5.34) |
2. As $ \text{div }v^{h} = 0 $, we can write
$ \begin{equation} \left. \begin{array}{l} \dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int_{\Omega ^{h}}v^{h}.\nabla \varphi _{h}dx = \dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int_{B^{h}}v^{h}.\nabla \varphi _{h}dx+\dfrac{5^{h}}{ \left\vert \Omega ^{h}\right\vert }\int_{\Omega ^{h}\backslash B^{h}}v^{h}.\nabla \varphi _{h}dx \\ = \dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int_{B^{h}}v^{h}.\nabla \varphi _{h}dx \\ +\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\varepsilon _{h}S}v^{h}\mid _{\Sigma _{k, 1}^{h, i}}.n^{i}\left( \varphi _{h}\mid _{\Sigma _{k, 1}^{h, i}}-\varphi _{h}\mid _{\Sigma _{k, 2}^{h, i}}\right) = 0\text{, } \end{array} \right. \end{equation} $ | (5.35) |
where $ n^{i} = \mathcal{R}_{i}e_{1} $. Since $ \left\vert B^{h}\right\vert \longrightarrow 0 $ as $ h\rightarrow \infty $, using the proof of Lemma 7 and the hypothesis (5.21), we have that
$ \begin{equation*} \underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int_{B^{h}}v^{h}.\nabla \varphi _{h}dx = 0\text{.} \end{equation*} $ |
Thus, passing to the limit in (5.35), we get
$ \begin{equation} \left. \begin{array}{l} \underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int_{\Omega ^{h}}v^{h}.\nabla \varphi _{h}dx \\ = \underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\varepsilon _{h}S}v^{h}\mid _{\Sigma _{k, 1}^{h, i}}.n^{i}\left( \varphi _{h}\mid _{\Sigma _{k, 1}^{h, i}}-\varphi _{h}\mid _{\Sigma _{k, 2}^{h, i}}\right) \\ = \underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\varepsilon _{h}S}v^{h}\mid _{\Sigma _{k, 1}^{h, i}}.n^{i}\left( \varphi \mid _{\Sigma _{k, 1}^{h, i}}-\varphi \mid _{\Sigma _{k, 2}^{h, i}}\right) \\ = 0\text{.} \end{array} \right. \end{equation} $ | (5.36) |
As $ \varphi \left(s, 0\right) \in \mathcal{D}_{\mathcal{E}} $, using some density argument, we may suppose that $ \varphi \left(s, 0\right) \in C^{1}\left(G\right) $. As $ v^{h} $ $ \in H^{2}\left(\Omega ^{h}, \mathbb{R} ^{3}\right) $, we may write
$ \begin{equation} \begin{array}{l} \underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int_{\Omega ^{h}}v^{h}.\nabla \varphi _{h}dx \\ = \underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}}{\pi 3^{h+1}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\varepsilon _{h}S}v^{h}\left( a_{h}^{i, k}+\epsilon _{h}^{i}\right) .n^{i}2^{h}\left( \varphi \left( a_{h}^{i, k}\right) -\varphi \left( b_{h}^{i, k}\right) \right) \text{, } \end{array} \end{equation} $ | (5.37) |
where $ \epsilon _{h}^{i} = \varepsilon _{h}\mathcal{R}_{i}^{t}e_{1} $. On the other hand, there exists a function $ r_{h}\in C^{1}\left(\Omega ^{h}\right) $ such that $ v^{h} = \nabla r_{h} $. Indeed, as $ \text{div }v^{h} = 0 $, $ r_{h} $ is a solution of the equation $ \Delta r_{h} = 0 $ in $ \Omega ^{h} $ with some boundary conditions on $ \partial \Omega ^{h} $. Using the smoothness of $ \varphi $, we infer that
$ \begin{equation} \left. \begin{array}{l} \varphi \left( a_{h}^{i, k}\right) -\varphi \left( b_{h}^{i, k}\right) \\ = \mathop \sum \limits_{l = 1,2} \int_{0}^{1}\dfrac{\partial \varphi }{\partial x_{l}}\left( t\left( a_{h}^{i, k}-b_{h}^{i, k}\right) +b_{h}^{i, k}\right) \left( a_{h}^{i, k}-b_{h}^{i, k}\right) _{l}dt \\ = 2^{-h}\nabla \varphi \left( a_{h}^{i, k}\right) .n^{i}+O\left( 2^{-2h}\right) \text{.} \end{array} \right. \end{equation} $ | (5.38) |
Then, replacing in (5.37), taking into account the fact that $ \sup_{h}F_{h}\left(v^{h}\right) < +\infty $ and the estimates on $ v^{h} $ given in Lemma 7, we obtain that
$ \begin{equation} \dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int_{\Omega ^{h}}v^{h}.\nabla \varphi _{h} = \dfrac{5^{h}}{3^{h}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \nabla r_{h}\left( a_{h}^{i, k}\right) .n^{i}\nabla \varphi \left( a_{h}^{i, k}\right) .n^{i}+O\left( \varepsilon _{h}2^{h}\right) . \end{equation} $ | (5.39) |
As for the fractal $ G $, we can construct, according to Proposition 5, a graph approximation $ G_{H, h} $ of the harmonic Sierpinski gasket $ G_{H} $ and a sequence $ \left(\Omega _{H}^{h}\right) _{h} $ of thin branching tubes whose axes are iterated curves of the graph $ G_{H, h} $. As $ r_{h}\in C^{1}\left(\Omega ^{h}\right) $, there exists $ \mathfrak{r}_{h}\in C^{1}\left(\Omega _{H}^{h}\right) $, such that $ r_{h}\mid _{G_{h}} = \mathfrak{r}_{h}\mid _{G_{H, h}}\circ \Phi $. Similarly, there exists $ \mathfrak{\varsigma }\in C^{1}\left(U\right) $, $ U $ being an open subset of $ M_{0} $ containing $ G_{H} $, such that $ \varphi \mid _{G} = \varsigma \mathfrak{ \mid }_{G_{H}}\circ \Phi $. Let us set, for $ k_{1}, ..., k_{h}\in \left\{ 1, 2, 3\right\} $,
$ \begin{equation} \begin{array}{lll} \Xi _{k_{1}...k_{h}}\left( A_{i}\right) & = & \nabla \mathfrak{r}_{h}\circ \Phi \left( \mathfrak{\psi }_{k_{1}...k_{h}}\left( A_{i}\right) \right) .n^{i}T_{k_{1}...k_{h}}^{t}P\mathfrak{H}\left( A_{i}\right) \text{, } \\ \digamma _{k_{1}...k_{h}}\left( A_{i}\right) & = & \mathfrak{H}\left( A_{i}\right) PT_{k_{1}...k_{h}}\nabla \varsigma \circ \Phi \left( \mathfrak{ \psi }_{k_{1}...k_{h}}\left( A_{i}\right) \right) .n^{i}\text{, } \end{array} \end{equation} $ | (5.40) |
where $ \mathfrak{H}\left(A_{i}\right) = \left(\mathfrak{h}_{1}\left(A_{i}\right), \mathfrak{h}_{2}\left(A_{i}\right), \mathfrak{h}_{3}\left(A_{i}\right) \right) = \left(\delta _{1i}, \delta _{2i}, \delta _{3i}\right) $. Then, observing that, there exist $ k_{1}, ..., k_{h}\in \left\{ 1, 2, 3\right\} $ such that $ a_{h}^{i, k} = $ $ \mathfrak{\psi } _{k_{1}...k_{h}}\left(A_{i}\right) $, using (5.40), the fact that $ P^{t} = P $, $ T_{k_{1}...k_{h}}^{t}P = T_{k_{1}...k_{h}}^{t} $, and [46, Lemma 3.2], we deduce that
$ \begin{equation} \left. \begin{array}{l} \nabla r_{h}\left( a_{h}^{i, k}\right) .n^{i}\nabla \varphi \left( a_{h}^{i, k}\right) .n^{i} \\ = \Xi _{k_{1}...k_{h}}\left( A_{i}\right) .\digamma _{k_{1}...k_{h}}\left( A_{i}\right) \\ = \nabla \mathfrak{r}_{h}\circ \Phi \left( \mathfrak{\psi } _{k_{1}...k_{h}}\left( A_{i}\right) \right) .n^{i}Z_{h}\nabla \varsigma \circ \Phi \left( \mathfrak{\psi }_{k_{1}...k_{h}}\left( A_{i}\right) \right) .n^{i}{\boldsymbol{\nu}} \left( G_{k_{1}...k_{h}}\right) \text{.} \end{array} \right. \end{equation} $ | (5.41) |
Using Lemma 8, there exists a subsequence of $ \left(v^{h}\right) _{h} $, still denoted as $ \left(v^{h}\right) _{h} $, and $ v\in L_{\mathcal{H} ^{d}}^{2}\left(G\right) $, such that
$ \begin{equation*} \sqrt{5^{h}}v^{h}\dfrac{\pi \boldsymbol{1}_{\Omega ^{h}}\left( x\right) }{ 3\left\vert \Omega ^{h}\right\vert }dx\overset{\ast }{\underset{h\rightarrow \infty }{\rightharpoonup }}\left( v, v^{\ast }, 0\right) \dfrac{d\mathcal{H} ^{d}\left( s\right) \otimes \delta _{0}\left( x_{3}\right) }{\mathcal{H} ^{d}\left( G\right) }\text{ in }\mathcal{M}\left( \mathbb{R}^{3}\right) \text{, } \end{equation*} $ |
where $ v^{\ast } = 0 $ on the part of $ G $ which is perpendicular to $ \left(0, 1\right) $, $ v^{\ast } = v\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(-\sqrt{3}/2, 1/2\right) $, and $ v^{\ast } = -v\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(\sqrt{3}/2, 1/2\right) $. The corresponding subsequence of gradients $ \left(\nabla r_{h}\mid _{G_{h}} = \nabla \mathfrak{r}_{h}\mid _{G_{H}}\circ \Phi \right) _{h} $ converges to the same limit. Thus, using the limits (5.36)–(5.37), the relations (5.38)–(5.41), and the smoothness of $ \varphi $ and $ v^{h} $, we obtain that
$ \begin{equation} \left. \begin{array}{l} \underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int_{\Omega ^{h}}v^{h}.\nabla \varphi _{h}dx \\ = \underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}}{3^{h}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \nabla r_{h}\left( a_{h}^{i, k}\right) .n^{i}\nabla \varphi \left( a_{h}^{i, k}\right) .n^{i} \\ = \int_{G}\left( v, v^{\ast }\right) .nZ\nabla \varphi .nd{\boldsymbol{\nu}} \\ = \int_{G}vn.Z\nabla \varphi d{\boldsymbol{\nu}} \\ = 0\text{, } \end{array} \right. \end{equation} $ | (5.42) |
where we have used the fact that $ \left(v, v^{\ast }\right).n = v $.
According to the above proposition, we introduce the following
Definition 2. 1. We define the space $ H_{Z}\left(G\right) $ by
$ \begin{equation} H_{Z}\left( G\right) = \left\{ \varphi \in L_{\mathcal{H}^{d}}^{2}\left( G\right) ;\int_{G}\nabla \varphi .Z\nabla \varphi d{\boldsymbol{\nu}} < +\infty \right\} \text{.} \end{equation} $ | (5.43) |
2. Let $ n = \left(1, 0\right) $ on the horizontal part of $ G $, $ n = \left(1/2, \sqrt{3}/2\right) $ on the part of $ G $ which is perpendicular to $ \left(-\sqrt{3}/2, 1/2\right) $, and $ n = \left(1/2, -\sqrt{3}/2\right) $ on the part of $ G $ which is perpendicular to $ \left(\sqrt{3}/2, 1/2\right) $. Let $ v\in \mathcal{D}_{\mathcal{E}} $. We define the divergence of $ v $ on $ G $ by the relation
$ \begin{equation*} \langle \text{div }_{Z}\left( v\right) , \varphi \rangle = \int_{G}vn.Z\nabla \varphi d{\boldsymbol{\nu}} \text{, } \end{equation*} $ |
for every $ \varphi \in H_{Z}\left(G\right) $.
3. We define the space $ V^{\infty } $ by
$ \begin{equation} V^{\infty } = \left\{ v\in \mathcal{D}_{\mathcal{E}}\text{; }\langle \text{div }_{Z}\left( v\right) , \varphi \rangle = 0\text{, }\forall \varphi \in H_{Z}\left( G\right) \right\} \text{.} \end{equation} $ | (5.44) |
We introduce the following useful result which is due to Bogovskiĭ [52]:
Lemma 10. Let $ D\subset \mathbb{R}^{3} $ be a bounded domain with Lipschitz continuous boundary $ \partial D $. There exists a linear operator $ \mathcal{B}:L^{2}\left(D\right) \rightarrow H_{0}^{1}\left(D; \mathbb{R} ^{3}\right) $, such that, for every $ \varpi \in L^{2}\left(D\right) $ satisfying $ \int_{D}\varpi dx = 0 $,
$ \begin{equation*} \left\{ \begin{array}{rcl} \text{div }\left( \mathcal{B}\left( \varpi \right) \right) & = & \varpi \;{ in }\;D\text{, } \\ \left\Vert \nabla \mathcal{B}\left( \varpi \right) \right\Vert _{L^{2}\left( D;\mathbb{R}^{9}\right) } & \leq & C\left( D\right) \left\Vert \varpi \right\Vert _{L^{2}\left( D\right) }\text{, } \end{array} \right. \end{equation*} $ |
where $ C\left(D\right) $ is a constant which only depends on $ D $.
Let us define $ D = S\times \left(0, 1\right) $. As a consequence, we have the following result:
Lemma 11. Let $ D_{h} = \varepsilon _{h}S\times \left(0, 2^{-h}\right) $. There exists a linear operator $ \mathcal{B}_{h}:L^{2}\left(D_{h}\right) \rightarrow H_{0}^{1}\left(D_{h}; \mathbb{R}^{3}\right) $, such that, for every $ \varpi \in L^{2}\left(D_{h}\right) $ with $ \int_{D_{h}}\varpi dx = 0 $,
$ \begin{equation*} \left\{ \begin{array}{rcl} \text{div }\left( \mathcal{B}_{h}\right) & = & \varpi \ \;{ in }\;D_{h} \text{, } \\ \left\Vert \nabla \mathcal{B}_{h}\right\Vert _{L^{2}\left( D_{h};\mathbb{R} ^{9}\right) } & \leq & \dfrac{C\left( D\right) }{\varepsilon _{h}}\left\Vert \varpi \right\Vert _{L^{2}\left( D_{h}\right) }\text{, } \end{array} \right. \end{equation*} $ |
where $ C\left(D\right) $ is a constant which still only depends on $ D $.
Proof. For every $ \varpi \in L^{2}\left(D_{h}\right) $ satisfying $ \int_{D_{h}}\varpi dx = 0 $, we define
$ \begin{equation*} \varpi _{h}\left( y\right) = \varpi \left( \varepsilon _{h}y_{1}, \varepsilon _{h}y_{2}, 2^{-h}y_{3}\right) \text{, }\forall y = \left( y_{1}, y_{2}, y_{3}\right) \in D\text{.} \end{equation*} $ |
Then, since $ \int_{D_{h}}\varpi dy = 0 $, we can apply Lemma 10 in $ D $ to obtain
$ \begin{equation} \left\{ \begin{array}{rcl} \text{div }\left( \mathcal{B}\left( \varpi _{h}\right) \right) & = & \varpi _{h} \ \text{ in }D\text{, } \\ \left\Vert \nabla \mathcal{B}\left( \varpi _{h}\right) \right\Vert _{L^{2}\left( D;\mathbb{R}^{9}\right) } & \leq & C\left( D\right) \left\Vert \varpi _{h}\right\Vert _{L^{2}\left( D\right) }\text{.} \end{array} \right. \end{equation} $ | (5.45) |
Let us define, for every $ x\in D_{h} $,
$ \begin{equation} \mathcal{B}_{h}\left( \varpi \right) \left( x\right) = \left( \varepsilon _{h} \mathcal{B}_{1}\left( \varpi _{h}\right) \text{, }\varepsilon _{h}\mathcal{B} _{2}\left( \varpi _{h}\right) \text{, }2^{-h}\mathcal{B}_{3}\left( \varpi _{h}\right) \right) \left( \frac{x_{1}}{\varepsilon _{h}}, \frac{x_{2}}{ \varepsilon _{h}}, \frac{x_{3}}{2^{-h}}\right) \text{.} \end{equation} $ | (5.46) |
Then
$ \begin{equation} \begin{array}{lll} \text{div }\mathcal{B}_{h}\left( \varpi \right) \left( x\right) & = & \text{div }\left( \mathcal{B}\left( \varpi _{h}\right) \right) \left( \dfrac{x_{1}}{\varepsilon _{h}}, \dfrac{x_{2}}{\varepsilon _{h}}, \dfrac{x_{3} }{2^{-h}}\right) \\ & = & \varpi _{h}\left( \dfrac{x_{1}}{\varepsilon _{h}}, \dfrac{x_{2}}{ \varepsilon _{h}}, \dfrac{x_{3}}{2^{-h}}\right) \\ & = & \varpi \left( x\right) \text{.} \end{array} \end{equation} $ | (5.47) |
On the other hand, observing that
$ \begin{equation*} \nabla \mathcal{B}_{h}\left( \varpi \right) \left( x\right) = M^{h}\left( \mathcal{B}\left( \varpi _{h}\right) \right) \left( \dfrac{x_{1}}{ \varepsilon _{h}}, \dfrac{x_{2}}{\varepsilon _{h}}, \dfrac{x_{3}}{2^{-h}} \right) \text{, } \end{equation*} $ |
where
$ \begin{equation*} M^{h}\left( \mathcal{B}\left( \varpi _{h}\right) \right) = \left( \begin{array}{lll} \dfrac{\partial \mathcal{B}_{1}\left( \varpi _{h}\right) }{\partial x_{1}} & \dfrac{\partial \mathcal{B}_{1}\left( \varpi _{h}\right) }{\partial x_{2}} & \dfrac{\varepsilon _{h}}{2^{-h}}\dfrac{\partial \mathcal{B}_{1}\left( \varpi _{h}\right) }{\partial x_{3}} \\ \dfrac{\partial \mathcal{B}_{2}\left( \varpi _{h}\right) }{\partial x_{1}} & \dfrac{\partial \mathcal{B}_{2}\left( \varpi _{h}\right) }{\partial x_{2}} & \dfrac{\varepsilon _{h}}{2^{-h}}\dfrac{\partial \mathcal{B}_{2}\left( \varpi _{h}\right) }{\partial x_{3}} \\ \dfrac{\varepsilon _{h}}{2^{-h}}\dfrac{\partial \mathcal{B}_{3}\left( \varpi _{h}\right) }{\partial x_{1}} & \dfrac{\varepsilon _{h}}{2^{-h}}\dfrac{ \partial \mathcal{B}_{3}\left( \varpi _{h}\right) }{\partial x_{2}} & \dfrac{ \partial \mathcal{B}_{3}\left( \varpi _{h}\right) }{\partial x_{3}} \end{array} \right) \text{, } \end{equation*} $ |
we deduce that
$ \begin{equation} \begin{array}{lll} \int\nolimits_{D_{h}}\left\vert \nabla \mathcal{B}_{h}\left( \varpi \right) \right\vert ^{2}dx & = & 2^{-h}\mathop \sum \limits_{\alpha ,\beta = 1,2} \int\nolimits_{D}\left\vert \dfrac{\partial \mathcal{B}_{\alpha }\left( \left( \varpi _{h}\right) \right) }{\partial x_{\beta }}\right\vert ^{2}dx \\ & & +\mathop \sum \limits_{\alpha = 1,2} 2^{h}\varepsilon _{h}^{4}\int\nolimits_{D}\left\vert \dfrac{\partial \mathcal{B}_{\alpha }\left( \left( \varpi _{h}\right) \right) }{\partial x_{3}}\right\vert ^{2}dx \\ & & +\mathop \sum \limits_{\alpha = 1,2} 2^{h}\varepsilon _{h}^{2}\int\nolimits_{D}\left\vert \dfrac{\partial \mathcal{B}_{3}\left( \varpi _{h}\right) }{\partial x_{\alpha }}\right\vert ^{2}dx \\ & & +2^{-h}\varepsilon _{h}^{2}\int\nolimits_{D}\left\vert \dfrac{\partial \mathcal{B}_{3}\left( \varpi _{h}\right) }{\partial x_{3}}\right\vert ^{2}dx \\ & \leq & 2^{-h}\int\nolimits_{D}\left\vert \nabla \mathcal{B}\left( \varpi _{h}\right) \right\vert ^{2}dx\text{.} \end{array} \end{equation} $ | (5.48) |
Last, according to (5.45), we have
$ \begin{equation} \begin{array}{lll} 2^{-h}\int\nolimits_{D}\left\vert \nabla \mathcal{B}\left( \varpi _{h}\right) \right\vert ^{2}dx & \leq & C\left( D\right) 2^{-h}\int\nolimits_{D}\left\vert \varpi _{h}\right\vert ^{2}dx \\ & \leq & \dfrac{C\left( D\right) }{\varepsilon _{h}^{2}}\int \nolimits_{D_{h}}\left\vert \varpi \right\vert ^{2}dx\text{.} \end{array} \end{equation} $ | (5.49) |
Therefore, combining (5.48) and (5.49), we infer that
$ \begin{equation} \int\nolimits_{D_{h}}\left\vert \nabla \mathcal{B}_{h}\left( \varpi \right) \right\vert ^{2}dx\leq \dfrac{C\left( D\right) }{\varepsilon _{h}^{2}} \int\nolimits_{D_{h}}\left\vert \varpi \right\vert ^{2}dx\text{.} \end{equation} $ | (5.50) |
Let $ \left(u^{h}, p_{h}\right) $ be the solution of problem (2.22) with boundary conditions (2.25). Let us define, for every $ h\in \mathbb{N} $, $ i = 1, 2, 3 $, and $ k\in \left\{ 1, 2, ..., 3^{h}\right\} $, the zero average-value pressure $ \widehat{p}_{k}^{h, i} $ by
$ \begin{equation} \widehat{p}_{k}^{h, i} = p_{h}-\dfrac{1}{\left\vert \Omega _{k}^{h, i}\right\vert }\int_{\Omega _{k}^{h, i}}p_{h}dx\text{ in }\Omega _{k}^{h, i}\text{, } \end{equation} $ | (5.51) |
and the pressure $ \widehat{p}_{h} $ by
$ \begin{equation} \widehat{p}_{h}\equiv \widehat{p}_{k}^{h, i}\text{ on each }\Omega _{k}^{h, i} \text{.} \end{equation} $ | (5.52) |
The following estimates hold true:
Lemma 12. If $ \sigma \in \left(0, +\infty \right) $ then
1. $ \sup_{h}F_{h}\left(u^{h}\right) < +\infty $, $ \sup_{h}\dfrac{5^{h}}{ \left\vert \Omega ^{h}\right\vert }\int\nolimits_{\Omega ^{h}}\left\vert u^{h}\right\vert ^{2}dx < +\infty $,
2. $ \sup_{h}\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert } \int\nolimits_{\Omega ^{h}}\left(\widehat{p}_{h}\right) ^{2}dx < +\infty $, $ \sup_{h}\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int\nolimits_{ \Omega ^{h}}\left\vert \nabla p_{h}\right\vert ^{2}dx < +\infty $.
Proof. 1. Applying Lemma 11 for the solution $ f_{h} $ of problem (2.23), we deduce that, for every $ k\in \left\{ 1, 2, ..., 3^{h}\right\} $ and $ i = 1, 2, 3 $,
$ \begin{equation} \int\nolimits_{\Omega _{k}^{h, i}}\left\vert \nabla f_{h}\right\vert ^{2}dx\leq \dfrac{C}{\varepsilon _{h}^{2}}\int\nolimits_{\Omega _{k}^{h, i}}\left\vert g_{h}\right\vert ^{2}dx\text{.} \end{equation} $ | (5.53) |
Additionally, using the inequality (5.3), we have
$ \begin{equation} \int\nolimits_{\Omega _{k}^{h, i}}\left\vert f_{h}\right\vert ^{2}dx\leq C\varepsilon _{h}^{2}\int\nolimits_{\Omega _{k}^{h, i}}\left\vert \nabla f_{h}\right\vert ^{2}dx\text{.} \end{equation} $ | (5.54) |
We deduce from (5.53) and (5.54), that
$ \begin{equation} \dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int\nolimits_{\Omega _{k}^{h, i}}\left\vert f_{h}\right\vert ^{2}dx\leq C\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int\nolimits_{\Omega _{k}^{h, i}}\left\vert g_{h}\right\vert ^{2}dx\text{, } \end{equation} $ | (5.55) |
then, using the hypothesis (2.24)$ _{2} $, we conclude that
$ \begin{equation} \sup\limits_{h}\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int\nolimits_{ \Omega ^{h}}\left\vert f_{h}\right\vert ^{2}dx < +\infty \text{.} \end{equation} $ | (5.56) |
Multiplying (2.22)$ _{1} $ by $ u^{h} $ and integrating by parts, we obtain that
$ \begin{equation} \dfrac{5^{h}}{\text{Re}_{h}}\int\nolimits_{\Omega ^{h}}\left\vert \nabla u^{h}\right\vert ^{2}dx = \dfrac{1}{Fr_{h}}\dfrac{5^{h}}{3^{h+1}}\int_{\Omega ^{h}}f_{h}.u^{h}dx\text{, } \end{equation} $ | (5.57) |
from which we deduce, in virtue of the fact that $ \dfrac{1}{Fr_{h}}\dfrac{ 5^{h}}{3^{h+1}}\approx \dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert } $, by using inequality (5.6) and estimate (5.56),
$ \begin{equation} \sup\limits_{h}\dfrac{5^{h}}{\text{Re}_{h}}\int\nolimits_{\Omega ^{h}}\left\vert \nabla u^{h}\right\vert ^{2}dx < +\infty \text{ , } \end{equation} $ | (5.58) |
and, as $ \sigma \in \left(0, +\infty \right) $, according to Lemma 7,
$ \begin{equation} \sup\limits_{h}\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int\nolimits_{ \Omega ^{h}}\left\vert u^{h}\right\vert ^{2}dx < +\infty \text{.} \end{equation} $ | (5.59) |
2. According to Lemma 11, there exists $ \phi _{k}^{h, i}\in H_{0}^{1}\left(\Omega _{k}^{h, i}, \mathbb{R}^{3}\right) $ such that
$ \begin{equation} \left\{ \begin{array}{llll} -\text{div }\phi _{k}^{h, i} & = & \widehat{p}_{k}^{h, i} & \text{in }\Omega _{k}^{h, i}\text{, } \\ { \ \ \ \ \ \ }\phi _{k}^{h, i} & = & 0 & \text{on }\partial \Omega _{k}^{h, i}\text{, } \end{array} \right. \end{equation} $ | (5.60) |
and
$ \begin{equation} \left\Vert \nabla \phi _{k}^{h, i}\right\Vert _{L^{2}\left( \Omega _{k}^{h, i}, \mathbb{R}^{9}\right) }\leq \dfrac{C}{\varepsilon _{h}}\left\Vert \widehat{p} _{k}^{h, i}\right\Vert _{L^{2}\left( \Omega _{k}^{h, i}\right) }\text{.} \end{equation} $ | (5.61) |
Let us define $ \phi ^{h} $ on $ \Omega ^{h} $ by $ \phi ^{h} = \phi _{k}^{h, i} $ on each $ \Omega _{k}^{h, i} $, for every $ k\in \left\{ 1, 2, ..., 3^{h}\right\} $ and $ i = 1, 2, 3 $. Then, according to inequality (5.61), we have that
$ \begin{equation} \left\Vert \nabla \phi ^{h}\right\Vert _{L^{2}\left( \Omega ^{h}, \mathbb{R} ^{9}\right) }\leq \dfrac{C}{\varepsilon _{h}}\left\Vert \widehat{p} _{h}\right\Vert _{L^{2}\left( \Omega ^{h}\right) }\text{.} \end{equation} $ | (5.62) |
Multiplying (2.22)$ _{1} $ by $ \phi ^{h} $ and integrating by parts, we deduce that
$ \begin{equation} \left. \begin{array}{c} \dfrac{5^{h}}{\text{Re}_{h}}\int\nolimits_{\Omega ^{h}}\nabla u^{h}.\nabla \phi ^{h}dx+\mathrm{Eu}_{h}\text{ }\dfrac{5^{h}}{3^{h+1}}\int\nolimits_{ \Omega ^{h}}\left( \widehat{p}_{h}\right) ^{2}dx \\ = \dfrac{1}{Fr_{h}}\dfrac{5^{h}}{3^{h+1}}\int_{\Omega ^{h}}f_{h}.\phi ^{h}dx. \end{array} \right. \end{equation} $ | (5.63) |
Using the fact that $ \mathrm{Eu}_{h} $ $ \dfrac{5^{h}}{3^{h+1}} = \dfrac{1}{ Fr_{h}}\dfrac{5^{h}}{3^{h+1}}\approx \dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert } $, inequality (5.62), and the uniform boundedness (5.56) and (5.58), we deduce that
$ \begin{equation} \dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int\nolimits_{\Omega ^{h}}\left( \widehat{p}_{h}\right) ^{2}dx\leq C\left\{ \frac{5^{h}}{ \left\vert \Omega ^{h}\right\vert }\int\nolimits_{\Omega ^{h}}\left( \widehat{p}_{h}\right) ^{2}dx\right\} ^{1/2}\text{, } \end{equation} $ | (5.64) |
which implies that
$ \begin{equation} \sup\limits_{h}\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int\nolimits_{ \Omega ^{h}}\left( \widehat{p}_{h}\right) ^{2}dx < +\infty \text{.} \end{equation} $ | (5.65) |
On the other hand, multiplying (2.27)$ _{1} $ by $ p_{h} $, integrating by parts, and, using the hypothesis (2.24)$ _{1} $, we get
$ \begin{equation} \left. \begin{array}{r} \begin{array}{lll} \dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int\nolimits_{\Omega ^{h}}\left\vert \nabla p_{h}\right\vert ^{2}dx & = & -\dfrac{5^{h}}{ \left\vert \Omega ^{h}\right\vert }\int_{\Omega ^{h}}g_{h}p_{h}dx \\ & = & -\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\Omega _{k}^{h, i}}g_{h}p_{h}dx \\ & = & -\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\Omega _{k}^{h, i}}g_{h} \widehat{p}_{k}^{h, i}dx \\ & = & -\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int_{\Omega ^{h}}g_{h}\widehat{p}_{h}dx\text{, } \end{array} \end{array} \right. \end{equation} $ | (5.66) |
from which we deduce by using (2.24)$ _{2} $ and the uniform boundedness (5.65):
$ \begin{equation*} \sup\limits_{h}\dfrac{5^{h}}{\left\vert \Omega ^{h}\right\vert }\int\nolimits_{ \Omega ^{h}}\left\vert \nabla p_{h}\right\vert ^{2}dx < +\infty \text{.} \end{equation*} $ |
Let us define new orthonormal basis systems $ \left(e_{m}^{i}\right) _{m = 1, 2, 3} $; $ i = 1, 2, 3 $, by
$ \begin{equation} e_{m}^{i} = \mathcal{R}_{i}e_{m}\text{, } \end{equation} $ | (6.1) |
where $ e_{m} = \left(\delta _{1m}, \delta _{2m}, \delta _{3m}\right) $. We define the rescaled junctions $ \mathcal{J}^{+, i} $ and $ \mathcal{J}^{-, i} $, for $ i = 1, 2, 3 $, by
$ \begin{equation} \begin{array}{lll} \mathcal{J}^{+, i} & = & \left\{ y = y_{1}e_{1}^{i}+y_{2}e_{2}^{i}+y_{3}e_{3}^{i}\text{; }y_{1} > 0\text{, } \left( y_{2}, y_{3}\right) \in S\right\} \text{, } \\ \mathcal{J}^{-, i} & = & \left\{ y = y_{1}e_{1}^{i}+y_{2}e_{2}^{i}+y_{3}e_{3}^{i}\text{; }y_{1} < 0\text{, } \left( y_{2}, y_{3}\right) \in S\right\} \text{.} \end{array} \end{equation} $ | (6.2) |
We consider the following Leray problems:
$ \begin{equation} \left( \mathcal{P}_{i}^{+}\right) \left\{ \begin{array}{llll} -\mu \Delta w^{+, i}+\nabla \pi ^{+, i} & = & 0{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } & \text{in }\mathcal{J}^{+, i}\text{, } \\ { \ \ \ \ \ \ \ \ \ \ \ }\text{div }w^{+, i} & = & 0{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } & \text{in }\mathcal{J}^{+, i}\text{, } \\ { \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }w^{+, i} & = & 0{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } & \text{on }\partial \mathcal{J}^{+, i}\text{, } \\ \text{ }\underset{y_{1}\rightarrow +\infty }{\lim }w^{+, i}\left( y\right) & = & \Theta \left( y_{2}, y_{3}\right) e_{1}^{i}{ \ } & \text{in }\mathcal{J }^{+, i}\text{, } \end{array} \right. \end{equation} $ | (6.3) |
and
$ \begin{equation} \left( \mathcal{P}_{i}^{-}\right) \left\{ \begin{array}{lll} -\mu \Delta w^{-, i}+\nabla \pi ^{-, i} & = & 0{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ in }\mathcal{J}^{-, i}\text{, } \\ { \ \ \ \ \ \ \ \ \ }\text{div }w^{-, i} & = & 0{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ in }\mathcal{J}^{-, i}\text{, } \\ { \ \ \ \ \ \ \ \ \ \ \ \ \ }w^{-, i} & = & 0{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ on }\partial \mathcal{J}^{-, i}\text{, } \\ \underset{y_{1}\rightarrow -\infty }{\lim }w^{-, i}\left( y\right) & = & \Theta \left( y_{2}, y_{3}\right) e_{1}^{i}\ \ \text{ in }\mathcal{J}^{-, i} \text{, } \end{array} \right. \end{equation} $ | (6.4) |
where $ \Theta $ is the solution of the auxiliary problem
$ \begin{equation} \left\{ \begin{array}{lll} -\mu \Delta \Theta & = & 1\ \ \ \ \text{ in }S\text{, } \\ { \ \ \ \ \ \ }\Theta & = & 0\ \ \ \text{ on }\partial S\text{.} \end{array} \right. \end{equation} $ | (6.5) |
We define, for every $ k\in \left\{ 1, 2, ..., 3^{h}\right\} $ and $ i = 1, 2, 3 $, the sequence of functions $ \left(w^{h, \pm, i}\right) _{h} $ by
$ \begin{equation} \left\{ \begin{array}{llll} w^{h, +, i}\left( x\right) & = & \mathcal{R}_{i}w^{+, i}\left( \frac{ y_{h, 1}^{i, k}\left( x\right) }{\varepsilon _{h}}, \frac{y_{h, 2}^{i, k}\left( x\right) }{\varepsilon _{h}}, \frac{x_{3}}{\varepsilon _{h}}\right) & \text{ for }x\in \mathcal{J}_{k}^{h, +, i}\text{, } \\ w^{h, -, i}\left( x\right) & = & \mathcal{R}_{i}w^{-, i}\left( \frac{ y_{h, 1}^{i, k}\left( x\right) -2^{-h}}{\varepsilon _{h}}, \frac{ y_{h, 2}^{i, k}\left( x\right) }{\varepsilon _{h}}, \frac{x_{3}}{\varepsilon _{h}}\right) & \text{for }x\in \mathcal{J}_{k}^{h, -, i}\text{, } \end{array} \right. \end{equation} $ | (6.6) |
where the sets $ \mathcal{J}_{k}^{h, +, i} $ and $ \mathcal{J}_{k}^{h, -, i} $ are defined in (2.17) and the coordinates $ y_{h, 1}^{i, k} $, $ y_{h, 2}^{i, k} $, $ x_{3} $; $ i = 1, 2, 3 $, are related to the variable $ x $ through the relations (2.7). Let us define, for every $ k\in \left\{ 1, 2, ..., 3^{h}\right\} $ and $ i = 1, 2, 3 $, the intermediate tubes
$ \begin{equation} \omega _{k}^{h, i} = \left\{ \begin{array}{l} x = \left( x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}\text{; }\left( y_{h, 2}^{i, k}\left( x\right) , x_{3}\right) \in \varepsilon _{h}S\text{, } \\ \text{ }\varepsilon _{h}\ln \left( 1/\varepsilon _{h}\right) < y_{h, 1}^{i, k}\left( x\right) < 2^{-h}-\varepsilon _{h}\ln \left( 1/\varepsilon _{h}\right) \text{, } \end{array} \right\} \end{equation} $ | (6.7) |
and their upper and lower bases, respectively,
$ \begin{equation} \begin{array}{lll} \gamma _{k}^{h, +, i} & = & \left\{ \begin{array}{l} \left( x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}\text{; }\left( y_{h, 2}^{i, k}\left( x\right) , x_{3}\right) \in \varepsilon S\text{, } \\ y_{h, 1}^{i, k}\left( x\right) = \varepsilon _{h}\ln \left( 1/\varepsilon _{h}\right) \text{ } \end{array} \right\} \text{, } \\ \gamma _{k}^{h, -, i} & = & \left\{ \begin{array}{l} \left( x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}\text{; }\left( y_{h, 2}^{i, k}\left( x\right) , x_{3}\right) \in \varepsilon S\text{, } \\ y_{h, 1}^{i, k}\left( x\right) = 2^{-h}-\varepsilon _{h}\ln \left( 1/\varepsilon _{h, }\right) \end{array} \right\} \text{.} \end{array} \end{equation} $ | (6.8) |
Let $ v\in C^{1}\left(G\right) $. Let $ x\in \Omega _{k}^{h, i} $. Then, $ \left(x_{1}, x_{2}\right) \in \left[a_{h}^{i, k}, b_{h}^{i, k}\right] $; $ i = 1, 2, 3 $, for every $ h\in \mathbb{N} $ and every $ k\in \left\{ 1, 2, ..., 3^{h}\right\} $. Let $ x_{h}^{i, k} = \dfrac{a_{h}^{i, k}+b_{h}^{i, k}}{2} $. We define the sequence of vector functions $ \left(v_{k}^{0, h, i}\right) _{h} $ by
$ \begin{equation} v_{k}^{0, h, i}\left( x\right) = \frac{v\left( x_{h}^{i, k}\right) }{\mathfrak{m} \left( \Theta \right) \sqrt{5^{h}}}\Theta \left( \dfrac{y_{h, 2}^{i, k}\left( x\right) }{\varepsilon _{h}}, \dfrac{x_{3}}{\varepsilon _{h}}\right) e_{1}^{i}+\psi _{k}^{h, i}\left( x\right) \text{, } \end{equation} $ | (6.9) |
where
$ \begin{equation} \mathfrak{m}\left( \Theta \right) = \dfrac{1}{\pi }\int_{S}\Theta \left( y\right) dy \end{equation} $ | (6.10) |
and
$ \begin{equation} \psi _{k}^{h, i}\left( x\right) = r_{k}^{h, i}\left( v\right) \Theta \left( \dfrac{y_{h, 2}^{i, k}\left( x\right) }{\varepsilon _{h}}, \dfrac{x_{3}}{ \varepsilon _{h}}\right) e_{1}^{i}\text{, } \end{equation} $ | (6.11) |
with
$ \begin{equation} r_{k}^{h, i}\left( v\right) = \frac{1}{\sqrt{\ln \left( 1/\varepsilon _{h}\right) }}\left( v\left( a_{h}^{i, k}\right) -v\left( b_{h}^{i, k}\right) \right) \text{.} \end{equation} $ | (6.12) |
We introduce the function $ \phi _{h}^{i, \pm, k} $ defined by
$ \begin{equation} \left\{ \begin{array}{lll} \phi _{h}^{i, +, k}\left( x\right) & = & r_{k}^{h, i}\left( v\right) w^{i, +}\left( \ln \left( 1/\varepsilon _{h}\right) , \dfrac{ y_{h, 2}^{i, k}\left( x\right) }{\varepsilon _{h}}, \dfrac{x_{3}}{\varepsilon _{h}}\right) \text{, } \\ \phi _{h}^{i, -, k}\left( x\right) & = & r_{k}^{h, i}\left( v\right) w^{i, -}\left( -\ln \left( 1/\varepsilon _{h}\right) , \dfrac{ y_{h, 2}^{i, k}\left( x\right) }{\varepsilon _{h}}, \dfrac{x_{3}}{\varepsilon _{h}}\right) \text{, } \end{array} \right. \end{equation} $ | (6.13) |
and the function $ \mathcal{\theta }_{k}^{h, \pm, 1} $ defined by
$ \begin{equation} \left\{ \begin{array}{lll} \mathcal{\theta }_{k}^{h, +, 1}\left( x\right) & = & \varepsilon _{h}^{2}\left( \phi _{h}^{i, +, k}\left( x\right) -\psi _{k}^{h, i}\left( x\right) \right) \text{, } \\ \mathcal{\theta }_{k}^{h, -, i}\left( x\right) & = & \varepsilon _{h}^{2}\left( \phi _{h}^{i, -, k}\left( x\right) -\psi _{k}^{h, i}\left( x\right) \right) \text{.} \end{array} \right. \end{equation} $ | (6.14) |
Let $ \eta _{k}^{h, i} $ be the solution of the problem
$ \begin{equation} \left\{ \begin{array}{llll} \text{div }\eta _{k}^{h, i} & = & 0{ \ \ \ \ \ \ \ \ \ \ \ \ \ } & \text{ in }\omega _{k}^{h, i}\text{, } \\ { \ \ \ \ }\eta _{k}^{h, i} & = & \varepsilon _{h}^{-2}\mathcal{\theta } ^{h, +, i}\text{ } & \text{on }\gamma _{k, }^{h, +, i}\text{, } \\ { \ \ \ \ }\eta _{k}^{h, i} & = & \varepsilon _{h}^{-2}\mathcal{\theta } ^{h, -, i}\text{ } & \text{on }\gamma _{k, }^{h, -, i}\text{, } \\ { \ \ \ \ }\eta _{k}^{h, i} & = & 0{ \ \ \ \ \ \ \ \ \ \ \ \ } & \text{on }\partial \omega _{k}^{h, i}\backslash \gamma _{k}^{h, +, i}\cup \gamma _{k}^{h, -, i}\text{.} \end{array} \right. \end{equation} $ | (6.15) |
We define the sequence of test-functions $ \left(v_{k}^{h, i}\right) _{h} $; $ v_{k}^{h, i} = \left(v_{k, j}^{h, i}\right) _{j = 1, 2, 3} $, by
$ \begin{equation} v_{k}^{h, i} = \left\{ \begin{array}{ll} v_{k}^{0, h, i}+\eta _{k}^{h, i} & \text{in }\omega _{k}^{h, i}\text{, } \\ r_{k}^{h, i}\left( v\right) w^{h, \pm , i} & \\ +\dfrac{v\left( x_{h}^{i, k}\right) }{\mathfrak{m}\left( \Theta \right) \sqrt{ 5^{h}}}\Theta \left( \dfrac{y_{h, 2}^{i, k}\left( x\right) }{\varepsilon _{h}}, \dfrac{x_{3}}{\varepsilon _{h}}\right) e_{1}^{i} & \text{in }\mathcal{J} _{k}^{h, \pm , i}\text{.} \end{array} \right. \end{equation} $ | (6.16) |
We then define the test function $ v^{h} $ in $ \Omega ^{h} $ by
$ \begin{equation} v^{h}\left( x\right) = v_{k}^{h, i}\left( x\right) \text{ for }x\in \Omega _{k}^{h, i}\text{, }k\in \left\{ 1, 2, ..., 3^{h}\right\} \text{, and }i = 1, 2, 3 \text{.} \end{equation} $ | (6.17) |
We have the following results:
Proposition 13. We have
1. $ v^{h}\in V^{h} $ for $ \varepsilon _{h} $ small enough,
2. $ \left(v^{h}\right) _{h} $ $ \tau $-converges to $ \left(v, v^{\ast }, 0\right) $, where $ v^{\ast } = 0 $ on the part of $ G $ which is perpendicular to $ \left(0, 1\right) $, $ v^{\ast } = v\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(-\sqrt{3}/2, 1/2\right) $, and $ v^{\ast } = -v\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(\sqrt{3}/2, 1/2\right) $,
3. if $ \sigma \in \left(0, \infty \right) $, then
$ \begin{equation*} \underset{h\rightarrow \infty }{\lim }F_{h}\left( v^{h}\right) = \dfrac{\mu \pi }{\mathfrak{m}\left( \Theta \right) \mathcal{H}^{d}\left( G\right) } \int_{G}v^{2}d\mathcal{H}^{d}+\dfrac{2\mu \pi \mathfrak{m}\left( \Theta \right) }{3\sigma }\int_{G}d\mathcal{L}_{G}\left( v\right) \text{.} \end{equation*} $ |
Proof. 1. Introducing the variables $ y_{2} = \dfrac{y_{h, 2}^{i, k}\left(x\right) }{ \varepsilon _{h}} $ and $ y_{3} = \dfrac{x_{3}}{\varepsilon _{h}} $, we have, for $ \varepsilon _{h} $ small enough, that
$ \begin{equation} \left. \begin{array}{l} \int_{\gamma _{k}^{h, +, i}}\mathcal{\theta }^{h, +, i}.e_{1}^{i} = -r_{k}^{h, i} \left( v\right) \varepsilon _{h}^{2}\int_{S}\left( \begin{array}{l} w^{+, i}\left( \ln \left( 1/\varepsilon _{h}\right) , y_{2}, y_{3}\right) \\ -\Theta \left( y_{2}, y_{3}\right) e_{1}^{i} \end{array} \right) .e_{1}^{i}dy \\ { \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } = -r_{k}^{h, i}\left( v\right) \varepsilon _{h}^{2}\int_{S}\left( \Theta \left( y_{2}, y_{3}\right) -\Theta \left( y_{2}, y_{3}\right) \right) dy \\ { \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } = 0\text{, } \end{array} \right. \end{equation} $ | (6.18) |
and
$ \begin{equation} \left. \begin{array}{l} \int_{\gamma _{k}^{h, -, i}}\mathcal{\theta }^{h, -, i}.e_{1}^{i} = -r_{k}^{h, i} \left( v\right) \varepsilon _{h}^{2}\int_{S}\left( \begin{array}{l} w^{-, i}\left( -\ln \left( 1/\varepsilon _{h}\right) , y_{2}, y_{3}\right) \\ -\Theta \left( y_{2}, y_{3}\right) e_{1}^{i} \end{array} \right) .e_{1}^{i}dy \\ { \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } = -r_{k}^{h, i}\left( v\right) \varepsilon _{h}^{2}\int_{S}\left( \Theta \left( y_{2}, y_{3}\right) -\Theta \left( y_{2}, y_{3}\right) \right) dy \\ { \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } = 0\text{.} \end{array} \right. \end{equation} $ | (6.19) |
This implies that problem (6.15) is solvable. On the other hand, using [53, Theorem Ⅵ.1.2], there exists $ \tau > 0 $ such that, for any $ i = 1, 2, 3 $ and every $ y\in \mathcal{J}^{\pm, i} $,
$ \begin{equation} \left\vert w^{\pm , i}\left( y\right) -\Theta \left( y_{2}, y_{3}\right) e_{1}^{i}\right\vert +\left\vert \nabla w^{\pm , i}\left( y\right) -\nabla \left( \Theta \left( y_{2}, y_{3}\right) e_{1}^{i}\right) \right\vert \leq Ce^{-\tau \left\vert y\right\vert }\text{, } \end{equation} $ | (6.20) |
from which we deduce that
$ \begin{equation} \left\vert \mathcal{\theta }_{k}^{h, \pm , i}\left( x\right) \right\vert \leq \frac{C\varepsilon _{h}^{3}\sqrt{\varepsilon _{h}}}{\sqrt{\ln \left( 1/\varepsilon _{h}\right) }}\text{, }\left\vert \nabla \mathcal{\theta } _{k}^{h, \pm , i}\left( x\right) \right\vert \leq \frac{C\varepsilon _{h}^{2} \sqrt{\varepsilon _{h}}}{\sqrt{\ln \left( 1/\varepsilon _{h}\right) }}\text{, } \end{equation} $ | (6.21) |
which implies that
$ \begin{equation} \begin{array}{lll} \left\Vert \mathcal{\theta }_{k}^{h, \pm , i}\right\Vert _{H^{1/2}\left( \gamma _{k}^{h, \pm , i}\right) } & \leq & C\sqrt{\left\Vert \mathcal{\theta } _{k}^{h, \pm , i}\right\Vert _{L^{2}\left( \gamma _{k}^{h, i}\right) }\left\Vert \nabla \mathcal{\theta }_{k}^{h, \pm , i}\right\Vert _{L^{2}\left( \gamma _{k}^{h, \pm , i}\right) }} \\ & \leq & \dfrac{C\varepsilon _{h}^{7/2}\sqrt{\varepsilon _{h}}}{\sqrt{\ln \left( 1/\varepsilon _{h}\right) }}\text{, } \end{array} \end{equation} $ | (6.22) |
and, using [54, Lemma 9],
$ \begin{equation} \begin{array}{lll} \left\Vert \nabla \eta _{k}^{h, i}\right\Vert _{L^{2}\left( \omega _{k}^{h, i}\right) } & \leq & \dfrac{C}{\varepsilon _{h}^{2}\sqrt{\varepsilon _{h}}}\left\Vert \mathcal{\theta }_{k}^{h, \pm , i}\right\Vert _{H^{1/2}\left( \gamma _{k}^{h, \pm , i}\right) } \\ & \leq & \dfrac{C\varepsilon _{h}\sqrt{\varepsilon _{h}}}{\sqrt{\ln \left( 1/\varepsilon _{h}\right) }}\text{.} \end{array} \end{equation} $ | (6.23) |
Since $ \text{div }\eta _{k}^{h, i} = 0 $, $ \text{div }_{y}w^{+, i} = \text{div } _{y}w^{-, i} = 0 $, for every $ i = 1, 2, 3 $, and $ \Theta $ is independent of $ y_{1} $, we have $ \ $
$ \begin{equation*} \text{div }v_{k}^{h, i} = 0\text{, for every }i = 1, 2, 3\text{.} \end{equation*} $ |
Therefore, for $ \varepsilon _{h} $ small enough, $ v^{h}\in V^{h} $.
2. Let $ \varphi \in C_{0}\left(\mathbb{R}^{3}\right) $. We have
$ \begin{equation} \left. \begin{array}{l} \underset{h\rightarrow \infty }{\lim }\int_{\mathbb{R}^{3}}\varphi \left( x\right) \psi _{k}^{h, i}\left( x\right) \sqrt{5^{h}}\dfrac{\boldsymbol{1} _{\Omega ^{h}}\left( x\right) }{3\left\vert \Omega ^{h}\right\vert }dx \\ = \underset{h\rightarrow \infty }{\lim }\dfrac{\sqrt{5^{h}}}{3^{h+1}\pi \sqrt{ \ln \left( 1/\varepsilon _{h}\right) }}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \left\{ \begin{array}{l} \left( v\left( a_{h}^{i, k}\right) -v\left( b_{h}^{i, k}\right) \right) \\ \times \varphi \left( x_{h}^{i, k}, 0\right) \int_{S}\Theta \left( y_{2}, y_{3}\right) dy_{2}dy_{3} \end{array} \right\} \\ = 0\text{, } \end{array} \right. \end{equation} $ | (6.24) |
and
$ \begin{equation} \left. \begin{array}{l} \underset{h\rightarrow \infty }{\lim }\dfrac{\sqrt{5^{h}}}{3\mathfrak{m} \left( \Theta \right) \left\vert \Omega ^{h}\right\vert \sqrt{5^{h}}} \mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\mathcal{J} _{k}^{h, \pm , i}}\left( \begin{array}{c} \varphi \left( x\right) v\left( x_{h}^{i, k}\right) \\ \times \Theta \left( \dfrac{y_{h, 2}^{i, k}\left( x\right) }{\varepsilon _{h}}, \dfrac{x_{3}}{\varepsilon _{h}}\right) .e_{1}^{i} \end{array} \right) dx \\ = \underset{h\rightarrow \infty }{\lim }\dfrac{\varepsilon _{h}\ln \left( 1/\varepsilon _{h}\right) }{3^{h+1}\pi \mathfrak{m}\left( \Theta \right) } \mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \varphi \left( x_{h}^{i, k}\right) v\left( x_{h}^{i, k}\right) .e_{1}^{i}\int_{S}\Theta \left( y_{2}, y_{3}\right) dy_{2}dy_{3} \\ = 0\text{.} \end{array} \right. \end{equation} $ | (6.25) |
Then, using the estimate (6.20) for $ w^{\pm, i}\left(y\right) $, the estimates (6.21)–(6.22) for $ \mathcal{\theta }_{k}^{h, \pm, i} $, the estimate (6.23) for $ \eta _{k}^{h, i} $, and the inequality (5.3) applied to $ \eta _{k}^{h, i} $, we deduce that
$ \begin{equation} \left. \begin{array}{l} \underset{h\rightarrow \infty }{\lim }\int_{\mathbb{R}^{3}}\varphi \left( x\right) \sqrt{5^{h}}v^{h}\dfrac{\boldsymbol{1}_{\Omega ^{h}}\left( x\right) }{3\left\vert \Omega ^{h}\right\vert }dx \\ = \underset{h\rightarrow \infty }{\lim }\dfrac{1}{3\left\vert \Omega ^{h}\right\vert \mathfrak{m}\left( \Theta \right) }\int_{\Omega ^{h}} \mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \left( \begin{array}{c} \varphi \left( x_{h}^{i, k}, 0\right) v\left( x_{h}^{i, k}\right) \\ \times \Theta \left( \dfrac{y_{h, 2}^{i, k}\left( x\right) }{\varepsilon _{h}}, \dfrac{x_{3}}{\varepsilon _{h}}\right) e_{1}^{i} \end{array} \right) dx \\ = \underset{h\rightarrow \infty }{\lim }\dfrac{1}{\pi \mathfrak{m}\left( \Theta \right) 3^{h+1}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \left( \begin{array}{c} \varphi \left( x_{h}^{i, k}, 0\right) v\left( x_{h}^{i, k}\right) \\ \times \left( \int_{S}\Theta \left( y_{2}, y_{3}\right) dy_{2}dy_{3}\right) e_{1}^{i} \end{array} \right) \\ = \dfrac{1}{\mathcal{H}^{d}\left( G\right) }\int_{G}\varphi \left( s, 0\right) \left( v\left( s\right) , v^{\ast }\left( s\right) , 0\right) d \mathcal{H}^{d}\left( s\right) \text{.} \end{array} \right. \end{equation} $ | (6.26) |
3. Let us suppose that $ \sigma \in \left(0, \infty \right) $. Then, in virtue of the estimates (6.20)–(6.23), we have that
$ \begin{equation} \left. \begin{array}{l} \underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}}{3^{h+1}\text{Re}_{h}} \int_{\Omega ^{h}}\left\vert \nabla v^{h}\right\vert ^{2}dx \\ = \underset{h\rightarrow \infty }{\lim }\dfrac{\mu 2^{h}}{\mathfrak{m} ^{2}\left( \Theta \right) 3^{h+1}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\omega _{k}^{h, i}}\left\vert \begin{array}{c} \nabla \left( \Theta \left( \frac{y_{h, 2}^{i, k}\left( x\right) }{\varepsilon _{h}}, \frac{x_{3}}{\varepsilon _{h}}\right) e_{1}^{i}\right) \\ \times v\left( x_{h}^{i, k}\right) \end{array} \right\vert ^{2}dx \\ +\underset{h\rightarrow \infty }{\lim }\dfrac{\mu 2^{h}5^{h}}{3^{h+1}} \mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\omega _{k}^{h, i}}\left\vert \nabla \psi _{k}^{h, i}\left( x\right) \right\vert ^{2}dx \\ +\underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}}{3^{h+1}\text{Re}_{ {\mathbf{j}}, h}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\mathcal{J}_{k}^{h, +, i}}\left( r_{k}^{h, i}\left( v\right) \right) ^{2}\left\vert \nabla w^{h, +, i}\right\vert ^{2}dx \\ +\underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}}{3^{h+1}\text{Re}_{ {\mathbf{j}}, h}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\mathcal{J}_{k}^{h, -, i}}\left( r_{k}^{h, i}\left( v\right) \right) ^{2}\left\vert \nabla w^{h, -, i}\right\vert ^{2}dx \\ +\underset{h\rightarrow \infty }{\lim }\dfrac{1}{3^{h+1}\mathfrak{m} ^{2}\left( \Theta \right) \text{Re}_{{\mathbf{j}}, h}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\mathcal{J} _{k}^{h, i}}\left\vert \begin{array}{c} \nabla \left( \Theta \left( \frac{y_{h, 2}^{i, k}\left( x\right) }{\varepsilon _{h}}, \frac{x_{3}}{\varepsilon _{h}}\right) e_{1}^{i}\right) \\ \times v\left( x_{h}^{i, k}\right) \end{array} \right\vert ^{2}dx\text{.} \end{array} \right. \end{equation} $ | (6.27) |
where $ \mathcal{J}_{k}^{h, i} = \mathcal{J}_{k}^{h, +, i}\cup \mathcal{J} _{k}^{h, -, i} $. Then, as
$ \begin{equation} \left\vert \nabla \left( \Theta \left( \frac{y_{h, 2}^{i, k}\left( x\right) }{ \varepsilon _{h}}, \dfrac{x_{3}}{\varepsilon _{h}}\right) e_{1}^{i}\right) \right\vert ^{2} = \frac{1}{\varepsilon _{h}^{2}}\left\vert \nabla \Theta \left( y_{2}, y_{3}\right) \right\vert ^{2}\text{, } \end{equation} $ | (6.28) |
and $ \int_{S}\left\vert \nabla \Theta \left(y_{2}, y_{3}\right) \right\vert ^{2}dy_{2}dy_{3} = \pi \mathfrak{m}\left(\Theta \right) $, we deduce that
$ \begin{equation} \left. \begin{array}{l} \underset{h\rightarrow \infty }{\lim }\dfrac{\mu 2^{h}}{3^{h+1}\mathfrak{m} ^{2}\left( \Theta \right) }\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\omega _{k}^{h, i}}\left\vert \begin{array}{c} v\left( x_{h}^{i, k}\right) \\ \times \nabla \left( \Theta \left( \frac{y_{h, 2}^{i, k}\left( x\right) }{ \varepsilon _{h}}, \dfrac{x_{3}}{\varepsilon _{h}}\right) e_{1}^{i}\right) \end{array} \right\vert ^{2}dx \\ = \underset{h\rightarrow \infty }{\lim }\dfrac{\mu }{\mathfrak{m}^{2}\left( \Theta \right) 3^{h+1}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} v^{2}\left( x_{h}^{i, k}\right) \int_{S}\left\vert \nabla \Theta \left( y_{2}, y_{3}\right) \right\vert ^{2}dy_{2}dy_{3} \\ = \underset{h\rightarrow \infty }{\lim }\dfrac{\mu \pi }{\mathfrak{m}\left( \Theta \right) }\dfrac{1}{3^{h+1}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} v^{2}\left( x_{h}^{i, k}\right) \\ = \dfrac{\mu \pi }{\mathfrak{m}\left( \Theta \right) \mathcal{H}^{d}\left( G\right) }\int_{G}v^{2}d\mathcal{H}^{d}\text{.} \end{array} \right. \end{equation} $ | (6.29) |
After some computations, we infer that
$ \begin{equation} \left. \begin{array}{l} \underset{h\rightarrow \infty }{\lim }\dfrac{\mu 2^{h}5^{h}}{3^{h+1}} \mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\omega _{k}^{h, i}}\left\vert \nabla \psi _{k}^{h, i}\left( x\right) \right\vert ^{2}dx \\ = \underset{h\rightarrow \infty }{\lim }\dfrac{\mu 5^{h}}{3^{h+1}\ln \left( 1/\varepsilon _{h}\right) }\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \left\{ \begin{array}{c} \left( v\left( a_{h}^{i, k}\right) -v\left( b_{h}^{i, k}\right) \right) ^{2} \\ \times \int_{\mathcal{S}}\left\vert \nabla \Theta \left( y_{2}, y_{3}\right) \right\vert ^{2}dy_{2}dy_{3} \end{array} \right\} \\ = 0\text{, } \end{array} \right. \end{equation} $ | (6.30) |
and, for the last limit in (6.27),
$ \begin{equation} \left. \begin{array}{l} \underset{h\rightarrow \infty }{\lim }\dfrac{1}{3^{h+1}\mathfrak{m} ^{2}\left( \Theta \right) \text{Re}_{{\mathbf{j}}, h}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\mathcal{J} _{k}^{h, i}}\left\vert \begin{array}{c} v\left( x_{h}^{i, k}\right) \\ \times \nabla \left( \Theta \left( \frac{y_{h, 2}^{i, k}\left( x\right) }{ \varepsilon _{h}}, \frac{x_{3}}{\varepsilon _{h}}\right) e_{1}^{i}\right) \end{array} \right\vert ^{2}dx \\ = 0\text{.} \end{array} \right. \end{equation} $ | (6.31) |
Using once again the estimate (6.20), we deduce that
$ \begin{equation} \left. \begin{array}{l} \underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}}{3^{h+1}\text{Re}_{ {\mathbf{j}}, h}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\mathcal{J}_{k}^{h, +, i}}\left( r_{k}^{h, i}\left( v\right) \right) ^{2}\left\vert \nabla w^{h, +, i}\right\vert ^{2}dx \\ = \underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}}{3^{h+1}\text{Re}_{ {\mathbf{j}}, h}\ln \left( 1/\varepsilon _{h}\right) }\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \left( \begin{array}{l} \left( v\left( a_{h}^{i, k}\right) -v\left( b_{h}^{i, k}\right) \right) ^{2} \\ \times \int_{\mathcal{J}_{k}^{h, +, i}}\left\vert \nabla w^{h, +, i}\right\vert ^{2} \end{array} \right) dx \\ = \underset{h\rightarrow \infty }{\lim }\dfrac{\varepsilon _{h}}{3\text{Re}_{ {\mathbf{j}}, h}}\left( \dfrac{5}{3}\right) ^{h}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \left\{ \begin{array}{c} \left( v\left( a_{h}^{i, k}\right) -v\left( b_{h}^{i, k}\right) \right) ^{2} \\ \times \int_{\mathcal{S}}\left\vert \nabla \Theta \left( y_{2}, y_{3}\right) \right\vert ^{2}dy_{2}dy_{3} \end{array} \right\} \\ = \dfrac{\pi \mathfrak{m}\left( \Theta \right) }{3\sigma }\int_{G}d\mathcal{L }_{G}\left( v\right) \text{, } \end{array} \right. \end{equation} $ | (6.32) |
and
$ \begin{equation} \left. \begin{array}{l} \underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}}{3^{h+1}\text{Re}_{ {\mathbf{j}}, h}}\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} \mathop \sum \limits_{i = 1,2,3} \int_{\mathcal{J}_{k}^{h, -, i}}\left( r_{k}^{h, i}\left( v\right) \right) ^{2}\left\vert \nabla w^{h, -, i}\right\vert ^{2}dx \\ = \dfrac{\pi \mathfrak{m}\left( \Theta \right) }{3\sigma }\int_{G}d\mathcal{L }_{G}\left( v\right) \text{.} \end{array} \right. \end{equation} $ | (6.33) |
Now, combining (6.27)–(6.33), we get the result.
Proposition 14. If $ \sigma \in \left(0, +\infty \right) $, then for every $ v\in V^{\infty } $, there exists a sequence $ \left(v^{h}\right) _{h} $, with $ v^{h}\in V^{h} $ and $ \left(v^{h}\right) _{h} $ $ \tau $-converges to $ \left(v, v^{\ast }, v^{\ast \ast }\right) $, where $ v^{\ast \ast } = 0 $, $ v^{\ast } = 0 $ on the part of $ G $ which is perpendicular to $ \left(0, 1\right) $, $ v^{\ast } = v\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(-\sqrt{3} /2, 1/2\right) $, and $ v^{\ast } = -v\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(\sqrt{3}/2, 1/2\right) $, such that
$ \begin{equation*} \underset{h\rightarrow \infty }{\lim \sup }F_{h}\left( v^{h}\right) \leq F_{\infty }\left( v\right) \text{.} \end{equation*} $ |
Proof. Let $ v\in V^{\infty } $. Let $ \left(v_{m}\right) _{m} $ $ \subset C^{1}\left(G\right) $ such that $ v_{m}\underset{m\rightarrow \infty }{\longrightarrow } v $ with respect to the norm (4.5). We define the sequence $ \left(v^{m, h}\right) _{m, h} $ by replacing in (6.9), (6.16), and (6.17) $ v $ by $ v_{m} $. Then, according to Proposition 13, the sequence $ \left(v^{m, h}\right) _{m, h} $ $ \tau $-converges to $ \left(v_{m}, v_{m}^{\ast }, 0\right) $, where $ v_{m}^{\ast } = 0 $ on the part of $ G $ which is perpendicular to $ \left(0, 1\right) $, $ v_{m}^{\ast } = v_{m}\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(-\sqrt{ 3}/2, 1/2\right) $, $ v_{m}^{\ast } = -v_{m}\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(\sqrt{3}/2, 1/2\right) $, and
$ \begin{equation*} \underset{h\rightarrow \infty }{\lim }F_{h}\left( v^{m, h}\right) \leq F_{\infty }\left( v_{m}\right) \text{.} \end{equation*} $ |
The continuity of $ F_{\infty } $ implies that $ \lim_{m\rightarrow \infty }\lim_{h\rightarrow \infty }F_{h}\left(v^{m, h}\right) = F_{\infty }\left(v\right) $. The topology $ \tau $ being metrizable, we deduce, using a diagonalization argument (see [14, Corollary 1.18]), that the sequence $ \left(v^{h}\right) _{h} = \left(v^{h, m\left(h\right) }\right) _{h} $; $ \underset{h\rightarrow \infty }{\lim }m\left(h\right) = +\infty $, $ \tau $ -converges to $ \left(v, v^{\ast }, 0\right) $, with $ v^{\ast } = 0 $ on the part of $ G $ which is perpendicular to $ \left(0, 1\right) $, $ v^{\ast } = v\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(-\sqrt{3}/2, 1/2\right) $, $ v^{\ast } = -v\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(\sqrt{3}/2, 1/2\right) $, and
$ \begin{equation*} \underset{h\rightarrow \infty }{\lim \sup }F_{h}\left( v^{h}\right) \leq F_{\infty }\left( v\right) \text{.} \end{equation*} $ |
Proposition 15. If $ \sigma \in \left(0, +\infty \right) $, then for every sequence $ \left(v^{h}\right) _{h} $, such that $ v^{h}\in V^{h} $ and $ \left(v^{h}\right) _{h} $ $ \tau $-converges to $ \left(v, v^{\ast }, v^{\ast \ast }\right) $, we have $ v\in V^{\infty } $, $ v^{\ast \ast } = 0 $ on $ G $, $ v^{\ast } = 0 $ on the part of $ G $ which is perpendicular to $ \left(0, 1\right) $, $ v^{\ast } = v\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(-\sqrt{3}/2, 1/2\right) $, $ v^{\ast } = -v\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(\sqrt{3}/2, 1/2\right) $, and
$ \begin{equation*} \underset{h\rightarrow \infty }{\lim \inf }F_{h}\left( v^{h}\right) \geq F_{\infty }\left( v\right) \text{.} \end{equation*} $ |
Proof. Observe that if $ \sup_{h}F_{h}\left(v^{h}\right) = +\infty $, then the lim inf inequality is trivial. We suppose that $ \sup_{h}F_{h}\left(v^{h}\right) < +\infty $ and, using some regularity argument, we may suppose that $ v^{h}\in V^{h}\cap H^{2}\left(\Omega ^{h}, \mathbb{R}^{3}\right) $. Then, according to Proposition 8, we have that $ v\in L_{\mathcal{H} ^{d}}^{2}\left(G\right) $, $ v^{\ast \ast } = 0 $ on $ G $, $ v^{\ast } = 0 $ on the part of $ G $ which is perpendicular to $ \left(0, 1\right) $, $ v^{\ast } = v \sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(-\sqrt{3} /2, 1/2\right) $, $ v^{\ast } = -v\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(\sqrt{3}/2, 1/2\right) $, and, according to Proposition 5.9,
$ \begin{equation} \langle \text{div }_{Z}\left( v\right) , \varphi \rangle = 0, \forall \varphi \in H_{Z}\left( G\right) \text{, } \end{equation} $ | (6.34) |
where $ H_{Z}\left(G\right) $ is the space defined in Definition 2$ _{1} $. Let $ \left(v_{m}\right) _{m} $ $ \subset C^{1}\left(G\right) $ such that $ v_{m}\underset{m\rightarrow \infty }{\longrightarrow } v $ with respect to the norm $ L_{\mathcal{H}^{d}}^{2}\left(G\right) $ -strong. We define the sequence $ \left(v^{m, h}\right) _{m, h} $ by replacing $ v $ by $ v_{m} $ in test-functions (6.9), (6.16), and (6.17). We deduce from the definition of the subdifferentiability of convex functionals that
$ \begin{equation} \left. \begin{array}{r} \dfrac{5^{h}}{3^{h+1}\text{Re}_{h}}\int_{\Omega ^{h}}\left\vert \nabla v^{h}\right\vert ^{2}dx\geq \dfrac{5^{h}}{3^{h+1}\text{Re}_{h}}\int_{\Omega ^{h}}\left\vert \nabla v^{m, h}\right\vert ^{2}dx \\ +2\dfrac{5^{h}}{3^{h+1}\text{Re}_{h}}\int\nolimits_{\Omega ^{h}}\nabla \left( v^{m, h}\right) .\nabla \left( v^{h}-v^{m, h}\right) dx\text{.} \end{array} \right. \end{equation} $ | (6.35) |
We then compute
$ \begin{equation} \left. \begin{array}{l} \underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}}{3^{h+1}\text{Re}_{h}} \int\nolimits_{\Omega ^{h}}\nabla \left( v^{m, h}\right) .\nabla \left( v^{h}-v^{m, h}\right) dx \\ = \underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}\text{Re}_{h}^{-1}}{ 3^{h+1}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\omega _{k}^{h, i}}\nabla \eta _{k}^{h, i}.\nabla \left( v^{h}-v^{m, h}\right) dx \\ +\underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}\text{Re}_{h}^{-1}}{ 3^{h+1}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\omega _{k}^{h, i}}\nabla \psi _{k}^{h, i}\left( x\right) .\nabla \left( v^{h}-v^{m, h}\right) dx \\ -\underset{h\rightarrow \infty }{\lim }\dfrac{\sqrt{5^{h}}\text{Re}_{h}^{-1} }{\mathfrak{m}\left( \Theta \right) 3^{h+1}\varepsilon _{h}^{2}}\underset{ i = 1, 2, 3}{\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\int_{\omega _{k}^{h, i}}\left( \begin{array}{c} \Delta \Theta \left( \frac{y_{h, 2}^{i, k}\left( x\right) }{\varepsilon _{h}}, \frac{x_{3}}{\varepsilon _{h}}\right) \\ \times v_{m}\left( x_{h}^{i, k}\right) \left( v^{h}-v^{m, h}\right) .e_{1}^{i} \end{array} \right) dx \\ +\underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}\text{Re}_{{\mathbf{j}} , h}^{-1}}{3^{h+1}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} r_{k}^{h, i}\left( v\right) \int_{\mathcal{J}_{k}^{h, +, i}}\nabla w^{h, +, i}.\nabla \left( v^{h}-v^{m, h}\right) dx \\ +\underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}\text{Re}_{{\mathbf{j}} , h}^{-1}}{3^{h+1}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} r_{k}^{h, i}\left( v\right) \int_{\mathcal{J}_{k}^{h, -, i}}\nabla w^{h, -, i}.\nabla \left( v^{h}-v^{m, h}\right) dx \\ +\underset{h\rightarrow \infty }{\lim }\dfrac{\sqrt{5^{h}}\text{Re}_{{\mathbf{j}}, h}^{-1}}{\mathfrak{m}\left( \Theta \right) 3^{h+1}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\mathcal{J}_{k}^{h, i}}\left( \begin{array}{c} \left( \nabla v^{h}-\nabla v^{m, h}\right) \\ .\nabla \left( \Theta \left( \frac{y_{h, 2}^{i, k}\left( x\right) }{ \varepsilon _{h}}, \frac{x_{3}}{\varepsilon _{h}}\right) e_{1}^{i}\right) \end{array} \right) dx\text{.} \end{array} \right. \end{equation} $ | (6.36) |
Using the estimate (6.23), we deduce that
$ \begin{equation} \left. \begin{array}{l} \dfrac{5^{h}}{3^{h+1}\text{Re}_{h}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\omega _{k}^{h, i}}\nabla \eta _{k}^{h, i}.\nabla \left( v^{h}-v^{m, h}\right) dx \\ \leq \dfrac{C\varepsilon _{h}\sqrt{\varepsilon _{h}}}{\sqrt{\ln \left( 1/\varepsilon _{h}\right) }}\sqrt{\dfrac{5^{h}}{3^{h+1}\text{Re}_{h}}} \left\{ \dfrac{5^{h}}{3^{h+1}\text{Re}_{h}}\int\nolimits_{\Omega ^{h}}\left\vert \nabla \left( v^{h}-v^{m, h}\right) \right\vert ^{2}dx\right\} ^{1/2} \\ \leq \dfrac{C\varepsilon _{h}\sqrt{\varepsilon _{h}}}{\sqrt{\ln \left( 1/\varepsilon _{h}\right) }}\sqrt{\dfrac{5^{h}}{3^{h+1}\text{Re}_{h}}}\text{, } \end{array} \right. \end{equation} $ | (6.37) |
from which we deduce that
$ \begin{equation} \underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}}{3^{h+1}\text{Re}_{h}} \mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} \mathop \sum \limits_{i = 1,2,3} \int_{\omega _{k}^{h, i}}\nabla \eta _{k}^{h, i}.\nabla \left( v^{h}-v^{m, h}\right) dx = 0\text{.} \end{equation} $ | (6.38) |
On the other hand, using the fact that $ \varepsilon _{h}^{2}3^{h}\text{Re} _{h}\approx \dfrac{\left\vert \Omega ^{h}\right\vert }{\pi \mu } $ in $ \omega _{k}^{h, i} $ and according to the problem (6.5) of which $ \Theta $ is the solution, we deduce that
$ \begin{equation} \left. \begin{array}{l} \underset{h\rightarrow \infty }{\lim }\dfrac{\sqrt{5^{h}}\text{Re}_{h}^{-1}}{ \mathfrak{m}\left( \Theta \right) 3^{h+1}\varepsilon _{h}^{2}}\underset{ i = 1, 2, 3}{\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\int_{\omega _{k}^{h, i}}\left( \begin{array}{c} \Delta \Theta \left( \dfrac{y_{h, 2}^{i, k}\left( x\right) }{\varepsilon _{h}}, \dfrac{x_{3}}{\varepsilon _{h}}\right) \\ \times v_{n}\left( x_{h}^{i, k}\right) \left( v^{h}-v^{m, h}\right) .e_{1}^{i} \end{array} \right) dx \\ = \underset{h\rightarrow \infty }{\lim }\dfrac{\mu \pi \sqrt{5^{h}}}{ \mathfrak{m}\left( \Theta \right) 3\left\vert \Omega ^{h}\right\vert } \mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\omega _{k}^{h, i}}\left( \begin{array}{c} \Delta \Theta \left( \dfrac{y_{h, 2}^{i, k}\left( x\right) }{\varepsilon _{h}}, \dfrac{x_{3}}{\varepsilon _{h}}\right) \\ \times v_{n}\left( x_{h}^{i, k}\right) \left( v^{h}-v^{m, h}\right) .e_{1}^{i} \end{array} \right) dx \\ = \dfrac{-\pi }{\mathcal{H}^{d}\left( G\right) }\int_{G}v_{m}\left( v-v_{m}\right) d\mathcal{H}^{d}\text{.} \end{array} \right. \end{equation} $ | (6.39) |
Using the limits (6.24) and (6.30), and the fact that
$ \begin{equation} \sup\limits_{h}F_{h}\left( v^{h}-v^{m, h}\right) < +\infty \text{, } \end{equation} $ | (6.40) |
we deduce that
$ \begin{equation} \underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}\text{Re}_{h}^{-1}}{3^{h+1} }\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\omega _{k}^{h, i}}\nabla \psi _{k}^{h, i}\left( x\right) .\nabla \left( v^{h}-v^{m, h}\right) dx = 0\text{.} \end{equation} $ | (6.41) |
Analogously, using the estimate (6.20), the equations (6.5), the expression (6.12) of $ r_{k}^{h, i}\left(v\right) $, and the estimate (6.40), we get
$ \begin{equation} \left. \begin{array}{l} \underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}\text{Re}_{{\mathbf{j}} , h}^{-1}}{3^{h+1}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} r_{k}^{h, i}\left( v\right) \int_{\mathcal{J}_{k}^{h, +, i}}\nabla w^{h, +, i}.\nabla \left( v^{h}-v^{m, h}\right) dx \\ = -\underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}\text{Re}_{{\mathbf{j}} , h}^{-1}}{3^{h+1}\varepsilon _{h}^{2}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\mathcal{J}_{k}^{h, +, i}}\left( \begin{array}{c} r_{k}^{h, i}\left( v\right) \Delta \Theta \left( \dfrac{y_{h, 2}^{i, k}\left( x\right) }{\varepsilon _{h}}, \dfrac{x_{3}}{\varepsilon _{h}}\right) \\ \times \left( v^{h}-v^{m, h}\right) .e_{1}^{i} \end{array} \right) dx \\ = 0\text{, } \end{array} \right. \end{equation} $ | (6.42) |
and, similarly,
$ \begin{equation} \left. \begin{array}{l} \underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}\text{Re}_{{\mathbf{j}} , h}^{-1}}{3^{h+1}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} r_{k}^{h, i}\left( v\right) \int_{\mathcal{J}_{k}^{h, -, i}}\nabla w^{h, -, i}.\nabla \left( v^{h}-v^{m, h}\right) dx \\ = 0\text{.} \end{array} \right. \end{equation} $ | (6.43) |
As $ \sup_{h}\dfrac{5^{h}}{3^{h+1}\text{Re}_{h}}\int\nolimits_{\Omega ^{h}}\left\vert \nabla \left(v^{h}-v^{m, h}\right) \right\vert ^{2}dx < +\infty $, we have
$ \begin{equation} \left. \begin{array}{l} \underset{h\rightarrow \infty }{\lim }\dfrac{\sqrt{5^{h}}\text{Re}_{{\mathbf{j }}, h}^{-1}}{\mathfrak{m}\left( \Theta \right) 3^{h+1}}\mathop {\mathop {\mathop \sum \limits^{{3^h}} }\limits_{k = 1} }\limits_{i = 1,2,3} \int_{\mathcal{J}_{k}^{h, i}}\left( \begin{array}{c} \left( \nabla v^{h}-\nabla v^{m, h}\right) \\ .\nabla \left( \Theta \left( \frac{y_{h, 2}^{i, k}\left( x\right) }{ \varepsilon _{h}}, \frac{x_{3}}{\varepsilon _{h}}\right) e_{1}^{i}\right) \end{array} \right) dx \\ = 0\text{.} \end{array} \right. \end{equation} $ | (6.44) |
In addition, owing to Proposition 13, we have
$ \begin{equation} \underset{h\rightarrow \infty }{\lim }\dfrac{5^{h}}{3^{h+1}\text{Re}_{h}} \int_{\Omega ^{h}}\left\vert \nabla v^{m, h}\right\vert ^{2}dx = F_{\infty }\left( v_{m}\right) \text{.} \end{equation} $ | (6.45) |
Thus, combining (6.35)–(6.45), we deduce that
$ \begin{equation} \left. \begin{array}{l} \underset{h\rightarrow \infty }{\lim \inf }F_{h}\left( v^{h}\right) \geq F_{\infty }\left( v_{m}\right) \\ +\dfrac{2\mu \pi }{\mathcal{H}^{d}\left( G\right) }\int_{G}v_{m}\left( v-v_{m}\right) d\mathcal{H}^{d}\text{.} \end{array} \right. \end{equation} $ | (6.46) |
Then, letting $ m $ tend to $ \infty $, we obtain
$ \begin{equation*} \underset{h\rightarrow \infty }{\lim \inf }F_{h}\left( v^{h}\right) \geq F_{\infty }\left( v\right) \text{, } \end{equation*} $ |
and, as a consequence, $ \mathcal{E}_{G}\left(v\right) < +\infty $. Thus, $ v\in \mathcal{D}_{\mathcal{E}} $ and, taking into account (6.34), we have that $ v\in V^{\infty } $.
Proof. 1. Let $ \left(u^{h}, p_{h}\right) $ be a solution of problem (2.22) with boundary conditions (2.25). According to Lemma 12 and Proposition 8 there exists a subsequence of $ \left(u^{h}\right) _{h} $, still denoted as $ \left(u^{h}\right) _{h} $, such that
$ \begin{equation} \sqrt{5^{h}}u^{h}\dfrac{\pi \boldsymbol{1}_{\Omega ^{h}}\left( x\right) }{ 3\left\vert \Omega ^{h}\right\vert }dx\overset{\ast }{\underset{h\rightarrow \infty }{\rightharpoonup }}\left( u, u^{\ast }, 0\right) \dfrac{d\mathcal{H} ^{d}\left( s\right) \otimes \delta _{0}\left( x_{3}\right) }{\mathcal{H} ^{d}\left( G\right) }\text{ in }\mathcal{M}\left( \mathbb{R}^{3}\right) \text{, } \end{equation} $ | (6.47) |
with $ u^{\ast } = 0 $ on the part of $ G $ which is perpendicular to $ \left(0, 1\right) $, $ u^{\ast } = u\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(-\sqrt{3}/2, 1/2\right) $, and $ u^{\ast } = -u\sqrt{3} $ on the part of $ G $ which is perpendicular to $ \left(\sqrt{3}/2, 1/2\right) $. As the boundary $ \partial \Omega ^{h} $ is $ C^{2} $, the velocity $ u^{h} $ is at least in $ H^{2}\left(\Omega ^{h}\right) $. Thus, according to Proposition 5.9, we have that
$ \begin{equation} \langle \text{div }_{Z}\left( u\right) , \varphi \rangle = 0\text{, } \forall \varphi \in H_{Z}\left( G\right) \text{.} \end{equation} $ | (6.48) |
On the other hand, since $ u^{h} $ is the unique velocity solution of problem (2.31), we deduce from Theorem 2 and [15, Theorem 7.8], that the whole sequence $ \left(u^{h}\right) _{h} $ verifies the convergence (6.47),
$ \begin{equation} \underset{h\rightarrow \infty }{\lim }F_{h}\left( u^{h}\right) = F_{\infty }\left( u\right) \text{, } \end{equation} $ | (6.49) |
and, taking into account (6.48), we deduce that $ u\in V^{\infty } $. In addition, using Lemma 12 and the proof of Proposition 8, we have that
$ \begin{equation} \sqrt{5^{h}}\widehat{p}_{h}\dfrac{\pi \boldsymbol{1}_{\Omega ^{h}}\left( x\right) }{3\left\vert \Omega ^{h}\right\vert }dx\overset{\ast }{\underset{ h\rightarrow \infty }{\rightharpoonup }}p\dfrac{d\mathcal{H}^{d}\left( s\right) \otimes \delta _{0}\left( x_{3}\right) }{\mathcal{H}^{d}\left( G\right) }\text{ in }\mathcal{M}\left( \mathbb{R}^{3}\right) \text{, } \end{equation} $ | (6.50) |
with $ p\in H_{Z}\left(G\right) $, and, using the uniform boundedness (5.56),
$ \begin{equation} \sqrt{5^{h}}f_{h}\dfrac{\pi \boldsymbol{1}_{\Omega ^{h}}\left( x\right) }{ 3\left\vert \Omega ^{h}\right\vert }dx\overset{\ast }{\underset{h\rightarrow \infty }{\rightharpoonup }}f\dfrac{d\mathcal{H}^{d}\left( s\right) \otimes \delta _{0}\left( x_{3}\right) }{\mathcal{H}^{d}\left( G\right) }\text{ in } \mathcal{M}\left( \mathbb{R}^{3}\right) \text{, } \end{equation} $ | (6.51) |
with $ f\in L_{\mathcal{H}^{d}}^{2}\left(G, \mathbb{R}^{3}\right) $. Using Proposition 5.9 and Lemma 12$ _{2} $, we deduce that, for every $ v\in V^{\infty } $,
$ \begin{equation} \begin{array}{lll} \int_{G}\left( v, v^{\ast }\right) .nZ\nabla p.nd{\boldsymbol{\nu}} & = & \int_{G}vn.Z\nabla pd{\boldsymbol{\nu}} \\ & = & \int_{G}vZ\nabla p.nd{\boldsymbol{\nu}} \\ & = & 0\text{, } \end{array} \end{equation} $ | (6.52) |
where $ n = \left(1, 0\right) $ on the horizontal part of $ G $, $ n = \left(1/2, \sqrt{3}/2\right) $ on the part of $ G $ which is perpendicular to $ \left(- \sqrt{3}/2, 1/2\right) $, and $ n = \left(1/2, -\sqrt{3}/2\right) $ on the part of $ G $ which is perpendicular to $ \left(\sqrt{3}/2, 1/2\right) $.
2. According to Theorem 2 and [15, Theorem 7.8], $ u $ is the solution of the problem
$ \begin{equation} \underset{v\in V^{\infty }}{\min }\left\{ \begin{array}{l} \dfrac{\mu \pi }{\mathfrak{m}\left( \Theta \right) \mathcal{H}^{d}\left( G\right) }\int_{G}v^{2}d\mathcal{H}^{d}+\dfrac{2\mu \pi \mathfrak{m}\left( \Theta \right) }{3\sigma }\int_{G}\nabla v.Z\nabla vd{\mathbf{\nu }} \\ -\dfrac{2}{\mathcal{H}^{d}\left( G\right) }\int_{G}f.\left( v, v^{\ast }, 0\right) d\mathcal{H}^{d} \end{array} \right\} \text{.} \end{equation} $ | (6.53) |
Then, using Lemma 4 and the fact that $ \int_{G}vZ\nabla p.nd{\boldsymbol{\nu}} = 0 $ and $ \left(v, v^{\ast }\right) = v.n $, for every $ v\in V^{\infty } $, we deduce from (6.53) that, for every $ v\in V^{\infty } $,
$ \begin{equation} \begin{array}{l} -\dfrac{4\mu \pi \mathfrak{m}\left( \Theta \right) }{3\sigma \mathcal{H} ^{d}\left( G\right) }\int_{G}\Delta _{G}\left( u\right) vd\mathcal{H} ^{d}\left( s\right) \\ +\dfrac{2\mu \pi }{\mathfrak{m}\left( \Theta \right) \mathcal{H}^{d}\left( G\right) }\int_{G}uvd\mathcal{H}^{d}\left( s\right) +2\int_{G}vZ\nabla p.nd{\boldsymbol{\nu}} \\ = \dfrac{2\mathcal{H}^{d}}{\mathcal{H}^{d}\left( G\right) }\int_{G}vf.nd \mathcal{H}^{d}\text{, } \end{array} \end{equation} $ | (6.54) |
where, by abuse of notation, $ f.n = \left(f_{1}, f_{2}\right).n $. Therefore, $ \left(u, p\right) $ is the solution (with $ p $ up to an additive constant) of the following problem:
$ \begin{equation*} \left. \begin{array}{r} -\dfrac{2\mu \pi \mathfrak{m}\left( \Theta \right) \mathcal{H}^{d}}{3\sigma \mathcal{H}^{d}\left( G\right) }\Delta _{G}\left( u\right) +\dfrac{\mu \pi \mathcal{H}^{d}}{\mathfrak{m}\left( \Theta \right) \mathcal{H}^{d}\left( G\right) }u+{\boldsymbol{\nu}} Z\nabla p.n \\ = \dfrac{\mathcal{H}^{d}}{\mathcal{H}^{d}\left( G\right) }f.n\text{ in }G \text{, } \end{array} \right. \end{equation*} $ |
which completes the proof of Theorem 3.
In this paper, we considered the motion of a viscous incompressible fluid in a varying bounded domain consisting of branching cylindrical pipes whose axes are line segments that form a network of pre-fractal polygonal curves $ G_{h} $ obtained after $ h $-iterations of the contractive similarities of the standard Sierpinski gasket. We assumed that these pipes are narrow axisymmetric tubes of radius $ \varepsilon _{h} $ very small with respect to the length $ 2^{-h} $ of each side of $ G_{h} $. We supposed that the fluid flow is driven by some volumic forces and governed by Stokes equations with continuity of the velocity at the interfaces separating the junction zones from the rest of the pipes, homogeneous Dirichlet boundary condition for the velocity, and homogeneous Neumann boundary condition for the pressure on the wall of the tubes. The flow in each pipe is split into two streams: boundary layers flow in junction zones of length $ \varepsilon _{h}\ln \left(1/\varepsilon _{h}\right) \ll $ $ 2^{-h} $ and laminar flow in the rest of the pipe. We assumed that the flow in the junction zones is controlled by a typical Reynolds number $ \text{Re}_{{\mathbf{j}}, h} $. Using $ \Gamma $ -convergence methods, we studied the asymptotic behavior of the fluid flowing in the branching tubes as the radius of the tubes tends to zero and the sequence of the pre-fractal curves converges in the Hausdorff metric to the Sierpinski gasket. According to critical values taken by $ \text{Re}_{ {\mathbf{j}}, h} $, we derived three uncommon effective models of fluid flows in the Sierpinski gasket:
1. a singular Brinkman equation if $ \text{Re}_{{\mathbf{j}}, h} = O\left(\varepsilon _{h}\right) $,
2. a singular Darcy flow if $ \text{Re}_{{\mathbf{j}}, h} $ $ = O\left(1\right) $ or $ \text{Re}_{{\mathbf{j}}, h}\longrightarrow \infty $ as $ h\longrightarrow \infty $,
3. a flow with constant velocity if $ \text{Re}_{{\mathbf{j}}, h} $ $ = O\left(\varepsilon _{h}^{\alpha }\right) $ with $ \alpha > 1 $.
As far as the modeling is concerned, fractal branching pipe networks have to be considered to describe fluid flows in various complex geometrical configurations. An important field to which this model is closely related is the behavior of fluid flows in some physiological structures such as the blood circulation through arterial networks. Our model may serve as a starting point for further investigations in this area.
Haifa El Jarroudi: Writing-original draft, Writing-review and editing, Methodology, Formal Analysis; Mustapha El Jarroudi: Writing-original draft, Writing-review and editing, Methodology, Supervision.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors wish to express their gratitude to the anonymous referee for giving a number of valuable comments and helpful suggestions, which improve the presentation of sentation of the manuscript significantly.
The authors declare there is no conflict of interest.
[1] | Katz JN (2006) Lumbar disc disorders and low-back pain: socioeconomic factors and consequences. J Bone Joint Surg Am 88: 21–24. |
[2] |
Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31: 2151–2161. doi: 10.1097/01.brs.0000231761.73859.2c
![]() |
[3] | Nachemson A (1960) Lumbar intradiscal pressure: experimental studies on post-mortem material. Acta Orthop Scand 31: 1–104. |
[4] |
Atlas SJ, Chang Y, Kammann E, et al. (2000) Long-term disability and return to work among patients who have a herniated lumbar disc: the effect of disability compensation. J Bone Joint Surg Am 82: 4–15. doi: 10.2106/00004623-200001000-00002
![]() |
[5] |
Vialle LR, Vialle EN, Henao JES, et al. (2010) Hérnia discal lombar Lumbar disc herniation. Rev Bras Ortop 45: 17–22. doi: 10.1590/S0102-36162010000100004
![]() |
[6] |
Jacobsen S, Sonne-Holm S, Rovsing H, et al. (2007) Degenerative lumbar spondylolisthesis: an epidemiological perspective: the Copenhagen Osteoarthritis Study. Spine 32: 120–125. doi: 10.1097/01.brs.0000250979.12398.96
![]() |
[7] |
Tulsi RS, Hermanis GM (1993) A study of the angle of inclination and facet curvature of superior lumbar zygapophyseal facets. Spine 18: 1311–1317. doi: 10.1097/00007632-199308000-00010
![]() |
[8] |
Lee DY, Lee SH (2009) Effects of facet tropism and disk degeneration on far lateral lumbar disk herniation: comparison with posterolateral lumbar disk herniation. Neurol Med Chir (Tokyo) 49: 57–61. doi: 10.2176/nmc.49.57
![]() |
[9] |
Brailsford JF (1929) Deformities of the lumbosacral region of the spine. Br J Surger 16: 562–627. doi: 10.1002/bjs.1800166405
![]() |
[10] | Farfan H, Sullivan J (1967) The relation of facet orientation to intervertebral disc failure. Can J surg J can de chir 10: 179. |
[11] |
Kim HJ, Chun HJ, Lee HM, et al. (2013) The biomechanical influence of the facet joint orientation and the facet tropism in the lumbar spine. Spine J 13: 1301–1308. doi: 10.1016/j.spinee.2013.06.025
![]() |
[12] |
Cyron B, Hutton W (1980) Articular tropism and stability of the lumbar spine. Spine 5: 168–172. doi: 10.1097/00007632-198003000-00011
![]() |
[13] | Chadha M, Sharma G, Arora SS, et al. (2013)Association of facet tropism with lumbar disc herniation. Eur Spine J 22: 1045–1052. |
[14] |
Farfan H, Cossette J, Robertson G, et al. (1970) The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration. J Bone Joint Surg Am 52: 468–497. doi: 10.2106/00004623-197052030-00006
![]() |
[15] |
Noren R, Trafimow J, Andersson G, et al. (1991) The role of facet joint tropism and facet angle in disc degeneration. Spine 16: 530–532. doi: 10.1097/00007632-199105000-00008
![]() |
[16] |
Ko HY, Park BK (1997) Facet tropism in lumbar motion segments and its significance in disc herniation. Arch Phys Medicin Rehabil 78: 1211–1214. doi: 10.1016/S0003-9993(97)90334-8
![]() |
[17] |
Linov L, Klindukhov A, Li L, et al. (2013) Lumbar facet joint orientation and osteoarthritis: a cross-sectional study. J Back Musculoskeletal Rehabil 26: 421–426. doi: 10.3233/BMR-130401
![]() |
[18] |
Van JS, Verbiest H, Van FS (1985) The orientation of laminae and facet joints in the lower lumbar spine. Spine 10: 59–63. doi: 10.1097/00007632-198501000-00009
![]() |
[19] |
Ahmed AM, Duncan NA, Burke DL (1990) The effect of facet geometry on the axial torque-rotation response of lumbar motion segments. Spine 15: 391–401. doi: 10.1097/00007632-199005000-00010
![]() |
[20] |
Vanharanta H, Floyd T, Ohnmeiss DD, et al. (1993) The relationship of facet tropism to degenerative disc disease. Spine 18: 1000–1005. doi: 10.1097/00007632-199306150-00008
![]() |
[21] | Cassidy JD, Loback D, Yong-Hing K, et al. (1992) Lumbar facet joint asymmetry. Intervertebral disc herniation. Spine 17: 570–574. |
[22] |
Adams M, Hutton W (1981) The relevance of torsion to the mechanical derangement of the lumbar spine. Spine 6: 241–248. doi: 10.1097/00007632-198105000-00006
![]() |
[23] | Yu H, Hou S, Wu W, et al. (1998) The relationship of facet orientation to intervertebral disc protrusion and lateral recess stenosis in lower lumbar spine. Zhonghua wai ke za zhi 36: 176–8, 31. |
[24] | Grogan J, Nowicki BH, Schmidt TA, et al. (1997) Lumbar facet joint tropism does not accelerate degeneration of the facet joints. Am J Neuror 18: 1325–1329. |
[25] |
Gao T, Lai Q, Zhou S, et al. (2017) Correlation between facet tropism and lumbar degenerative disease: a retrospective analysis. BMC Musculoskeletal Disord 18: 483. doi: 10.1186/s12891-017-1849-x
![]() |
[26] | Long DM, BenDebba M, Torgerson WS, et al. (1996) Persistent back pain and sciatica in the United States: patient characteristics. J Spinal Disord 9: 40–58. |
[27] | Putti V (1927) New conceptions in the pathogenesis of sciatic pain. Lancet 2: 53–60. |
[28] |
Tisot RA, Vieira JDS, Collares DDS, et al. (2018) Influence of facet tropism on the location of lumbar disc herniation. Coluna/Columna 17: 23–26. doi: 10.1590/s1808-185120181701179264
![]() |
[29] | Lumbar DDD (2013) Associação entre tropismo facetário e doença degenerativa de disco lombar. |
[30] |
Liu Z, Duan Y, Rong X, et al. (2017) Variation of facet joint orientation and tropism in lumbar degenerative spondylolisthesis and disc herniation at L4–L5: A systematic review and meta-analysis. Clin Neurol Neurosurgery 161: 41–47. doi: 10.1016/j.clineuro.2017.08.005
![]() |
[31] |
Mohanty SP, Kanhangad MP, Kamath S, et al. (2018) Zygapophyseal joint orientation and facet tropism and their association with lumbar disc prolapse. Asian Spine J 12: 902–909. doi: 10.31616/asj.2018.12.5.902
![]() |
[32] |
Wang H, Zhou Y (2016) Facet tropism: possible role in the pathology of lumbar disc herniation in adolescents. J Neurosurgery Pediatr 18: 111–115. doi: 10.3171/2015.7.PEDS15175
![]() |
[33] | Pichaisak W, Chotiyarnwong C, Chotiyarnwong P (2015) Facet joint orientation and tropism in lumbar degenerative disc disease and spondylolisthesis. J Med Assoc Thai 98: 373–379. |
[34] |
Ghandhari H, Ameri E, Hasani H, et al. (2018) Is facet tropism associated with increased risk of disc herniation in the lumbar spine? Asian Spine J 12: 428. doi: 10.4184/asj.2018.12.3.428
![]() |
[35] | Kunakornsawat S, Ngamlamaidt K, Tungsiripat R, et al. (2007) The relationship of facet tropism to lumbar disc herniation. J M ed Assoc Thai 90: 1337–1341. |
[36] |
Karacan I, Aydin T, Sahin Z, et al. (2004) Facet angles in lumbar disc herniation: their relation to anthropometric features. Spine 29: 1132–1136. doi: 10.1097/00007632-200405150-00016
![]() |
[37] |
Kong MH, He W, Tsai Y-D, et al. (2009) Relationship of facet tropism with degeneration and stability of functional spinal unit. Yonsei Med J 50: 624–629. doi: 10.3349/ymj.2009.50.5.624
![]() |
[38] |
Eun SS, Lee H-Y, Lee S-H, et al. (2012) MRI versus CT for the diagnosis of lumbar spinal stenosis. J Neuroradiology 39: 104–109. doi: 10.1016/j.neurad.2011.02.008
![]() |
[39] |
Videman T, Leppävuori J, Kaprio J, et al. (1998) Volvo award winner in basic science studies: Intragenic polymorphisms of the vitamin D receptor gene associated with intervertebral disc degeneration. Spine 23: 2477–2485. doi: 10.1097/00007632-199812010-00002
![]() |
[40] |
Battié MC, Videman T, Parent E (2004) Lumbar disc degeneration: epidemiology and genetic influences. Spine 29: 2679–2690. doi: 10.1097/01.brs.0000146457.83240.eb
![]() |
[41] |
Battié MC, Videman T, Gibbons LE, et al. (1995) Determinants of lumbar disc degeneration: a study relating lifetime exposures and magnetic resonance imaging findings in identical twins. Spine 20: 2601–2612. doi: 10.1097/00007632-199512150-00001
![]() |
[42] |
Cohen SP, Raja SN (2007) Pathogenesis, diagnosis, and treatment of lumbar zygapophysial (facet) joint pain. Anesthesiology 106: 591–615. doi: 10.1097/00000542-200703000-00024
![]() |